Hamiltonian colorings of graphs

Gary Chartranda, Ladislav Nebeskýb, Ping Zhanga

aDepartment of Mathematics and Statistics, Western Michigan University, Kalamazoo, MI 49008, USA
bFaculty of Arts and Philosophy, Charles University in Prague, nám. J. Palacha 2, CZ-116 38 Praha 1, Czech Republic

Received 17 July 2001; received in revised form 23 August 2004; accepted 30 August 2004
Available online 16 December 2004

Abstract

For vertices \(u \) and \(v \) in a connected graph \(G \) of order \(n \), the length of a longest \(u-v \) path in \(G \) is denoted by \(D(u, v) \). A hamiltonian coloring \(c \) of \(G \) is an assignment \(c \) of colors (positive integers) to the vertices of \(G \) such that \(D(u, v) + |c(u) - c(v)| \geq n - 1 \) for every two distinct vertices \(u \) and \(v \) of \(G \). The value \(hc(c) \) of a hamiltonian coloring \(c \) of \(G \) is the maximum color assigned to a vertex of \(G \). The hamiltonian chromatic number \(hc(G) \) of \(G \) is \(\min \{hc(c)\} \) over all hamiltonian colorings \(c \) of \(G \). Hamiltonian chromatic numbers of some special classes of graphs are determined. It is shown that for every two integers \(k \) and \(n \) with \(k \geq 1 \) and \(n \geq 3 \), there exists a hamiltonian graph of order \(n \) with hamiltonian chromatic number \(k \) if and only if \(1 \leq k \leq n - 2 \). Also, a sharp upper bound for the hamiltonian chromatic number of a connected graph in terms of its order is established.

\(© 2004 \) Elsevier B.V. All rights reserved.

\textit{MSC:} 05C12; 05C15; 05C45; 05C78

\textit{Keywords:} Hamiltonian coloring; Hamiltonian-connected graphs; Radio coloring

1. Introduction

For a connected graph \(G \) of order \(n \) and diameter \(d \) and an integer \(k \) with \(1 \leq k \leq d \), a \textit{radio \(k \)-coloring} of \(G \) is defined in [1] as an assignment \(c \) of colors (positive integers) to the...
vertices of G such that
\[d(u, v) + |c(u) - c(v)| \geq 1 + k \]
for every two distinct vertices u and v of G. The value $rc_k(c)$ of a radio k-coloring c of G is the maximum color assigned to a vertex of G; while the radio k-chromatic number $rc_k(G)$ of G is $\min\{rc_k(c)\}$ over all radio k-colorings c of G. A radio k-coloring c of G is a minimum radio k-coloring if $rc_k(c) = rc_k(G)$. These concepts were inspired by the so-called channel assignment problem, where channels are assigned to FM radio stations according to the distances between the stations (and some other factors as well).

Since $rc_1(G)$ is the chromatic number $\chi(G)$, radio k-colorings provide a generalization of ordinary colorings of graphs. The radio d-chromatic number was studied in [1,2] and was also called the radio number. Radio d-colorings are also referred to as radio labelings since no two vertices can be colored the same in a radio d-coloring. Thus, in a radio labeling of a connected graph of diameter d, the labels (colors) assigned to adjacent vertices must differ by at least d, the labels assigned to two vertices whose distance is 2 must differ by at least $d - 1$, and so on, up to the vertices whose distance is d, that is, antipodal vertices, whose labels are only required to be different. A radio $(d - 1)$-coloring is less restrictive in that colors assigned to two vertices whose distance is i, where $1 \leq i \leq d$, are only required to differ by at least $d - i$. In particular, antipodal vertices can be colored the same. For this reason, radio $(d - 1)$-colorings are also called radio antipodal colorings or, more simply, antipodal colorings. Antipodal colorings of graphs were studied in [3,4], where $rc_{d-1}(G)$ was written as $ac(G)$.

Radio k-coloring of paths were studied in [5] for all possible values of k. In the case of an antipodal coloring of the path P_n of order $n \geq 2$ and diameter $n - 1$, only the end-vertices of P_n are permitted to be colored the same since the only pair of antipodal vertices in P_n are its two end-vertices. Of course, the two end-vertices of P_n are connected by a hamiltonian path. As mentioned earlier, if u and v are any two distinct vertices of P_n, then $|c(u) - c(v)| \geq n - 1 - i$. Since P_n is a tree, not only is i the length of a shortest $u-v$ path in P_n, it is, in fact, the length of every $u-v$ path in P_n since every two vertices are connected by a unique path. Furthermore, the length of a longest $u-v$ path in P_n is i as well.

For vertices u and v in a connected graph G, let $D(u, v)$ denote the length of a longest $u-v$ path in G. Thus for every connected graph G of order n and diameter d, both $d(u, v)$ and $D(u, v)$ are metrics on $V(G)$. Radio k-colorings of G are inspired by radio antipodal colorings c which are defined by the inequality
\[d(u, v) + |c(u) - c(v)| \geq d. \]

If G is a path, then (1) is equivalent to
\[D(u, v) + |c(u) - c(v)| \geq n - 1, \]
which suggests an extension of the coloring c that satisfies (2) for an arbitrary connected graph G. A hamiltonian coloring c of G is an assignment of colors (positive integers) to the vertices of G such that $D(u, v) + |c(u) - c(v)| \geq n - 1$ for every two distinct vertices u and v of G. In a hamiltonian coloring of G, two vertices u and v can be assigned the same color only if G contains a hamiltonian $u-v$ path. The value $hc(c)$ of a hamiltonian coloring
c of G is the maximum color assigned to a vertex of G. The hamiltonian chromatic number $\text{hc}(G)$ of G is $\min\{\text{hc}(c)\}$ over all hamiltonian colorings c of G. A hamiltonian coloring c of G is a minimum hamiltonian coloring if $\text{hc}(c) = \text{hc}(G)$.

