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1. Introduction 

The following theorem shows that very few noncompact spaces have the property 

that all their noncompact continuous images are orderable. 

Theorem 1.1. If X is not compact then every noncompact continuous image oj’X is 
orderable if X is a continuous imuge of CO I . 

A corollary shows that “noncompact” is essential. 

Theorem 1.2, Every continuous image of JC is orderable iflX is compact and countable. 

Theorem 1.1 was discovered by accident: In order to solve a problem in Boolean 

algebra, van Douwen [SJ, I needed a good description of all continuous images of 
l 

01+ 1. 

Theorem 1.3. A space Y is a continuous image of w I + I iJ orle 0.f the fodlowing 
conditions holds: 
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(1) Y is compact and j Yj = o1 and there is a pairwise disjoint fami!r, % of open 

compact countable subsets of Y with ] Y - u Sri = 1, or 
(2 ) Y is compact and there are a compatible iinear order d on Y and a point CK: in 

Y such that each interval in ((+, y]: y f (c, x)) v (Ix, + 1) is countab!. 

A more detailed statement, see Section 5, Beads to the cor,clusion that the if-part 

of esrem 1.1 holds. FM the proof of t e only-if-part we need to generalize the 

notion of a cub (=-closed unbounded) subset of an ordina!: We call a subset of any 
space a cub Sit is closed and noncompact. We call a space a bear if it is noncompact 
and has no disjoint cubs. (It is well known that an ordinal 5 ( =[0, e)), in the order 
topology, is a bear iff cof(t) 2 o1 .) With this terminology we have the following 

extension of Theorem 1.1. The interesting part of the proof is the implication 

(2)*(3). 

Theorem 1.4. For a noncompact spuce X the _~~~~w~ng are equivalent. 

( 1) X is a continuous image of 0 I , 
(2) every noncompact contiwous image of X is orderable, 
(3 ) X is a scattered &first countable ord4rable bear, 

(4) X is a locuNv countafiie orderable bear, and 

(5) X is counta& compact and X has a compatible linear order s such that initial I 
segments are c0untuMe. 

1.5. Eaclj noncompact cokhuous image of w1 has a closed subspace homeo- 
morphic to uI . 

2. Preliminaries 

All ordinals carry the order topology. We let D(o, ) denote ~tly discrete space of 
cardinality wI , and let cuD(o, ) denote its one-point compactifkation. We frequently 
use the fact that cuD(o,) embeds in no orderable space. 

For a space X we let X” denote the set of isolated points of X. 

For spaces X and Y (and points x of X and ,r) of Y) we let X =z Y (or 

(X, x) = ( Y3 I+) . signify that there is a homeomorphism from X onto Y (which maps 

x tie y). 

For a closed subset F of a space X we use X/F to denote the quotient space 

obtained from X by collapsing F to a single point. Note that if X is normal then 

so is X/F. Also note that (OJ, + l)/(w, + I)‘= c&(o,) = O&J;. 
A space is called scattered if every nonempty subspace (or, equivalently, every 

nonempty closed subspace) has an isolated point. We need the fact that each 

continuous image of a compact scattered space is scattered. (Proof: a closed subspace 

of the image is the image of a space with an isolated point under a continuous 
closed irreducible map.) e also need the fact that compact scattered spaces are 
zero-dimensional. 



3. Bears 

In this section we collect some useful facts about bears. Some of this material 

will be used later. 

Proposition 3.1. Let X be a bear. Then X has the following properties: 
(1) X is normal and countab!v compact. 
(2) X is locallv compact. . 

(3) If f is a continuous map -from X onto a noncompact space 
and Y is a bear. 

(4) If X is a dense subspace of some space Y then X = Y or . 
Y - X consists qf e_xactly one point. 

Y then f is perfect 

Y is cosqact and 

Proof. That (1) holds should be clear. That the noncompact continuous image of 

a bear is again a bear should also be clear. 

