effectiveness of HLA-B*5801 genotyping compared to no testing. The incidence of SJ/TEN was estimated based on case reports from Health Product Vigilance Center of Thailand in year 2009. The prevalence of HLA-B*5801 was obtained from Thai population reported in dbMHIC database, while the association of gene and SJ/TEN was based on a meta-analysis. Cost of SJ/TEN management and case-fatality rate were derived from National Inpatient Governmental Hospital Database in year 2007. We used PGIS801 DNA detection kit as a genotyping tool with 100% specificity and specificity. We varied genotyping costs and selected values that would make the cost-effectiveness values being 100,000 or 300,000 THB/life-year gained. One-way sensitivity analysis was undertaken to identify influential parameters. RESULTS: The estimated life-years (LY) were 21.9999 and 21.9994 for testing and no testing groups, respectively. Setting the genotyping cost as 393 and 1085 THB resulted in a potentially effectiveness values being 100,000 or 300,000 THB/LY, respectively. The most influential parameters were the cost of genotyping and SJ/TEN management.

CONCLUSIONS: Pharmacogenetic testing for HLA-B*5801 appears to be potentially cost-effective if the testing cost falls in the range of 393 and 1085 THB. It was important to note that this analysis has not taken into account sequelae associated with SJ/TEN and has not performed based on the societal perspective yet. Policymakers should consider our findings for guiding health policy during decision-making process.

SYSTERIC DISORDERS/CONDITIONS – Cost Studies

POTENTIAL COST SAVINGS ASSOCIATED WITH FASTER BLEEDING RESOLUTION IN THE INPATIENT TREATMENT OF HEMOPHILIA WITH INHIBITORS

Wierzbicki A1, Munakata J2, Lee WC1

1University of Southern California, School of Pharmacy, Los Angeles, CA, USA; 2University of California Davis, Oakland, CA, USA

OBJECTIVES: A US hospital-based economic model was developed to quantify the potential cost savings associated with use of an improved non-immunogenic bypassing agent with faster bleeding resolution, sustained control and a reduced need for re-treatment in order to estimates the inpatient costs for on-demand treatment of bleeds of hemophilia patients with inhibitors. METHODS: An Excel-based model patterned the inpatient care associated with use of currently available bypassing agents: plasma-derived activated prothrombin complex concentrate (pd-aPCC) and recombinant Factor VIII (rFVIIIa). We used the model to simulate the potential impact of faster bleeding resolution associated with an improved bypass agent by examining a realistic range of theoretical improvements to the rFVIIIa profile. The model was parameterized with treatment-specific average resource use, service and pharmacy costs, and sources admission estimates based on a retrospective analysis of the Premier Perspective database, including 1218 inpatient stays with an ICD-9 diagnosis of hemophilia A that were identified from 2003–2008. All costs are reported in 2008 USD. RESULTS: In the baseline analysis, the average per-patient costs associated with the inpatient treatment of hemophilia with inhibitors were slightly lower with rFVIIIa as compared with pd-aPCC ($78,086 vs. $78,141). The observed cost difference was attributable to an observed difference in the percentage of inpatient stays where the patient was admitted through the ER associated (rFVIIIa: 54%; pd-aPCC: 80%). Exploratory sensitivity analyses showed that a potentially faster-acting non-immunogenic treatment (e.g., 10% reduction in length of stay per patient admission and a 10% reduction in average duration of bypass agent therapy per patient admission) could impart appreciable cost savings ($786,101) compared with pd-aPCC. CONCLUSIONS: Our analysis showed that the availability of more effective bypassing agents with faster bleed resolution may have the potential to confer significant inpatient cost savings through reductions in length of stay and duration of bypass agent treatment.

HEALTH-CARE UTILIZATION AND COST IN PATIENTS WITH FACTOR VIII DEFICIENCY: RESULTS OF THE HUGS VA STUDY

Johnson K1, Zhou ZY2, Riske B1, Ullman M3, Baker J1, Koerper M4, Forsberg A5

1University of Southern California, School of Pharmacy, Los Angeles, CA, USA; 2University of Colorado Denver, Aurora, CO, USA; 3University of Texas Health Science Center at Houston, Houston, TX, USA; 4UCLA Division of Hematology/Oncology, Los Angeles, CA, USA; 5UCSF HTC, San Francisco, CA, USA

OBJECTIVES: To examine utilization of healthcare services and factor concentrate among persons with hemophilia A receiving care at US Hemophilia Treatment Centers (HTCs). METHODS: Hemophilia Utilization Group Study (HUGS-Va) is a prospective multicenter study evaluating burden of illness and cost of care in persons with hemophilia A in the United States. Patients or parents of patients < 18 from six HTCs completed a standardized interview, including demographics, health insurance coverage, barriers to care and treatment pattern. One-year clinical data and two-year dispensing records were abstracted for health care and factor utilization. Annual factor use and costs were calculated as the average of two-year data. Generalized linear model with Poisson distribution was used to assess the association between factor replacement and emergency room visits after adjusting for covariates. RESULTS: Of 329 participants (30% adults), 68% had severe hemophilia. Ninety-one percent reported using health services at least once during the year; 65% had a HTC comprehensively evaluated, 33% visited a clinician, 21% had physical therapy, 28% visited the emergency room, and 14% were hospitalized. Emergency room visits per person-year were 58% lower among prophylaxis users (vs.episodic) after adjusting for age, employment, and insurance coverage (RR = 0.42, P = 0.002). Patients without inhibitors and severe disease had significantly more factor dispensed (426 u/kg/yr), compared to those with moderate (1089 u/kg/yr) or mild (582 u/kg/yr) disease (P < 0.0001). The average factor cost was $165,188 (median: $104,170) per patient-year in persons without inhibitors and $700,272 (median: $197,621) in patients with inhibitors. CONCLUSIONS: Patients access an array of comprehensive health services provided by HTCs. Prophylactic infusion of factor may be associated with decreased health-care utilization compared to episodic treatment.