A graph G is hamiltonian-connected if for every pair u, v of distinct vertices of G, there is a hamiltonian $u-v$ path. Consequently, we have the following fact.

Observation 1.1. Let G be a connected graph. Then $\text{hc}(G) = 1$ if and only if G is hamiltonian-connected.

In a certain sense, the hamiltonian chromatic number of a connected graph G measures how close G is to being hamiltonian-connected, the nearer the hamiltonian chromatic number of a connected graph G is to 1, the closer G is to being hamiltonian-connected.

2. Graphs with equal hamiltonian chromatic number and antipodal chromatic number

Since the path P_n is the only graph G of order n for which $\text{diam} G = n - 1$, we have the following.

Observation 2.1. If G is a path, then $\text{hc}(G) = \text{ac}(G)$.

In [4] it was shown that $\text{ac}(P_n) \leq \left(\frac{n-1}{2}\right) + 1$ for every positive integer n. Moreover, it was shown in [5] that $\text{ac}(P_n) \leq \left(\frac{n-1}{2}\right) - \frac{n-1}{2} + 4$ for odd integers $n \geq 7$. Therefore, we have the following.

Corollary 2.2. For every positive integer n,

$$\text{hc}(P_n) \leq \left(\frac{n-1}{2}\right) + 1.$$

Furthermore, for all odd integers $n \geq 7$,

$$\text{hc}(P_n) \leq \left(\frac{n-1}{2}\right) - \frac{n-1}{2} + 4.$$

In order to see that the converse of Observation 2.1 is false, we first consider the following lemmas.

Lemma 2.3. Let H be a hamiltonian graph of order $n - 1 \geq 3$. If G is a graph obtained from H by adding a pendant edge, then $\text{hc}(G) = n - 1$.

Proof. Let $C : v_1, v_2, \ldots, v_{n-1}, v_1$ be a hamiltonian cycle of H and let v_1v_n be the pendant edge of G. Let c be a hamiltonian coloring of G. Since $D(u, v) \leq n - 2$ for all $u, v \in V(C)$, there is no pair of vertices in C that are colored the same by c. This implies that $\text{hc}(c) \geq n - 1$ and so $\text{hc}(G) \geq n - 1$.

Define a coloring c_0 of G by $c_0(v_i) = i$ for $1 \leq i \leq n - 1$ and $c_0(v_n) = n - 1$ (see Fig. 1). We show that c_0 is a hamiltonian coloring of G.

First consider two vertices v_i and v_j, where $1 \leq i < j \leq n - 1$. Then $|c_0(v_i) - c_0(v_j)| = j - i$, while $D(v_i, v_j) \geq n - 1 + j - i$. Thus $|c_0(v_i) - c_0(v_j)| + D(v_i, v_j) \geq n - 1$. Now consider the two vertices v_i and v_n, where $1 \leq i \leq n - 1$. Then $|c_0(v_i) - c_0(v_n)| = n - 1 - i$, while $D(v_i, v_n) \geq i$. Hence $|c_0(v_i) - c_0(v_n)| + D(v_i, v_n) \geq n - 1$. Therefore, c_0 is a hamiltonian coloring of G and so $hc(G) \leq hc(c_0) = n - 1$.

For $n \geq 4$, let G_n be the graph obtained from the complete graph K_{n-1} by adding a pendant edge. Then G_n has order n and diameter 2. Let $V(G_n) = \{v_1, v_2, \ldots, v_n\}$, where $\deg v_n = 1$ and $v_{n-1}v_n \in E(G)$. By Lemma 2.3, $hc(G_n) = n - 1$. We now show that $ac(G_n) = hc(G_n) = n - 1$. Let c be an antipodal coloring of G_n. Since $diam G_n = 2$, it follows that the colors $c(v_1), c(v_2), \ldots, c(v_{n-1})$ are distinct and so $ac(G_n) \geq n - 1$. Moreover, the coloring c' of G_n defined by $c'(v_i) = i$ for $1 \leq i \leq n - 1$, $c'(v_n) = 1$ is an antipodal coloring of G_n (see Fig. 2) and so $ac(G_n) = n - 1$. Hence there is an infinite class of graphs G of diameter 2 such that $hc(G) = ac(G)$.

We now show that there exists an infinite class of graphs G of diameter 3 such that $hc(G) = ac(G)$.

Lemma 2.4. For $n \geq 5$, let H_n be the graph obtained from the complete graph K_{n-2}, where $V(K_{n-2}) = \{v_1, v_2, \ldots, v_{n-2}\}$, by adding the two pendant edges v_1v_{n-1} and $v_{n-2}v_n$. Then H_n is a graph of order n and diameter 3 such that $hc(H_n) = ac(H_n) = 2n - 5$.
Furthermore, $D(v_i, v_j)$. Similarly, $|c(v_i) - c(v_j)| + D(v_i, v_j) = 2(j - i) + n - 3 \geq 2 + n - 3 = n - 1$.

Next, we consider two vertices v_i and v_{n-1}, where $1 \leq i \leq n - 2$. In this case, $|c(v_i) - c(v_{n-1})| = (2n - 6) - (2i - 1) = 2n - 2i - 5$ if $1 \leq i \leq n - 3$, while $|c(v_{n-2}) - c(v_{n-1})| = 1$. Moreover, $D(v_i, v_{n-1}) = 1$ and $D(v_i, v_{n-1}) = n - 2$ for $2 \leq i \leq n - 2$. Thus, for $1 \leq i \leq n - 3$,

$$|c(v_i) - c(v_{n-1})| + D(v_i, v_{n-1}) \geq (2n - 2i - 5) + (n - 2) = 3n - 2i - 7 \geq n - 1;$$

while

$$|c(v_{n-2}) - c(v_{n-1})| + D(v_{n-2}, v_{n-1}) = 1 + (n - 2) = n - 1.$$

Similarly, $|c(v_i) - c(v_n)| + D(v_i, v_n) \geq n - 1$ for $1 \leq i \leq n - 1$. Hence c_1 is a hamiltonian coloring of H_n and so $hc(H_n) \leq hc(c_1) = 2n - 5$. Therefore, $hc(H_n) = 2n - 5$.