Furthermore note that if a space is not compact then every point (even every 

compact subset) of it has a neighbourhood with a noncompact complement. This 

immediately proves (2) and with some extra effort also (3). 

Finally, to prove (4) note that X u {JY} is compact for every ~7 E Y - X (if U is a 

neighbourhood of 4’ then X - U must be compact). Cl 

Corollary 3.2. Bear topologies are minimally noncompact. 

Proof. If 3 is a bear topology on a set X and .alZ~ g is a noncompact topology 

then apply (3) of Proposition 3.1 to the identity map from (X, .93j to (X, A@. Cl 

Bears share with ordinals of uncountable cofinality the property that the filter of 

cubs is countably complete. 

Proposition 3.3. If X is a bear then the intersection qf countably many cubs is again 

a cub. 

Proof. We let % denote the collection of all cubs in X and we put 

v = min{ l&l: ,&’ c %? and (I> A! is not a cub) 

and 

u-+1 L1 :qi iy u G /A. Tc shovi that ti 5 v take L&‘S %? SUCK that n .d is not a cub, i.e., n A!’ 

is compact or empty. By local compactness we can find an open set U around n .d 
with compact closure. Then (A - Lr: .-k.~/f is a collection of cubs with empty intersection. 

Using the equality lr_~ = v we may show by induction that CA. 2 n for every n E w; 
it follows that p = v 2 o. Cl 
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4. Scattered spaces 

A common method of proving results about scattered spaces is to prove them by 

induction on the scattering height. We find it pleasant that the proofs of this section 

are straightforward from the definition. This is our justification for including our 

proof of the following result of Mazurkiewicz and Sierpinski from [2]. 

Lemma 4.1. Every compact and countable space is homeomorphic to Q! + 1 for some 

CY E 31. 

Proof. Let X be compact and countable, so X is scattered and zero-dimensional. 

Let 0 denote the family of those clopen subsets of X that are homeomorphic to 

cw+l for some aEw,. 
Note that a clopen subset of a successor ordinal is homeomorphic to a successor 

ordinal Cuse the same ordering), so that every clopen subset of every element of 0 

is again an element of J2. 
Consider the set A of those x E X that have a neighbourhood in 0. It suffices to 

show that A =x for then we can find a pairwise disjoint cover of X consisting of 

elements of 0. Using the fact that 10, a]O[O, p] = [0, (Y + 1 + p] we may then 

conclude that X E 0. 

So assume A f X and pick a relatively isolated point a of X -A. Also pick a 

clopen neighbourhood U of a such that V n A = {a}. Now a is not isolated in X 

and U -{a} c A, so we can find a pairwise disjoint nonempty Ui E 0 (i E o) such 

that U -{a} = u:. w Ui- Next we take a strictly increasing sequence (at: i E o) in 
{-l}uw, such that U,+LY~+~,CY. ,+,] for all i. Let a = sup; cy;, then 

y0, a) z @ [(Yi + 1, cYi+l] z (sj !_J, = U -{ff}. 
ic to It to 

It follows that U 2 [0, a] because one-point compactifications are unique. Thus, 

the assumption A # X leads to a contradiction. 0 

The following two corollaries follow because they are easily seen to hold for 

compact ordinal spaces. 

Corollary 4.2. l/*X is compact ond countable (2nd p, q E X then there is a compatible 

ordering on X xvith p as its j’rst and q as its last element. 

Corollary 4.3. If X is compact and countable and p E X thpn there is y E ol such that 
the pointed spaces (X, p) and (jQ, y], y) are homeomorphic. 

We conclude this section with a lemma that may, but should not, be new. We 

shall need it rlt one point later on. 
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Lemma 4.4. Let X be an injnite compact scattered space. Then 

(1) xw)=lxl and 
(2) if 1x1 is regular then x(x, X) -7 1x1 for some XE X. 

