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Abstract

We present classical solutions ofpEbranes(p > 5) in plane wave spacetime with nonconstant R—R 3-form flux. We also
show the existence of a system of D3-branes in this background. We further analyze the supersymmetric properties of these
branes by solving type Il Killing spinor equations explicitly.

0 2003 Published by Elsevier B.\@pen access under CC BY license.

1. Introduction

Study of string theory in plane wave background with flux has been the topic of intense discussion in recent
past. It is known for quite sometime that pp-wave spacetime provides exact string theory backgrounds. These
backgrounds are exactly solvable in lightcone gauge. Many of them are obtained in the Penrose limit (pp-wave
limit) of AdS, x §9 type of geometry and in some cases are maximally supersymmetric [1,2]. Strings in pp-wave
background are also investigated to establish the duality between the supergravity modes and the gauge theory
operators in the large R-sector of the gauge theory [3].

PP-wave background with nonconstant Ramond—Ramond (R-R) flux [4-8] gives an interesting class of
supersymmetric pp-wave solutions in type |IB supergravity. The worldsheet theory corresponding to pp-waves
with nonconstant R—R5 flux is described by nonlinear sigma model which is supersymmetric and one can have
linearly realized ‘supernumerary’ supersymmetries in these backgrounds [9]. PP-wave backgrounds supported by
nonconstant R—#3 fields, do not have, in contrast to théi counterpart, supernumerary supersymmetries. These
backgrounds provide, in general, examples of nonsupersymmetric sigma models [5] unless there exists some targe!
space isometry and corresponding Killing vector potential terms, which ensure the worldsheet supersymmetry [7].
The bosonic string action of a general class of pp-wave background supported by nonconstdat flRedRin
light cone gauge, can be read off from the metric. The nonlinear sigma models have eight-dimensional special
holonomy manifold target space. The nonvanishing R-R fields gives, in particular, fermionic mass terms in the
worldsheet action. Classical solutions of D-branes in pp-wave background with constant NS—-NS and R-R flux
are already discussed in the literature [10-16}-lranes from worldsheet point of view are constructed in [17].
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Supersymmetric properties of D-branes and their bound states have also been analyzed both from supergravity anc
from worldsheet point of view.

D-branes and their bound states play an important role in understanding various nonperturbative and duality
aspects of string theory and gauge theories. The configurations of branes oriented bySt&rdjrangle are
known to be supersymmetric objects [18—25]. They have also been useful in understanding the physics of black
holes and gauge theories. So it is worth examining various classical solutions D-brane in plane wave spacetime
as they also represent black holes in these backgrounds. The pp-wave spacetime with nonconstant five-form flux
has the interpretation of soliton solutions in two-dimensional sigma models as emphasized by Maldacena and
Maoz [4]. So a natural extension would be to consider D-branes in these and in more general background to find
out the interacting nonlinear sigma models on the worldsheet in the presence of D-branes. So it is desirable to study
various supergravity solutions of D-branes in order to have the spacetime realization of these objects and to study
their supersymmetry properties as well.

In earlier work, we found some classical solutions of D-branes along with the supersymmetry in pp-wave
spacetime with nonconstant NS—NS flux [26]. Intersecting D-branes in supergravities have also been discussed
in [27,28]. The possible black branes and the horizons have been discussed in the nonextremal deformations of
D-branes in these backgrounds. So it is interesting to find out more D-brane solutions in plane wave spacetime
with flux and to discuss the possibility of horizons in this framework. In this Letter, we continue the search
for supergravity brane solutions in plane wave spacetime with nonconstantFR#lgx. First we present the
classical solutions of p-branes(p > 5) in plane wave spacetime with nonconstant RERflux. Next, we find
classical solution of a system of D3-branes oriented at an angle € SU(2)) with respect to each other in this
background. In the D5-brane case all the worldvolume coordinates of the brane lie along the pp-wave directions
and the transverse directions are flat. On the other hand, for the D3-brane system only lightcone directions are along
the brane, whereas the other pp-wave directions are along the transverse space. We would like to point out that the
D-branes found in this Letter are examples of localized D-branes in plane wave spacetime with flux. We would
also like to point out that all the D-branes presented heréoaggtudinal branes as explained in [12]. The rest of
the Letter in organized as follows. In Section 2, we present classical solutions of D-branes in pp-wave background
with nonconstant R—-R flux. Section 3 is devoted to the supersymmetry analysis of brane solutions presented in
Section 2. We conclude in Section 4 with some discussions.