We now show that $ac(H_n) = 2n - 5$ as well. Let c be an antipodal coloring of H_n. Since diam $H_n = 3$, it follows that the colors $c(v_1), c(v_2), \ldots, c(v_{n-2})$ differ by at least 2 and so $ac(H_n) \geq 2n - 5$. Since the coloring c_1 of H_n shown in Fig. 3 is also an antipodal coloring of H_n, $ac(H_n) \leq 2n - 5$ and so $ac(H_n) = 2n - 5$. □

Whether there exists an infinite class of graphs G that are not paths, whose diameter exceeds 3 and for which $hc(G) = ac(G)$, is not known. Indeed, it is not known if there is even one such graph that is not a path.

3. Hamiltonian chromatic numbers of some special classes of graphs

Since the complete graph K_n is hamiltonian-connected, $hc(K_n) = 1$. We state this below for later reference.
Observation 3.1. For \(n \geq 1 \), \(\text{hc}(K_n) = 1 \).

We now consider the complete bipartite graphs \(K_{r,s} \), beginning with \(K_{r,r} \). The graph \(K_{r,r} \) has order \(n = 2r \) and is hamiltonian but is not hamiltonian-connected. For distinct vertices \(u \) and \(v \) of \(K_{r,r} \),

\[
D(u, v) = \begin{cases}
 n - 1 & \text{if } uv \in E(K_{r,r}), \\
 n - 2 & \text{if } uv \notin E(K_{r,r}).
\end{cases}
\]

Therefore, for a hamiltonian coloring of \(K_{r,r} \), every two nonadjacent vertices must be colored differently (while adjacent vertices can be colored the same). This implies that \(\text{hc}(K_{r,r}) = \chi(K_{r,r}) = r \).

We now determine \(\text{hc}(K_{r,s}) \) with \(r < s \), beginning with \(r = 1 \).

Theorem 3.2. For \(n \geq 3 \), \(\text{hc}(K_{1,n-1}) = (n - 2)^2 + 1 \).

Proof. Since \(\text{hc}(K_{1,2}) = 2 \), the result holds for \(n = 3 \). So we may assume that \(n \geq 4 \). Let \(G = K_{1,n-1} \) with vertex set \(\{v_1, v_2, \ldots, v_n\} \), where \(v_n \) is the central vertex of \(G \). Define a coloring \(c \) of \(G \) by \(c(v_n) = 1 \) and \(c(v_i) = (n - 1) + (i - 1)(n - 3) \) for \(1 \leq i \leq n - 1 \). Since \(c \) is a hamiltonian coloring,

\[
\text{hc}(G) \leq \text{hc}(c) = c(v_{n-1}) = (n - 1) + (n - 2)(n - 3) = (n - 2)^2 + 1.
\]

Next we show that \(\text{hc}(G) \geq (n - 2)^2 + 1 \). Let \(c \) be a minimum hamiltonian coloring of \(G \). Since \(G \) contains no hamiltonian path, no two vertices can be colored the same. We may assume that \(c(v_1) < c(v_2) < \cdots < c(v_{n-1}) \). We consider three cases.

Case 1: \(c(v_n) = 1 \). Since \(D(v_1, v_n) = 1 \) and \(D(v_i, v_{i+1}) = 2 \) for \(1 \leq i \leq n - 2 \), it follows that

\[
c(v_1) \geq n - 1 \quad \text{and} \quad c(v_{i+1}) \geq c(v_i) + (n - 3) \quad \text{for all} \; 1 \leq i \leq n - 2.
\]

This implies that

\[
c(v_{n-1}) \geq (n - 1) + (n - 2)(n - 3) = (n - 2)^2 + 1.
\]

Therefore, \(\text{hc}(c) = \text{hc}(G) \geq (n - 2)^2 + 1 \).

Case 2: \(c(v_n) = c(v_{n-1}) \). Then \(1 = c(v_1) < c(v_2) < \cdots < c(v_{n-1}) < c(v_n) \). For each \(i \) with \(2 \leq i \leq n - 1 \), it follows that \(c(v_i) \geq (n - 2) + (i - 2)(n - 3) \). In particular, \(c(v_{n-1}) \geq (n - 2) + (n - 3)(n - 3) = n^2 - 5n + 7 \). Thus

\[
c(v_n) \geq c(v_{n-1}) + (n - 2) \geq (n^2 - 5n + 7) + (n - 2) = (n - 2)^2 + 1.
\]

Therefore, \(\text{hc}(c) = \text{hc}(G) \geq (n - 2)^2 + 1 \).