Proof. Since X is compact we have x(.x, X) =+(x, X)S 1x1 for all x. 

We prove the reverse inequalities by induction on the cardinality of the space. 

They should be clear for countable compact spaces. 

Let A be the set of those x in X for which every neighbourhood has cardinality 

1x1. As X is compact the set A is not empty. Let a be a relatively isolated point of 

A and pick a c!osed neighbourhood Y of a such that YP A = {a). Now I YI = (X( 

and x(x, Y) <x(x, X) for all x E Y so we may as well assume that Y =X. 

By this assumption the family % of clopen sets of cardinality less than IX) covers 

X - { ai; also, X - {a} can be covered by x( a, X ) compact sets so % has a subcover 

‘1’ of size at most x( a, X). 

If (Xl is regular then necessarily Ir/l = 1x1, so ~(a, X) =1X1. 

If I Xl is singular then sup ,,< ,.I VI = 1x1 and so, by the inductive assumption 

If K is a singular cardinal then every point of the space K + 1 has character less 

than K, so regularity of 1 XI is necessary in (2). 

Note also that in a similar way one may prove that compact scattered spaces are 

zero-dimensional. 

5. Continuous images of aI + 1 

The follotiing two theorems characterize all continuous images of o1 + 1. 

Theorem 5.1. 7%~ _following are equivalent for a space Y. 

( 1) There is a continrrotrs susjection , f: co1 -I- I--+ Y sud that l_J’- i.[( (oI ) ) 1 =c~J~ ad 
(2) Y is compact, I YI SW, and there is a pairwise disjoint farnil_y % of compcict, 

open and countable subsets of Y with I Y - u “u( = 1. 

Theorem 5.2. The following are equivalent *for a space Y. 

(1) There is a continuous surjection f : wI + 1 + Y sucl? fhal I.J’{ f (@,)}I s 0, 

(2) Y is compact and uncountable and Ihere are a compatible ordering < and a 

point 00 such that [OO, +) and every interval (+, y] with j’ COO are countable, and 

(3) there is an exactly two-to- ;/ne continuous surjection from w1 + I onto Y. 

As a corollary we discover when an uncountable continuous image of ml + 1 is 

orderable. 
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Corollary 5.3. The following are equivalent for an uncountable continuous image Y 

of @,-I- 1. 
( 1) Y is orderable, 
(2) *for every continuous surjection j’: ol + 1 + Y we have V”{f(o,))l S w, 

(3) the one-point compactfiation of D(w,) does not embed into Y and 
(4) o,+ 1 embeds into Y. 

The proof will also yield the following result: 

Theorem 5.4. The following are equivalent for a space Y. 
(1) There is a continuous surjection f: ol + l+ Y such that If t{f(o,)}l = 1 and 
(2) Y is compact, uncountable and orderable in such a way that each interval not 

containing the last elemerrt is countable. 

Remark 2.5. If <, Y and 00 are as in (2) of Theorem 5.2 then there is a strictly 

increasing embedding e : wl + 1 + Y with e(O) = min Y and P(w,) =OO. This is men- 

tioned for use in van Douwen [5]. 

We give a combined proof of implications (l)+(2) in Theorems 5.1 and 5.2. 
Let f: toI + 1 + Y be continuous. We put 00 = f(w,) and for 5 s wI we put F( 5) = 

f ‘{_f(~)}. Note that F(t) is closed and that F(r) is countable if ol E F(t). Consider 

the following subset r of ol defined by 

CYE~ iff forall&a:ifo,@F(~)~henF(~)~a. 

Clearly r is a closed and unbounded subset of ol . Also note that every (Y E r is 

saturated with respect to F in that if w, E F(4) then F(t) c Q if 5 < cy and F(t) c 
[a, 0,) if 52 cy. 

Case 1: IF(wJ = ml. In this case F(o,)no, is cub in OJ~ and so A = rn F(o,) 
is also cub. Let % be the collection of convex components of wl -A. Because each 

IY E A is saturated we get the following equality for each C E %: 

c-F(w,)=f’rf’C-{oo}]. 