2. Supergravity solutions

We start by writing down the supergravity solution of a system of D5-branes in the pp-wave background with
nonconstant R—R 3-form flux. The metric, dilaton and field strengths of such a configuration is given by:

ds? = fg 1/2(2dx+dx + K () (dxt +Z(dx, ) f2(ar? +r2d3),

F = obo(x;)dxt Adxt A dx? + 33ba(x;))dxT A dx3 A dx?,
Ngsl2

ez¢:f5_1v Fabe = €abeada f5, fo=1+ (2.1)

with OK (x;)+(9;b; )2 0 andob(x;) = 0. f5 denotes the harmonic function that satisfies Green function equation
in the transverse 4 -space. We have checked that the solution presented above satisfies all type IIB field equations.
Other Dp-brane(p > 6) solutions can be obtained by applyifigduality alongx, .. ., x8 directions. For example:
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the D6-brane solutions, by applyifisduality alongx® (say), is given by:

4
ds? = f6—1/2(2dx+ dx™ + K () (dx )2+ (dx')? + (dx5)2) + £ (dr? + r2d23),
i=1
F = 01b2(xi) dx™ Adx Adx? Adx® + 93ba(xi) dxt Adx® Adx® Adx®,
-3/2 Ngsly

P =f7% Fa=eacdefs.  fo=1+—. 2.2)

Where f5 is the harmonic function that satisfies Green function equation in the transverse 3-space. Similarly, one
can continue the above exercise for finding out supergravity solutions of the higher branes like D7 as well. Bound
states of D-branes can also be constructed by app#idgality in the ‘delocalized’ D-brane solutions as explained
in [29]. For example, a D5-D7 bound state can be obtained from a D6 solution and so on. We would like to point
out that the solutions presented here are the generalization of the D-brane solutions found out in [10]. However,
the crucial difference lies in the realization of supersymmetry, which will be discussed in the next section.

Now we present the classical solutions of a system of D3-branes oriente@dt2nangle with respect to each
other in pp-wave background with nonconstant R—R 3-form flux. First, we present the supergravity solution of a
single D3-brane oriented at an angle SU(2) with respect to the reference axis. To start with, the D3-brane is
lying alongx ™, x~, x® andx® directions. By applying a rotation betweérP—x)- and (x "—x8)-planes following
[21], with rotation anglega1, a2) = (0, @), we get a configuration where the original D3-brane is tilted by an
anglew. In stead of going more into the constructional details, below we write down the classical solution of a
single D3-brane rotated by an angle

dS2=\/l+ Xl{

+ g ‘ +)2
1+Xl(2dx dx™ + K () (dx™)

+[1+ Xsco@ o] (ax%)? + (dx)?] + [1+ XasirPa][ (4x0)” + (dx®)7]

4
+ 2X1Sina Cosa(dx7dx8 — dx5dx6)) + Z(dxi)z},
i=1
F = 31bo(xi) dx Adxt Adx? + d3ba(x;) dx™ A dx® Adx?,

® 0; X1 5 _ 0iX1 .
F+768i = —m CO§ o, F+767i = m COsx SInc,
0;i X . 0;i X .
® = _ 97 GiRg, FO o= _ %71 osesing,
1+ Xp)? ' (14 X1)?
e =1, (2.3)
and X1 is given by
L1 )
X1(r)==| —= . (2.4)
2\ |F — 1|

Wherer is the radius vector in the transverse space, defined bnyzl(xi)z, r1 is the location of D3-brane and
X1 is the harmonic function in the transverse space. One can easily check that the above ansatz solve type 1B field
equations, Wit K (x;) = —(8;b;)? andOb(x;) = 0.

Next, we present the supergravity solution of a system of two D3-branes oriented at an avitjfleespect to
each other. In this case, to start with two D3-branes are parallel to each other and are lying'alongx®, x8
directions. By applying ai8U (2) rotation as described earlier, the second brane rotated by anangtsv lies
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alongxt, x~, x° andx’ directions. The metric, dilaton and the field strengths of such a system is given by:

ds? =TI+ X{ 1%{ (2dx* dx™ + K (i) (dx)? + @+ X[ (d°) + (dx7)?] + (ax®)? + (dx®)?