Case 3: \(c(v_j) < c(v_n) < c(v_{j+1}) \) for some \(j \) with \(1 \leq j \leq n - 2 \). Thus

\[
c(v_j) \geq (n - 2) + (j - 2)(n - 3),
\]

\[
c(v_n) \geq c(v_j) + (n - 2) = 2(n - 2) + (j - 2)(n - 3),
\]

\[
c(v_{j+1}) \geq c(v_n) + (n - 2) \geq 3(n - 2) + (j - 2)(n - 3).
\]
This implies that
\[c(v_{n-1}) \geq 3(n-2) + (n-4)(n-3) = n^2 - 4n + 6 > (n-2)^2 + 1. \]
Hence, \(hc(c) = hc(G) \geq (n-2)^2 + 1. \) □

We now consider \(K_{r,s} \), where \(2 \leq r < s \), with partite sets \(V_1 \) and \(V_2 \) such that \(|V_1| = r \) and \(|V_2| = s \). Then
\[
D(u, v) = \begin{cases}
2r - 2 = n - s + r - 2 & \text{if } u, v \in V_1, \\
2r - 1 = n - s + r - 1 & \text{if } uv \in E(K_{r,s}), \\
2r = n - s + r & \text{if } u, v \in V_2.
\end{cases}
\]
Consequently, if \(c \) is a hamiltonian coloring of \(K_{r,s} \) \((r < s)\), then
\[
|c(u) - c(v)| \geq \begin{cases}
s - r + 1 & \text{if } u, v \in V_1, \\
s - r & \text{if } uv \in E(K_{r,s}), \\
s - r - 1 & \text{if } u, v \in V_2.
\end{cases}
\]

Theorem 3.3. For integers \(r \) and \(s \) with \(2 \leq r < s \)
\[
hc(K_{r,s}) = (s - 1)^2 - (r - 1)^2.
\]

Proof. Let \(V_1 = \{u_1, u_2, \ldots, u_r\} \) and \(V_2 = \{v_1, v_2, \ldots, v_s\} \) be the partite sets of \(K_{r,s} \). Define a coloring \(c \) of \(K_{r,s} \) by \(c(u_i) = 1 + (i-1)(s-r+1) \) for \(1 \leq i \leq r-1 \), \(c(v_j) = c(u_{r-1}) + (s-r) + (j-1)(s-r-1) = (r-1)(s-r+1) + (j-1)(s-r-1) \) for \(1 \leq j \leq s-1 \), and \(c(u_r) = c(v_s) + (s-r) = (s-1)^2 - (r-1)^2 \). Since \(c \) is a hamiltonian coloring of \(K_{r,s} \), it follows that \(hc(K_{r,s}) \leq hc(c) \leq (s - 1)^2 - (r - 1)^2 \).

It remains to show that \(hc(K_{r,s}) \geq (s - 1)^2 - (r - 1)^2 \). Let \(c \) be a hamiltonian coloring of \(K_{r,s} \) and let \(V(K_{r,s}) = \{w_1, w_2, \ldots, w_{r+s}\} \), where \(c(w_1) \leq c(w_2) \leq \cdots \leq c(w_{r+s}) \). By a \(V_1 \)-block of \(K_{r,s} \), we mean a set \(A = \{w_2, w_{2+1}, \ldots, w_\beta\} \), where \(1 \leq \alpha \leq \beta \leq r + s \), such that \(A \subseteq V_1 \), \(w_{2+i} \in V_2 \) if \(\alpha > 1 \), and \(w_\beta+1 \in V_2 \) if \(\beta < r + s \). A \(V_2 \)-block of \(K_{r,s} \) is defined similarly. Let \(A_1, A_2, \ldots, A_p \) \((p \geq 1)\) be the distinct \(V_1 \)-blocks of \(K_{r,s} \) such that if \(w' \in A_i \) and \(w'' \in A_j \), then \(c(w') < c(w'') \). If \(p \geq 2 \), then \(K_{r,s} \) contains \(V_2 \)-blocks \(B_1, B_2, \ldots, B_{p-1} \) such that for each integer \(i \) \((1 \leq i \leq p - 1)\) and for \(w' \in A_i \), \(w'' \in A_{i+1} \), it follows that \(c(w') < c(w'') \).

The graph \(K_{r,s} \) may contain up to two additional \(V_2 \)-blocks, namely, \(B_0 \) and \(B_p \) such that if \(y \in B_0 \) and \(y' \in A_1 \), then \(c(y) < c(y') \); while if \(z \in A_p \) and \(z' \in B_p \), then \(c(z) < c(z') \). If \(p = 1 \), then at least one of \(B_0 \) and \(B_1 \) must exist. Hence \(K_{r,s} \) contains \(p V_1 \)-blocks and \(p - 1 + t \) \(V_2 \)-blocks, where \(t \in \{0, 1, 2\} \). Consequently, there are exactly (1) \(r - p \) distinct pairs \(\{w_i, w_{i+1}\} \) of vertices, both of which belong to \(V_1 \), (2) \(2p - 2 + t \) distinct pairs \(\{w_i, w_{i+1}\} \) of vertices, exactly one of which belongs to \(V_1 \), and (3) \(s - (p - 1 + t) \) distinct pairs \(\{w_i, w_{i+1}\} \) of vertices, both of which belong to \(V_2 \).

Since (1) the colors of every two vertices \(w_i \) and \(w_{i+1} \), both of which belong to \(V_1 \), must differ by at least \(s - r + 1 \), (2) the colors of every two vertices \(w_i \) and \(w_{i+1} \), exactly one of which belongs to \(V_1 \), must differ by at least \(s - r \), and (3) the colors of every two vertices \(w_i \) and \(w_{i+1} \), both of which belong to \(V_2 \), must differ by at least \(s - r - 1 \), it
follows that
\[c(w_{r+s}) \geq 1 + (r - p)(s - r + 1) + (2p - 2 + t)(s - r) + (p - 1 + t)(s - r - 1) = (s - 1)^2 - (r - 1)^2 + t. \]
Since \(hc(K_{r,s}) \leq (s - 1)^2 - (r - 1)^2 \) and \(t \geq 0 \), it follows that \(t = 0 \) and that \(hc(K_{r,s}) = (s - 1)^2 - (r - 1)^2 \).

We now determine the hamiltonian chromatic number of each cycle. Minimum hamiltonian colorings of the cycles \(C_n \) for \(n = 3, 4, 5 \) are shown in Fig. 4.