It follows that ‘V = {f ‘C - (00): C E %} is a pairwise disjoint collection of open 

subsets of Y. Note also that ‘V” covers Y - (00). As each VE v is counta{ le and 

locally compact we may decompose it into countably many compact open sets. 

These collections put together will form our collection (‘4% 

Case 2: lF(6~,)l =+z W. Now fix CY E r such that F(w,) n wi G Q and fix a clopen-in- 
f’[O,o] set 0 such that a&? and f(a)aLk Also let C=fW and A={m}u 
( Y - 0). Note that A and 0 are closed and that An 0 = {a}. Now L? is compact 

and countable so we can order it by a compatible linear order sfr, which has 00 as 
its first element. 
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We shall order A in such a way that m is its last element; in this way Y will be 
ordered in the required fashion. 

To begin we order.f”([O, a] - C) in some way so as to makeJ(a) its last element. 

Next choose, for every p E [cy, w,) n II a compatible order sB onf4[ /3, p’]-where 
p+= min I‘ - [0, /31-f or which f‘( /I) is the first and f( p’) the last element. 

Now combine these orderings into an ordering sA of A in such a way that 

f’([O, a] - C) and each set f’[P, fl’] retain their original ordering, and if fi < y 

then f ‘IX P’] comes before f’[ ‘y. ~‘3; also f’([O, a] - C) comes before all sets 

f -+CP, P’l* 
We leave it to the reader to check that all requirements are met. 

We turn to the proofs of the other implications. 

Proof of (2)+(l) in Theorem 5.1. If Y is countable then Y = [O, LX] for some cy E w1 

and [O, CK ] is obtained from o1 + 1 by the collapsing [a, w,] to a point. 

So assume 1 Yi = wi and enumerate the family % in some one-to-one manner: 

(U,: &IJ~). We define f:w,+l + wI + 1 by induction as follows: *f(O) = 0 and if 

r) s wI is a limit then J(q) = sup&. J(c). If 5~ wI then we choose the minimal 

ordinal a, such that U, = [0, cyc] and we put .f(e+ 1) =-J(S) + 1+ a6 + 1; note that 

U(5), f(5+ 1)) = &. 
Now asf is continuous the set F =.f’[O, w,] is closed and (/“L), + 1) - F=@,. (,,, U,. 

It follows that both Y and (w, + 1)/F are the one-point compactification of&. <,,, U, 

andso Y=(o,+l)/E Cl 

Proof of (2)+3) in Theorem 5.2. The set [a, -+) is homeomorphic to [0, a] for 
some QEm l ; map [0, cy + cy ] onto [m, +) by an obvious two-to-one map. 

It remains to map (cu +a, w,) onto Y -[co, +) by a two-to-one map (we shall 

map ol onto Y -[m, +) of course). 

First we take a strictly increasing map e : wI + Y such that e(0) = min Y and 

477) = supt. 77 e(t) if 7-j ic a limit. 

Each interval [e( q 1, e( ‘;I + 1)] IS compact and countable; we shall find for each 

v an ordinal yII and a map F,, : [O, y,J+ [e( q), e(q + 1)] such that 1 F’(x)1 = 2 if 

e(T)<x<e(q+l) and ~Fc{e(~)}~=~Fc{e(~+l))~=l. 

Once this is done we map wI onto Y -[a, +) as follows: First define (S,,: q < ml> 

by 4, = 1, S,),., =S,,+l+y,, and S, =supc. ,) S, if 7 is a limit. Now use the F,, to 

map [S, + 1, S,,,] onto [e(q), e(q)+ 1-j. Furthermore, map 0 to e(O) and if q is a 

limit map S, to e(q). The resulting map F is continuous and exactly two-to-Gne as 

the reader may easily verify. 