COMPARATIVE COST-EFFECTIVENESS ANALYSES OF IRON CHELATING THERAPIES IN TRANSFUSION-DEPENDENT THALASSEMIAS IN THAILAND

Luangasanatip N1, Chayakunapruk N2, Upakdee N2, Wong P3

1City University, London, UK; 2Naresuan University, Muang, Phitsanulok, Thailand; 3Faculty of Medicine, Naresuan University, Phitsanulok, Thailand

OBJECTIVES: Thalassaemia is one of the major public health problems in Thailand. Using appropriate iron chelating agents can prevent thalassaemia-related complications which are costly to the health-care system. This study aims to evaluate the cost-effectiveness of Deferoxamine (DFO), Deferiprone (DFP), and Deferasirox (DFX) in transfusion-dependent thalassaemia patients from the societal perspective. METHODS: A Markov model was used to project the life time costs and outcomes represented as quality-adjusted life-years (QALYS). Clinical efficacy and safety of all therapeutic options were obtained from a systematic review and clinical trials. Transfusion probabilities were derived from literatures while costs were obtained from Thai Drug and Medical Supply Information Center, Diagnostic Related Group (DRG) and other Thai literatures. Discounting rate of 3% was used. Incremental cost-effectiveness ratios were presented as values of year 2009. A series of sensitivity analyses and cost-effectiveness analysis curve (CEAC) were performed. RESULTS: Compared with DFO, using DFP is dominant with cost-savings of US $91,107 without QALYS gained. Comparing DFX with DFO, the incremental cost was US $129,365 and incremental QALY was 5.35 with an incremental cost-effectiveness ratio of US $22,463. When compared to DFP, an incremental cost-effectiveness ratio of DFX was US $38,258 per QALY. Cost effectiveness analysis curve (CEAC) showed that the probability of DFX being cost-effective was 0% when compared with either DFO or DFP, based on the cost-effectiveness cut-off value of US $2,902 per QALY. When compared to DFP, DFX is cost-effective only if DFX cost was lowered from US $14.6 to US $4 per tablet. CONCLUSIONS: Our findings suggest that using DFP is cost-saving when compared with the conventional therapy, while using DFX is not cost-effective compared with both DFO and DFP. Policymakers and clinicians may consider using such information for aiding policy decision-making process in Thailand.

COST-EFFECTIVENESS OF DEFERASIROX VERSUS DEFEROXAMINE IN TRANSFUSION-DEPENDENT THALASSEMAIA PATIENTS IN HONG KONG—AN INITIAL ANALYSIS

Lee KK1, Chow DP1, Lau HF1, Pramanik A2, Delta TE1, Sofrony O3, Shi WM4

1The Chinese University of Hong Kong, Hong Kong, China; 2Novartis Pharmaceuticals Corporation, Norham Park, NJ, USA; 3Novartis Asia Pacific Pharmaceuticals Pte Ltd, Singapore; 4Policy Analysis Inc, Brookline, MA, USA; 5Novartis Pharmaceuticals (HK) Ltd, Hong Kong, China

OBJECTIVES: To evaluate the cost-effectiveness of deferasirox (DFS) versus deferoxamine (DFO) in patients with β-thalassaemia major from a Hong Kong (HK) public health-care system perspective. METHODS: A Markov model previously developed for the United States was adapted to examine the potential cost-effectiveness of DFS versus DFO based on lifetime costs and QALYs gained in transfusion-dependent β-thalassaemia patients in HK. Patients were assumed to have initiated chelation therapy at 3 years of age and have received prescribed dosages of DFS or DFO that have been shown to be similarly effective in β-thalassaemia patients. Probabilities of complications of iron-overload and death due to poor compliance with chelation therapy were estimated using data from recently published studies. Iron chelator dosages, costs of administration, and adverse events were extracted from a systematic review and clinical trials. Transfusion probabilities were derived from hospital medical records (from January 2004 to December 2009) of transfusion-dependent β-thalassaemia patients. Health-state utility values were based on a recent study of patients’ preferences for oral versus intranasal therapy and published literature. A 5% annual discount rate was used. RESULTS: Compared with DFO, DFS yielded an additional 3.15 QALYs gained per patient at an additional lifetime expected cost of $156,881 USD ($1,22M HKD) per patient; the cost per QALY gained was $3549,761 ($388K HKD). The results were sensitive to the estimated transfusion-related costs for DFO, the rates of compliance associated with oral versus intranasal therapy, estimates of the daily dose of DFS, and unit costs of each chelator. CONCLUSIONS: Based on the WHO recommended thresholds that any incremental cost-effectiveness ratio lower than three-times the GDP per capita can be considered as cost-effective (GDP of HK in 2009 was $US29,902), results of this study suggest that DFS is probably a cost-effective iron chelator for patients with transfusion-dependent β-thalassaemia.