For a hamiltonian coloring \(c \) of a graph \(G \), a set \(S = \{u, v\} \) of distinct vertices of \(G \) is called a \(c \)-pair if \(c(u) = c(v) \). We also write \(c(S) = c(u) = c(v) \).

Lemma 3.4. Let \(c \) be a minimum hamiltonian coloring of \(C_n \), where \(n \geq 4 \).

(a) If \(\{u, v\} \) is a \(c \)-pair, then \(u \) and \(v \) are adjacent.

(b) If \(S \) and \(S' \) are distinct \(c \)-pairs, then \(S \cap S' = \emptyset \) and \(c(S) \neq c(S') \).

Proof. If \(u \) and \(v \) are nonadjacent vertices of \(C_n \), then \(D(u, v) < n - 1 \), implying that \(c(u) \neq c(v) \) and so (a) holds.

To verify (b), let \(S = \{u, v\} \) and \(S' = \{u', v'\} \) be distinct \(c \)-pairs. Assume that \(S \cap S' \neq \emptyset \) or \(c(S) = c(S') \). If \(S \cap S' \neq \emptyset \), then we may assume that \(u \neq u' \) and \(v = v' \). This implies that \(c(u) = c(v) = c(u') = c(v') \) and therefore, \(\{u, u'\} \) is a \(c \)-pair as well. If \(c(S) = c(S') \), then \(\{u, u'\} \) is also a \(c \)-pair. By (a), \(\{\{u, u', v\}\} = C_3 \), which is a contradiction.

Theorem 3.5. For \(n \geq 3 \), \(hc(C_n) = n - 2 \).

Proof. Let \(C_n : v_1, v_2, \ldots, v_n, v_1 \). Since \(hc(C_n) = n - 2 \) for \(n = 3, 4, 5 \), we may assume that \(n \geq 6 \). Define a coloring \(c \) of \(C_n \) by \(c(v_1) = n - 2 \), \(c(v_2) = 1 \), and \(c(v_i) = i - 2 \) for \(3 \leq i \leq n \) (see Fig. 5). Since \(c \) is a hamiltonian coloring, \(hc(C_n) \leq n - 2 \).

Next we show that \(hc(C_n) \geq n - 2 \). Let \(c \) be a minimum hamiltonian coloring of \(C_n \) and let \(q \) be the number of distinct \(c \)-pairs. Since \(hc(C_n) \leq n - 2 \), it follows that \(q \geq 2 \).

Denote these \(q \) \(c \)-pairs by \(S_1, S_2, \ldots, S_q \). By Lemma 3.4(b), for all \(i, j \) with \(1 \leq i \neq j \leq q \), we have \(S_i \cap S_j = \emptyset \) and \(c(S_i) \neq c(S_j) \). If \(q = 2 \), then \(hc(c) \geq n - 2 \); so we assume that \(q \geq 3 \). Without loss of generality, we may assume that \(c(S_1) < c(S_2) < \cdots < c(S_q) \).
Fig. 5. A hamiltonian coloring of C_n for $n \geq 6$.

For each i with $1 \leq i \leq q - 1$, let
$$A_i = \{ u \in V(G) : c(S_i) < c(u) < c(S_{i+1}) \}.$$

There exist nonnegative integers $a_1, a_2, \ldots, a_{q-1}$ such that $|A_i| = c(S_{i+1}) - c(S_i) - 1 - a_i$ for each integer i ($1 \leq i \leq q - 1$). Define
$$a = a_1 + a_2 + \cdots + a_{q-1}$$

and
$$I = \{ i : a_i = 0, \text{ where } 1 \leq i \leq q - 1 \}.$$

At most $c(S_1) - 1$ vertices of C_n are assigned a color less than $c(S_1)$ and at most $hc(c) - c(S_q)$ vertices of C_n are assigned a color exceeding $c(S_q)$. Since all n vertices of C_n are assigned a color by c, it follows that

$$n \leq (c(S_1) - 1) + |S_1| + |A_1| + |S_2| + |A_2| + \cdots + |A_{q-1}| + |S_q| + (hc(c) - c(S_q))$$

$$= (c(S_1) - 1) + (hc(c) - c(S_q)) + \sum_{i=1}^{q-1} |S_i| + \sum_{i=1}^{q-1} |A_i|$$

$$= (c(S_1) - 1) + (hc(c) - c(S_q)) + 2q + \sum_{i=1}^{q-1} (c(S_{i+1}) - c(S_i) - 1 - a_i)$$

$$= hc(c) + q - a.$$

Since $hc(c) \leq n - 2$, we get $a \leq q - 2$. This implies that $I \neq \emptyset$ and so $a_j = 0$ for some j with $1 \leq j \leq q - 1$ and $j \in I$. Let $S_j = \{ x, x' \}$ and $S_{j+1} = \{ y, y' \}$. By Lemma 3.4(a), $xx', yy' \in E(C_n)$. Then $C_n - xx' - yy'$ consists of two nontrivial paths P_1 and P_2. Assume, without loss of generality, that x and y are the end-vertices of P_1 and thus x' and y' are the end-vertices of P_2. Since $j \in I$, there exists a vertex x_1 of C_n such that $c(x_1) = c(S_j) + 1$. Since $|c(x_1) - c(x)| = 1 = |c(x_1) - c(x')|$, we have $D(x_1, x) \geq n - 2$ and $D(x_1, x') \geq n - 2$. It follows that x_1 is adjacent to either x or x', say x.

Now, let $n = 2k$ or $n = 2k + 1$ for some $k \geq 3$, according to whether n is even or n is odd. We claim that $c(S_{j+1}) - c(S_j) \geq k - 1$, for suppose that $c(S_{j+1}) - c(S_j) \leq k - 2$.

We claim that P namely edges, which is impossible. Thus I.