To find Fv and yV we take the quotient of [e(q), e(q)+ l] x 2 obtained by 

identifying (e(q), 0) and (C(T), 1) at one end and (e(v + 1). 0) and (e(q + 11, l> at 

the other end. This quotient space is compact and countable, hence homeomorptlic 

with some successor y,, + 1. The map F,, now suggests itself. Cl 
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6. Ctwtinuous images of CI)~ 

We here prove Theorem 1.4, i.e., prove the following conditions on a noncompact 

space X to be equivalent: 

(1) X is a continuous image of CO,. 

(2) every noncompact continuous image of X is orderable, 

(3) X is a scattered first countable orderable bear, 

(4) X is a locally countable orderable bear, 

(5) X has a compatible order all initial closed segments of which are compact 

and countable. 

We also prove Corollary 1.5 which says that each noncompact continuous image 

of o1 has a closed subspace homeomorphic to wI. 

Proof of (l)*(2). Let Y be a noncompact continuous image of X. Then Y is a 

noncompact continuous image of 0, , hence is a bear by Proposition 3.1(3). It follows 

from Proposition 3.1(2) that Y is locally compact; let LY Y = Y u (00) be its one-point 

compactification. Extend f to a map F : wI + 1 + (Y Y by stipulating that F( wI) = 00. 
If F is continuous then cy Y is orderable by Theorem 5.2 since 1 F’{ F(u,)}( = 1, 

hence its open subspace Y is also orderable. 

To see that F is continuous we note that, by Proposition 3.1(3), .f is perfect so 

that f-K is compact whenever K c Y is compact. Because the complements of 

compact subsets of Y form a neighbourhood base at 00 we conclude that F is 

continuous at 00. Also, F 1 tgl =.f is continuous so that F is continuous. 0 

Proof of (2)*(3). We do this in six steps. Clearly X itself is orderable; let s be a 

compatible ordering. 

Fact 1. X is countabll) compact. 

Proof. We assume X has a countably infinite closed discrete set D, and prove l(2). 

Since every countable orderable space is first countable, and since there is a countable 

regular (necessarily) noncompact space which is not first countable, e.g., w x 

(co+ 1) / ( CLIX [co! ). it suffices to prove .7ican be mapped continuously onto each count- 

able space or, equivalently, that .Y admits an infinite pairwise disjoint open cover. 
First note X is zero-dimensional: if not there are a, b E X with a < b and [a, b] 

connected. Then X/{a, b}, which obviously is normal and not compact, is not 

orderable since its nondegenerate connected subspace [a, b]/(a, b} is not discon- 
nected by any point. 

Since X is normal and zero-dimensional we can find a (necessarily infinite) 

discrete clopen family % which separates D. Then % u {X\U %} is our cover. 

act 2. Every copy qf w , in X is closed. 
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Proof. We suppose not and prove l(2). Simply assume wl is a nonclosed subspace 

of X, and let PE&-~,. Then wI u {p> is compact, by Proposition 3.1(4), hence 
wI u {p} = wI + 1. So we may assume wl + 1 is a subspace of X. 

The quotient space X/( wI + 1)’ is regular and noncompact since we collapsed the 
compact set (0, + 1)’ to a point. It is not orderable since it has a subspace homeomor- 

phic to cxD(o,): the quotient (w, + I)&, + 1)‘. 

Fact 3. Every noncornpact closed subspace qf X has a copy? of wI . 

Proof. Let F be a noncompact clcsed subspace of X. Let F’ be any compact linearly 

orderable space, with compatible order (1, in which F embeds densely. In what 
follows intervals are with respect to s ‘. 

Pick any p E F’- F. We may assume p E F n (+, p). By Fact 1, F is countably 
compact so sup(A) E F n (+, p) for each countable A c F n (+, p). Hence we can 

find a strictly increasing function e : w1 + F n (+, p) such that e( A ) = sup&, A e( 5) for 

every limit A. Clearly e is an embedding. 