4
+X1[(003adx5—sinadx6)2 (cosadx’ + sina dx®) ])JFZ }
i=1

F = 01b2(x;) dxt A dx? + 93ba(xi) dx> A dx?,

) X2+ X1c08a 4+ X1XosirPa
F e = 9i ’
1+X)
X1 cosu sina
%) ©) 1
F =—F =0 — 1,
+—-58i — +—67i l{ (1+ X) }
®) (X1+ X1X2) sirfa 2
F —a , =1, 2.5
+— 57l l{ (1+ X) e ( )
andX is the harmonic function in the transverse space which is given by
X = X1+ X2+ X1X2sifa, (2.6)

where as defined earlieX1 » = 1(‘%{—2‘) . Once again we have checked that the above solution solve type 11B

field equations, witho K (x;) = —(3;;)? andob(x;) = 0. More D-brane bound states can be obtained by applying
T-duality transformation along5,...,x8 directions. We would like to point out that the D-brane solutions
presented here are the generalizations of the solutions presented in [15,21]. D-branes in plane wave backgrounc
with nonconstant NS—NS flux can be obtained by applrduality on the above solutions. We, however, will

skip those details. In the next section we will analyze the supersymmetry of these solutions by solving type 1I1B
Killing spinor equations explicitly.

3. Supersymmetry analysis

The supersymmetry variation of dilatino and gravitino fields of type 11B supergravity in ten dimensions, in string
frame, is given by [30,31]:

1 1 1 1
Shy = 2(r 0udp F 51 PH,W,,)ei+ 5¢ (iFM Fy) + 121““”/’Fl§33p) €, 3.1)
1 1
+ b
s¥, [8 +4( ;mb:Fz Mb)]“" }
1 | p® 1 e g3 1 = [hvpap F(5) r 3.2
+ g« | meo3l wp T 375 pvpap |1 HEF: (3.2)

where we have usedu, v, p) to describe the ten-dimensional spacetime indices, and hat's represent the
corresponding tangent space indices. Solving the above two equations for the D5-brane solution (2.1), we get
several conditions on the spinors.

First the dilatino variation gives:
1/4

PR 1 PYNA
rt+i 8leb;(xi)e¢ + —Fabceél;&zf&&éq: =0. (3.3)

Faf5a€i+f 3
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On the other hand, the gravitino variation (3.2) gives the following conditions on the spinors:

1 14 o 1 12 35 z
Syt =01ex + s 149K () M Hew — 5 /s / b (x) ez =0, (3.4)
SYyt=0_er =0, (3.5)
1 a2, 0% :
51//?2 =0;€4 — §f5 / F+]k3;b12(xi)5il¢1—'l =0, (3.6)
19, f5 1 s .
SYE =0,ex — 8 ‘}5 €+ — §F+l’3;b;(xi)5aara€¢ =0. (3.7)
In writing the above gravitino variation equations we have made use of the D5-brane supersymmetry condition:
R 1
Iey + ge&,;&il“b“’e; =0. (3.8)

One notices that the supersymmetry condition (3.6), for nonconﬁtarﬁlcajb,; # 0, can be satisfied only if

F+€i =0 [5]

Using I'te, =0 and the brane supersymmetry condition (3.8), the dilatino variation (3.3) is satisfied. Now, the
supersymmetry condition (3.7) is satisfied for the spinare. = exp(—(1/8) In f5)el, with €2 being a function
of xT only. SinceeE’_L is independent af’ andx® whereas)b is a function ofx’ only, from the gravitino variation
(3.4), one gets the following conditions to have nontrivia(solutions:

8:b; (x) 7€ =0 (3.9)
and
3,2 =0. (3.10)
For the particular case wheh, 12 = F, 34, EQ. (3.9) gives the following condition with constant spindk;
rizso _ o0 (3.11)

Therefore the D5-brane solution (2.1) preservé dupersymmetry.
Now we analyze the supersymmetry of the system of two D3-branes as presented in (2.5). The dilatino variation
gives:

r+i 9;b3(xi)ex = 0. (3.12)

The gravitino variation gives the following conditions on the spinors to be solved:

1 AR l aANn ~
SYy =0drex + 20+ X) VAR (e)) Mt — ghbi )M M ey

:I.I_,_;_gé’glf|:(1-|-X:]_Sil”lz()[)zal‘Xz-|-COS’ZO[a,'X]_jI1_,_;_6$

8 1+ X)32(1+ X1sirfa)