If $c(S_j) + 1 = c(S_{j+1})$, then $y = x_1$. If $c(S_j) + 1 < c(S_{j+1})$, then let x_2 be a vertex of C_n such that $c(x_2) = c(S_j) + 2$. Then $D(x_2, x_1) \geq n - 2$; while $D(x_2, x) \geq n - 3$, and $D(x_2, x') \geq n - 3$. This implies that x_2 is adjacent to x_1. Continuing in this manner, we see that P_1 has length $c(S_{j+1}) - c(S_j)$ and its vertices are colored by c as shown in Fig. 6.

It is clear that P_2 has length $n - 2 - (c(S_{j+1}) - c(S_j))$. Since $c(S_{j+1}) - c(S_j) \leq k - 2$, we get $D(x', y') = n - 2 - (c(S_{j+1}) - c(S_j))$. Thus $|c(x') - c(y')| + D(x', y') = n - 2$, which contradicts the fact that c is a hamiltonian coloring of C_n. Thus we have $c(S_{j+1}) - c(S_j) \geq k - 1$, as claimed.

Let y_1 be a vertex such that $c(y_1) = c(S_{j+1}) - 1$. We see that y_1 is adjacent to either y' or y. We claim that y_1 is adjacent to y, for suppose that y_1 is adjacent to y'. Then y_1 belongs to P_2. Recall that $a_j \neq 0$. Since x_2 belongs to P_1 and the paths P_1 and P_2 have no common vertex, there exist vertices x^* and y^* of C_n such that $c(x_1) \leq c(x^*), c(x^*) + 1 = c(y^*) \leq c(y_1)$ and that x^* or y^* belongs to P_1 and y^* or P_2. Hence $D(x^*, y^*) \leq n - 3$; a contradiction. Thus y_1 is adjacent to y.

We can therefore find vertices x_2, \ldots, x_{k-2} of C_n such that $c(x_2) = c(S_j) + i$ for $i = 2, \ldots, k - 2$ and

$$P_x : x, x_1, x_2, \ldots, x_{k-2}$$

is a subpath of P_1. Similarly, we can find vertices y_2, \ldots, y_{k-2} of C_n such that $c(y_2) = c(S_{j+1}) - i$ for $i = 2, \ldots, k - 2$ and that

$$P_y : y_{k-2}, \ldots, y_2, y_1, y$$

is a subpath of P_1. We claim that P_x and P_y are not vertex-disjoint, for suppose that they are. Then since $q \geq 3$, it follows that $n \geq 2k + 2$; a contradiction. Thus P_x and P_y have a common vertex. This implies that the path P_1 contains exactly one vertex colored i for each i with $c(S_j) \leq i \leq c(S_{j+1})$ and has no vertices of any other color. (See Fig. 6 for the coloring of the vertices of P_1.) Therefore, the length of P_1 is $c(S_{j+1}) - c(S_j)$ and the length of P_2 is $n - 2 - (c(S_{j+1}) - c(S_j))$.

Recall that $c(S_{j+1}) - c(S_j) \geq k - 1$. If, in addition, $\ell \in I$, where $\ell \neq j$, then, as above, $c(S_{\ell+1}) - c(S_\ell) \geq k - 1$ and there is a path Q_1 of length $c(S_{\ell+1}) - c(S_\ell)$ whose vertices are colored by $c(S_\ell), c(S_\ell) + 1, \ldots, c(S_{\ell+1})$ and where, necessarily, Q_1 is a proper subpath of P_2. Assume, without loss of generality, that $\ell > j$. Let $S_\ell = \{z, z'\}$ and $S_{\ell+1} = \{w, w'\}$. Then the sets $S_j, S_{j+1}, S_\ell, S_{\ell+1}$ are distinct except possibly $S_{j+1} = S_\ell$. Since $C_n = xx' - yy' - zz' - ww'$ consists of at least three nontrivial paths, the lengths of at least two of which, namely P_1 and Q_1, are at least $k - 1$, it follows that C_n has at least $2(k - 1) + 4 = 2k + 2$ edges, which is impossible. Thus $I = \{j\}$. Recall that $a \leq q - 2$. Since $|I| = 1$, it follows that $a \geq q - 2$. Hence $a = q - 2$. Since $n \leq hc(C_n) + q - a$, we have $n \leq hc(c) + 2$. So $hc(c) \geq n - 2$, as desired. \(\square\)
4. On the hamiltonian chromatic number of graphs having a given order

In this section we shall assume that we are considering connected graphs of order \(n \) for some fixed integer \(n \geq 3 \). We have already mentioned that a graph \(G \) has hamiltonian chromatic number 1 if and only if \(G \) is hamiltonian-connected. We now show that it is possible for a graph \(G \) to have hamiltonian chromatic number 2. All the graphs (of orders 3–5) shown in Fig. 7 have hamiltonian chromatic number 2.

The graphs \(G_2 \) and \(G_4 \) (and \(G_3 \) and \(G_5 \)) are actually special cases of a more general class of graphs. For \(n \geq 4 \), let \(G_{2n-6} \) be the graph of order \(n \) obtained by joining two vertices \(u \) and \(v \) of \(K_{n-1} \) to a new vertex \(w \) and let \(G_{2n-5} = G_{2n-6} - uv \). Then \(\text{hc}(G_{2n-6}) = \text{hc}(G_{2n-5}) = 2 \) for all \(n \geq 4 \).

We also have other graphs of order \(n \) with hamiltonian chromatic number 2 if \(n \) is sufficiently large. The graphs \(H_1 \) and \(H_2 \) of Fig. 8 have hamiltonian chromatic number 2.