Fact 4. X is a bear. 

Proof. We assume X has two disjoint cubs A and B, and prove l(2). By Facts 2 

and 3 we may assume A = ml. Then X/U; is normal since A’ is closed in the norma. 

space X. It is not orderable since its subspace o,/u~ is homeomorphic to aD( 0,). 

And it is not compact since B is a cub of it. 

Fact 5. X is scattered. 

Proof. We assume not, and prove l(2). Since X is not scattered, it has a closed 

crowded (=has no isolated points) subspace, hence it has two disjoint closed 

crowded subspaces A and B. Because of Fact 4 we may assume A is compact. Then 

A admits a continuous map onto the closed unit interval, cf. Juhasz [l, 3.16, Case 

11. It follows that A admits a continuous map .f onto a space Y which does not 

embed in any orderable space, e.g., the letter 0 or the letter T. The adjunction space 

Xu,,.Y is normal and not compact since the quotient map from -YO Y is closed (since 

A is compact) and has compact fibres. i.e., is perfect, and it is not order-able since Y 

embeds in it. 

Fact 6. X is jirs; countable. 

Proof. Suppose there is 9 E X which has no countable neighbourhood base. We 

will contradict Fact 4. We may assume 9 has no countable neighbourhood base in 

(+, 91. Then (+, 9) is a noncompact countably compact subspace of X, hence by 

Fact 3 there is a copy A of ol in (+, 9). Since A is closed, by Fact 2, and 9 E A, 

there is p < 9 with A c (+, p). Now [p, 9) is a noncompact countably compact 

subspace of X. So we can also find a copy of wl, closed in X, in [p, +). Hence y 

has two disjoint cubs. 

This finishes the proof of (2)+(3). El 
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Proof of (B)*(4). Since X is locally compact by Proposition 3.1( 2), X is locally 

countable by Lemma 4.4. F 

Proof of (4)+5). There arc p, q E X with y an immediate successor of p since X, 

being scattered, has an isolated point. Without loss of generality [q, +) is uncountable 

since X is uncountable, e.g., because X, being a bear, is countably compact by 

Proposition 3.1( 1). Define 

A = {x E [ p, + ): [ p, x] is countable} 

and 

B = {_u E [p, +): [p, x] is uncountable}. 

Using the fact that X is locally countable one easily proves that .-I and B are open, 

and also that ( Vxd ) ( 3y~A ) [xc y]. Hence A and B are disjoint closed sets and 
as it has no maximal element, A is not compact. Since X is a bear it follows that 

the closed sets ( +, p] and I3 are compact. But (+, p] and B are also open, hence 

we can find a new compatible order on X which agrees with < on (+, p) u A and 

on B and in which f? precedes (t, p] u A. Since (+, p] and B are countable, being 

compact subspaces of a locally 

this new order are countable, 

compact. Cl 

Proof of (5)*(l). Clearly X is locally compact, hence zii/X exists. Let < be the 

compatible order of X given by (5). Then we may extend < to a compatible order 
<’ on CYX by stipulating X<‘OCI for all x E X. This order satisfies the condition of 

countable space, initial closed segments of X in 

hence are also compact sin. J X is countably 

Theorem 5.2(3) that each interval not containing the last point ~10 is countable. 

Htnce there is a continuous surjection f: wI + 1* Y with 1 f '{ f( w, ))I = 1. Since 

(o,} is not a G, of ol + 1 we must have .f( w, ) = 00. (This also would follow from 

the proof of Theorem 5.2.) Hence f 1 wI maps cul onto X. Cl 

7. When all continuous images are orderable 

We here prove Theorem 1.2, i.e., we prove that all continuous images of X are 

orderable iff X is compact and countable. Sufficiency is clear since each compact 

countable space is orderable by Lemma 4.1. Now assume all continuous images of 

X are orderable. Then in particular X itself is orderable. 