1rizenf 1

Fgl [(1+x)5/2(

B (X12cofasirfa)((1+ X1 sifa)29; X2 4+ cofad; X1)
1+ X)%2(1+ X1sirfa)

1+ Xlsinza)(X;LZCOSZa sin2a8,~X2 + 1+ Xz)ZSinzaa,'Xl)

+ Tz (2Xicos asinad Xa + 2xF codasin' ad X
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—2X1(1+ X2) co§asin2aaiX1)}F$e¢

L[ s pisen
{ ”(—chosx sinad; X

T8 (1t )2+ X1siPa)

+ (14 X2) sin coswd; X1 — X2 sin® o cosad; X1) (1 + X1 Sirf )

+ X1 cosa sina (1 + X1 sinza)za,-Xg + X COS & Sinad; Xl] rte. =0, (3.13)
Syt =0_er =0, (3.14)
SYE = dges — %(1+ X)l/“agbj(xi)r”frae; -0 (a=5,...,8), (3.15)
Y = der — % (laerX) e — %(1 + X)l/zajb,;(xi)1“*-7’55[.,71”}¢ —0. (3.16)

In writing down the above supersymmetry variations, we have made use of the following conditions [15]:

(rB—re;=0,  (M¥+r%e. =0, (3.17)
Fiiéée:F =€q, 1“4;5763F =€4. (3.18)

To explain further, the conditions written in (3.17) comes from the rotation between the two D3-branes and those in
(3.18) are the D3-brane supersymmetry conditions. It is rather straightforward to conclude the conditions written in
Egs. (3.17) and (3.18) are in fact two independent conditions, thereby brealdrsgifersymmetry. As explained
earlier, Eq. (3.16), for nonconstab;, can be solved by the spinet: e+ = exp(—(1/8) In(1+ X))eq, with €9
being a function of*, only if:

ey =0. (3.19)
Now putting the condition (3.19), the dilatino variation is satisfied. All the gravitino variations are also satisfied
leaving the following two equations to have nontrivial solutions:

a;b;(x,-)r"feg =0, (3.20)
and
3.l =0. (3.21)

Once again for the particular ca$&.12 = F34, Eq. (3.20) givesi(l — Fiééz‘)e% = 0 for constant spinork?.
Therefore the system of D3-branes (2.5) preserves 1/16 supersymmetry [15].

4. Summary and discussion

In this Letter we have constructed various localized D-brane configurations in plane wave spacetime with
nonconstant R—R 3-form flux. The supersymmetry of these branes have been analyzed by solving type IIB Killing
spinor equations explicitly. The existence of othep-bBrane(p < 5) solutions in this plane wave spacetime
puts restriction on the localization of the branes and also on the behaviour of furkttioh parameterizing
the plane wave spacetime [13,32]. Thedeformed D-branes can also be constructed following [27,28,33].
Though the nonextremal D-branes admit horizons and known as black branes, this is not in general true in plane
wave spacetime [27,28,34]. One could possibly look at the black brane solutions in this background and discuss
properties of their horizon.
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The worldsheet construction of D5-brane and the corresponding nonlinear sigma model of the background
considered in this Letter can be found out by referring to the following Green—Schwarz action [5] written in
lightcone gauge and the D5-brane boundary condition:

1
Lp=04xj0_x; — Emzbi2 + 04+Y40—Ya, 4.1)
1 .
Lf = i@R)/U3+9R + i@Ly“E),@L — Zimaibj(xi)eL)/U)/ljeR, (4.2)
m=a'p" =0iu, (4.3)

whered; andéy are the Majorana—Weyl spinors in the left- and right-moving sectorsvaritl= 1, ..., 4) and

va (@ =5, ..., 8) denote the worldvolume and transverse directions of the D5-brane, respectively. The plane wave
background with nonconstant R—R flux can also be parametrized by holomorphic function on the worldsheet [5].
Soitis useful to analyze the interacting Lagrangian in the presence of these nonperturbative objects. The conditions
of consistent D-brane which were obtained in [6] are expected to be different in the present case because of the flat
transverse space. So an interesting exercise will be to obtain all the consistent D-branes of [6]. That would probably
tell us about the integrability structure of the worldsheet theory in the presence of branes, if it works out nicely,
in a more general background. A systematic classification of all supersymmetric D-branes from worldvolume
point of view is also needed. Finally, it would really be nice to find out the holographic dual of these plane wave
backgrounds in the presence of branes. We hope to come back to these issues in future.
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