In general, for \(n = 3k \geq 6 \), let \(H_{k-1} \) be the graph obtained from \(K_{2k} \), where \(V(K_{2k}) = \{u_1, v_1, u_2, v_2, \ldots, u_k, v_k\} \), by adding the \(k \) new vertices \(w_1, w_2, \ldots, w_k \) and joining \(w_i \) to \(u_i \) and \(v_i \) for \(1 \leq i \leq k \). Then \(\text{hc}(H_{k-1}) = 2 \) for all \(k \geq 2 \). A hamiltonian coloring of \(H_{k-1} \) assigns 1 to \(u_i \) and \(w_i \) and 2 to \(v_i \) for all \(i (1 \leq i \leq k) \). This class of examples shows that there exist graphs \(G \) with \(\text{hc}(G) = 2 \) such that each of the two colors is used an arbitrarily large number of times in a minimum hamiltonian coloring of \(G \). Other graphs with hamiltonian chromatic number 2 are shown in Fig. 8.

Fig. 7. Graphs of order \(n \) (3 ≤ \(n \) ≤ 5) having hamiltonian chromatic number 2.

Fig. 8. Other graphs with hamiltonian chromatic number 2.
Theorem 4.3. Let j and n be integers with $1 \leq i \leq k$.

The constructions described above for producing classes of graphs with hamiltonian chromatic number 2 can be altered to produce graphs (indeed, hamiltonian graphs) with larger hamiltonian chromatic numbers. Let k and n be integers with $n \geq 2k \geq 4$ and let F_k be the graph of order n obtained by identifying an edge of K_{n-k+1} and an edge of K_{k+1}. Denote the identified edge by uv. Since $n \geq 2k$, it follows that $n-k+1 \geq k+1$. Furthermore, $D(u, v) = n-k$. The coloring c that assigns 1 to every vertex of F_k except v and assigns k to v is a hamiltonian coloring of F_k. Since

$$|c(u) - c(v)| + D(u, v) = (k - 1) + (n - k) = n - 1,$$

it follows that c is, in fact, a minimum hamiltonian coloring of F_k and so $hc(F_k) = k$. Of course, $hc(F_k - uv) = k$ as well. This gives us the following result.

Proposition 4.1. For every two integers k and n, where $1 \leq k \leq \lfloor n/2 \rfloor$, there exists a hamiltonian graph G of order n with $hc(G) = k$.

Proposition 4.1 can be extended however. First, the following lemma will be useful.

Lemma 4.2. Let G be a connected graph of order n and H an induced subgraph of order k in G. If $D_H(u, v) \geq D_G(u, v) - (n - k)$ for every two distinct vertices u and v of H, then $hc(H) \leq hc(G)$.

Proof. Let c be a minimum hamiltonian coloring of G and c' the restriction of c to H. Let $u, v \in V(H)$. Since $D_H(u, v) \geq D_G(u, v) - (n - k)$, it follows that

$$|c'(u) - c'(v)| + D_H(u, v) \geq |c(u) - c(v)| + D_G(u, v) - (n - k) \geq (n - 1) - (n - k) = k - 1.$$

Thus c' is a hamiltonian coloring of H and so $hc(H) \leq hc(c') \leq hc(c) = hc(G)$. □

Theorem 4.3. Let j and n be integers with $2 \leq j \leq (n + 1)/2$ and $n \geq 6$. Then there is a hamiltonian graph of order n with hamiltonian chromatic number $n - j$.

Proof. Let $G = G(n, j)$ be the graph consisting of the cycle $C_n : v_1, v_2, \ldots, v_n, v_1$ together with all edges joining vertices in $\{v_1, v_2, \ldots, v_{j-1}, v_n\}$. If $j = 2$, then $G = G(n, 2) = C_n$. Since $hc(C_n) = n - 2$, we can assume that $j \geq 3$. Define a coloring c^* of $V(G)$ by

$$c^*(v_i) = \begin{cases}
1 & \text{if } 1 \leq i \leq j, \\
 p + 1 & \text{if } i = j + p \text{ and } 1 \leq p \leq n - 2 - j, \\
 n - j & \text{if } i = n - 1, n.
\end{cases}$$

The graph G together with the coloring c^* is shown in Fig. 9. It is straightforward to show that c^* is a hamiltonian coloring. Thus $hc(G) \leq hc(c^*) = n - j$.

Next we show that $hc(G) \geq n - j$. Let $H = \{v_{j-1}, v_j, v_{j+1}, \ldots, v_n\} = C_{n-j+2}$. Thus $hc(H) = n - j$ by Theorem 3.5. With $k = n - j + 2$, we see that G and H satisfy the conditions in Lemma 4.2. It then follows that $n - j = hc(H) \leq hc(G)$, completing the proof. □
Combining Proposition 4.1 and Theorem 4.3, we have the following.

Corollary 4.4. For every two integers \(k \) and \(n \) with \(1 \leq k \leq n - 2 \), there is a hamiltonian graph of order \(n \) with hamiltonian chromatic number \(k \).

We now know that for every integer \(n \geq 3 \), there exists a graph \(G \) of order \(n \) with a certain specified hamiltonian chromatic number. But how large can the hamiltonian chromatic number of a graph of order \(n \) be? In order to answer this question, we establish an upper bound for the hamiltonian chromatic number of a graph in terms of its order. We begin with an observation. Let \(G \) be a connected graph containing an edge \(e \) such that \(G - e \) is connected. For every two distinct vertices \(u \) and \(v \) in \(G - e \), the length of a longest \(u-v \) path in \(G - e \) does not exceed the length of a longest \(u-v \) path in \(G \). Thus every hamiltonian coloring of \(G - e \) is a hamiltonian coloring of \(G \). This observation yields the following lemma.

Lemma 4.5. If \(e \) is an edge of a connected graph \(G \) such that \(G - e \) is connected, then \(\text{hc}(G) \leq \text{hc}(G - e) \).

Combining Theorem 3.5 and Lemma 4.5, we have the following.