Fact 1. X is compact. 

roof. If not then X is a continuous image of wl by Theorem 1.1, hence ml embeds 

as a closed subspace by Corollary 1.5. Then X/ ~1 is a regular continuous image 
of X which is not orderable since W,/LO~ = aD(w,). Cl 

act 2. X is first countable. 
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Proof. If not then wI + 1 embeds in X since X is compact and orderable. But then 

the continuous image X&J, + I)’ is not orderable since (w, + l)/(w, + 1)‘~ cuD(o,) 

embeds in it. Cl 

Fact. 3. X is scattered. 

Proof. The proof of Fact 5 in Section 6 works. 0 

It nojw follows from Lemma 4.4 that X is countable. 

I have not beriously investigated the question of when all zero-dimensional 

continuous images of a zero-dimensional are orderable. 

8. cdl itself 

We call a subset of a noncompact space X stationary if it intersects every cub of 

X. We say that a space X satisfies the wPDL (weak Pressing Down Lemma) if X’ 

is not compact and if for every stationary S s X’ the following holds: 

For every map 4: S-, 9(X) such that XE +(X-)-~(X) for all XE S there 

are distinct s and t in S such that 4(s) n &( 1) # 0. 

Since we have given an o,-free characterization of the noncompact continuous 

images of w1 the following amounts to an o,-free characterization of w, . 

Theorem 8.1. A noncompact continuous image of wI is homeomorphic to wI ifl it 

satisjies the wPDL. 

Proof. Necessity: it is easy to see that the Pressing Down Lemma implies the weak 

Pressing Down Lemma, since oi is not compact. 

Suficiency: By Theorem 1.4, X admits a compatible order the initial segments of 

which are compact and countable. By the proof of Corollary 1.5 (in Section 6) there 

is an increasing embedding e of wI into X as a closed subspace. Let SS X’n e’w, 
be defined by 

S={xEe’o,:xE(x,+)}. 

For SE S we can find a countable 4(s) E (x, +;I with s E 4(s). There is a cub of 

e’w, such that for a!1 s E S aqd all XE C if s <x then 4(s) c (+, x). Then 4(s) n 

4(t) = 8 for all distinct s and t in S n C. Hence S n C is not stationary. So let D 

be a cub of X disjoint from S ,q C. Then C n D is a cub, being the intersection of 

two cubs, hence e’( C n D) is a cub of wI , hence is homeomorphic to wl . It follows 

that we may assume without loss of generality that S = @I’). An analysis of the proof 

of (5)+(l) in Section 6 will now show that X and wI are homeomorphic. Cl 
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The fact that every cub of wI is homeomorphic to wl suggests another characteriz- 

ation of wI : up to homeomorphism ol is the only noncompact nondiscrete first 

countable orderable space which is homeomorphic to each of its cubs. More generally, 

a noncompact orderable space is homeomorphic to a regular cardinal iff it is homeo- 

morphic to each of its cubs. This is trivial of course. It leads to the following very non- 

trivial question. 

Question 8.2. Is there a noncompact nonorderable space which is homeomorphic 

to each of its cubs? Is there such a space which is a bear? 

Such a space must be nondiscrete (since o is orderable). 

9. Nonimages of iwI 

Theorem 1.4 characterizes the noncompact continuous ima s of ol as the locally 

countable orderable spaces without disjoint cubs. hinder 0 o erability is essential, 

since in [3] Ostaszewski has constructed from 0 a locally countable space without 

disjoint cubs which is hereditarily separable. There are two natural reasons that 

noncompact continuous images of “)l are not hereditarily separable: one, al-free, 

is that continuous images of wl are w-bounded (by (5) of Theorem 1.4) or, more 

generally, since countably compact orderable spaces are o-bounded and the other, 

not @,-free, that the nonseparable space ol embeds in noncompact continuous 

images of ol . This suggests the question of whether a locally countabbe w-bounded 

space without disjoint cubs is a continuous image of ol. Our following example 

shows that this is not the case, at least under 4’. 

Definition 9.1. Let A be the set of limit ordinals in ol and n 2 1. ” is the statement 

that there is (S:: k E n, h E A), with S: cofina! in h for k E n and h E A, such that if 

Xk is an uncountable subset of ml for k E n then 

(hEA:S~sX~forkEn} 

is stationary. 

I do not know if However, 0+4’. Note also that 4”‘+‘+4” 
for every n. 

‘). A noncompact locally countable u-bounded space without dis- 
joint cubs in which wl does not embed. 

Proof. Let (Sf;: k~2, E.EA) be a ‘-sequence. We may assume S,” converges to i. for kE 2 
and ;1~/1. We assume the reader is familiar with Ostcrszewski’s construction, [ 31, or sim- 

ilar constructions. Then we do not have to explain how to construct a space 52 with un- 

derlying set the countable ordinals such that in Q 

(1) (VAEA)[AES::~S:,]; 
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(2) (VA E A )[ Sy does not converge to A ]; 

(3) (VA E 11 )[[O, A + l] is compact open in A ]. 

We only mention that after ensuring (1) and (2) one lets [0, A + I] be the one-point 

compactification of [O, A] if [0, A] is not yet compact, ~.s subspace of what is to 

become 6!. 

Clearly 0 is locally countable and w-bounded but not compact, because of (3, 

and has no disjoint cubs because of (1). 

Now suppose there is an embedding e : wI + 0. The set 

C={V~,: (~5~~,)MS)<7~5+lI 

is easily seen to be a cub because e is an injection‘ Since e 1 C is strictly increasing 

it follows that for each strictly increasing function s : o + e’c, the sequence s 

converges in J2 (to a point of eY’), hence for each S C_ “~7? and each A, if S 

converges to A in w1 then S converges to some point in 0. This contradicts ( 1) and 

(2). q 

We finish this section with the following exampie due to Rajagopalan, Soundarajan 

and Jakel [4]. Our description is simpler. 

Example 9.3. A noncompact continuous image of wI not homeomorphic to wi. 

Proof, Let WY = (ml)‘. Let < denote the usual order on til. Define an auxiliary order 

@Q iff 
either 5 < q and (VA E d,‘)[(& 71) g (A, A + w]] 

or v < 5 and (3A E o:)[{& 773-s (A, A +a.~]]. 

Thus almost all points stay in the same order except for every A E WY for which the 

interval (A, A + OJ] is turned upside down. 

We show < also is compatible. So let Y. and 9_ denote the order topologies 

induced by < and <, respectively. Let 5 E wI . 

Case 1: &w’l). In this case [0, 51. = [O, $J_ and because t+ o is t’s successor 

with respect to -K the interval is 5, -clopen. Furthermore, if v < 5 then q + w < 5 

and(q+W,P]. =(r]+w,&so((~+w,~]. :q<&}isalocalbaseat&forboth.%. 

and 9, . 

Case 2: &Z WY. If 5 is a successor ordinal then it wiil stay isolated in 9. ; its 

immediate neighbours stay its immediate neighbours. 

Now if 6 is a limit then it is of the form +IJ +w for some q E wi. If q E WY then 

(q, 51 is turned upside down but otherwise not disturbed and if ‘pl g 0’; then (v, (1 

is left as it is. In either case 5 retains its old neighbourhoods. 

Next let X be the quotient obtained from o1 by collapsnng {A, A + w} to a single 

point for all A E wy. Then X is regular, and in fact orderable since < induces a 

compatible linear order on X (since A + w is the immediate <-successor of A if 

A E WY). Let q:~, + X be the quotient map. Then q’wy is a cub in X, and the map 

&q’~~+9(X)definedby@(q(A))=q’(A,A+w). showsthatXdoesnotsatisfy 

the wPDL. Cl 
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