Proposition 4.6. If \(G \) is a hamiltonian graph of order \(n \geq 3 \), then \(\text{hc}(G) \leq n - 2 \).

The length of a longest cycle in a connected graph is called the *circumference* of \(G \) and is denoted by \(\text{cir}(G) \).

Proposition 4.7. If \(G \) is a connected graph of order \(n \geq 4 \) with \(\text{cir}(G) = n - 1 \), then \(\text{hc}(G) \leq n - 1 \).

Proof. Since \(G \) is connected and \(\text{cir}(G) = n - 1 \), it follows that \(G \) contains a spanning subgraph \(H \) obtained by adding a pendant edge to a cycle of length \(n - 1 \). By Lemma 2.3, \(\text{hc}(H) = n - 1 \), and by Lemma 4.5, \(\text{hc}(G) \leq n - 1 \). \(\square \)
Indeed, by Corollary 4.4, every pair k, n of integers with $1 \leq k \leq n - 2$ can be realized as the Hamiltonian chromatic number and the order of some Hamiltonian graph. Consequently, this result cannot be improved. Lemma 4.5 also provides us with the following result.

Proposition 4.8. If T is a spanning tree of a connected graph G, then
\[\text{hc}(G) \leq \text{hc}(T). \]

The following lemma will also be useful to us. The complement \overline{G} of a graph G is the graph with vertex set $V(G)$ such that two vertices are adjacent in G if and only if they are not adjacent in G.

Lemma 4.9. If T is a tree of order at least 4 that is not a star, then \overline{T} contains a Hamiltonian path.

Proof. We proceed by induction on the order n of T. For $n = 4$, the path P_4 of order 4 is the only tree of order 4 that is not a star. Since $\overline{P_4} = P_4$, the result holds for $n = 4$. Assume that for every tree of order $k - 1 \geq 4$ that is not a star, its complement contains a Hamiltonian path.

Now let T be a tree of order k that is not a star. Then T contains an end-vertex v such that $T - v$ is not a star. By the induction hypothesis, $\overline{T - v}$ contains a Hamiltonian path, say $v_1, v_2, \ldots, v_{k-1}$. Since v is an end-vertex of T, it follows that v is adjacent to at most one of v_1 and v_{k-1}. Without loss of generality, assume that v_1 and v are not adjacent in T. Then v and v_1 are adjacent in T and so $v, v_1, v_2, \ldots, v_{k-1}$ is a Hamiltonian path in T. □

Theorem 4.10. If T is a tree of order $n \geq 2$, then
\[\text{hc}(T) \leq (n - 2)^2 + 1. \]

Proof. If T is a star, then by Theorem 3.2, $\text{hc}(T) = (n - 2)^2 + 1$ and the result holds. So we may assume that T is a tree of order $n \geq 4$ that is not a star. By Lemma 4.9, the complement \overline{T} of T contains a Hamiltonian path, say v_1, v_2, \ldots, v_n is a Hamiltonian path in \overline{T}. This implies that for each i with $1 \leq i \leq n$, the vertices v_i and v_{i+1} are nonadjacent in T. Thus $D(v_i, v_{i+1}) \geq 2$ for all i with $1 \leq i \leq n - 1$. Define a labeling c of T by $c(v_i) = (n - 2) + (i - 2)(n - 3)$ for each i with $1 \leq i \leq n$. Let $1 \leq i < j \leq n$. Then $|c(v_i) - c(v_j)| = (j - i)(n - 3)$. If $j = i + 1$, then $|c(v_i) - c(v_j)| + D(v_i, v_j) \geq (n - 3) + 2 = n - 1$. If $j \geq i + 2$, then $|c(v_i) - c(v_j)| + D(v_i, v_j) \geq 2(n - 3) + 1 = 2n - 5 \geq n - 1$ for $n \geq 4$. Thus c is a Hamiltonian coloring of T. Therefore,
\[\text{hc}(T) \leq \text{hc}(c) = c(v_n) = (n - 2)^2 < (n - 2)^2 + 1, \]
as desired. □

As a consequence of Proposition 4.8 and Theorem 4.10, we obtain a sharp upper bound for the Hamiltonian chromatic number of a nontrivial connected graph in terms of its order.

Corollary 4.11. If G is a nontrivial connected graph of order n, then
\[\text{hc}(G) \leq (n - 2)^2 + 1. \]
The preceding results suggest defining the following set and parameter for each integer $n \geq 2$,

$$
HC(n) = \{ k : \text{there exists a graph } G \text{ of order } n \text{ with } \text{hc}(G) = k \}.
$$

Therefore, $\min\{HC(n)\} = 1$ and $\max\{HC(n)\} = (n - 2)^2 + 1$. Also,

$$
\text{hc}(n) = \max\{k : p \in HC(n) \text{ for all } p, \ 1 \leq p \leq k\}.
$$

By Proposition 4.7, Theorem 3.2, Corollaries 4.4, and 4.11, it follows that

$$
n - 1 \leq \text{hc}(n) \leq (n - 2)^2 + 1.
$$

That $HC(4) = \{1, 2, 3, 4, 5\}$ and $HC(5) = \{1, 2, \ldots, 10\} - \{9\}$ is illustrated in Figs. 10 and 11. Consequently, $hc(4) = 5$ and $hc(5) = 8$.

Among the many unsolved problems is to determine those integers $n \geq 2$ for which $n \in HC(n)$.

Fig. 10. Graphs I_i of order 4 with $hc(I_i) = i$ ($1 \leq i \leq 5$).

Fig. 11. Graphs J_i of order 5 with $hc(J_i) = i$ ($1 \leq i \leq 10$, $i \neq 9$).
Acknowledgements

We are grateful to the referees whose valuable suggestions resulted in an improved paper.

References