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Abstract

We present classical solutions of Dp-branes(p � 5) in plane wave spacetime with nonconstant R–R 3-form flux. We
show the existence of a system of D3-branes in this background. We further analyze the supersymmetric propertie
branes by solving type II Killing spinor equations explicitly.
 2003 Published by Elsevier B.V.

1. Introduction

Study of string theory in plane wave background with flux has been the topic of intense discussion in
past. It is known for quite sometime that pp-wave spacetime provides exact string theory backgrounds
backgrounds are exactly solvable in lightcone gauge. Many of them are obtained in the Penrose limit (p
limit) of AdSp × Sq type of geometry and in some cases are maximally supersymmetric [1,2]. Strings in pp
background are also investigated to establish the duality between the supergravity modes and the gau
operators in the large R-sector of the gauge theory [3].

PP-wave background with nonconstant Ramond–Ramond (R–R) flux [4–8] gives an interesting c
supersymmetric pp-wave solutions in type IIB supergravity. The worldsheet theory corresponding to pp
with nonconstant R–RF5 flux is described by nonlinear sigma model which is supersymmetric and one can
linearly realized ‘supernumerary’ supersymmetries in these backgrounds [9]. PP-wave backgrounds supp
nonconstant R–RF3 fields, do not have, in contrast to theirF5 counterpart, supernumerary supersymmetries. T
backgrounds provide, in general, examples of nonsupersymmetric sigma models [5] unless there exists so
space isometry and corresponding Killing vector potential terms, which ensure the worldsheet supersymm
The bosonic string action of a general class of pp-wave background supported by nonconstant R–RF5 flux, in
light cone gauge, can be read off from the metric. The nonlinear sigma models have eight-dimensiona
holonomy manifold target space. The nonvanishing R–R fields gives, in particular, fermionic mass term
worldsheet action. Classical solutions of D-branes in pp-wave background with constant NS–NS and R
are already discussed in the literature [10–16]. Dp-branes from worldsheet point of view are constructed in [1
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Supersymmetric properties of D-branes and their bound states have also been analyzed both from superg
from worldsheet point of view.

D-branes and their bound states play an important role in understanding various nonperturbative and
aspects of string theory and gauge theories. The configurations of branes oriented by certainSU(N) angle are
known to be supersymmetric objects [18–25]. They have also been useful in understanding the physics
holes and gauge theories. So it is worth examining various classical solutions D-brane in plane wave sp
as they also represent black holes in these backgrounds. The pp-wave spacetime with nonconstant five-
has the interpretation of soliton solutions in two-dimensional sigma models as emphasized by Maldac
Maoz [4]. So a natural extension would be to consider D-branes in these and in more general backgroun
out the interacting nonlinear sigma models on the worldsheet in the presence of D-branes. So it is desirable
various supergravity solutions of D-branes in order to have the spacetime realization of these objects and
their supersymmetry properties as well.

In earlier work, we found some classical solutions of D-branes along with the supersymmetry in p
spacetime with nonconstant NS–NS flux [26]. Intersecting D-branes in supergravities have also been d
in [27,28]. The possible black branes and the horizons have been discussed in the nonextremal deform
D-branes in these backgrounds. So it is interesting to find out more D-brane solutions in plane wave sp
with flux and to discuss the possibility of horizons in this framework. In this Letter, we continue the s
for supergravity brane solutions in plane wave spacetime with nonconstant R–RF3 flux. First we present the
classical solutions of Dp-branes(p � 5) in plane wave spacetime with nonconstant R–RF3 flux. Next, we find
classical solution of a system of D3-branes oriented at an angleα, (α ∈ SU(2)) with respect to each other in th
background. In the D5-brane case all the worldvolume coordinates of the brane lie along the pp-wave d
and the transverse directions are flat. On the other hand, for the D3-brane system only lightcone directions
the brane, whereas the other pp-wave directions are along the transverse space. We would like to point ou
D-branes found in this Letter are examples of localized D-branes in plane wave spacetime with flux. We
also like to point out that all the D-branes presented here arelongitudinal branes as explained in [12]. The rest o
the Letter in organized as follows. In Section 2, we present classical solutions of D-branes in pp-wave bac
with nonconstant R–R flux. Section 3 is devoted to the supersymmetry analysis of brane solutions pres
Section 2. We conclude in Section 4 with some discussions.

2. Supergravity solutions

We start by writing down the supergravity solution of a system of D5-branes in the pp-wave backgroun
nonconstant R–R 3-form flux. The metric, dilaton and field strengths of such a configuration is given by:

ds2 = f
−1/2
5

(
2dx+ dx− +K(xi)

(
dx+)2 +

4∑
i=1

(dxi)
2
)

+ f
1/2
5

(
dr2 + r2 dΩ2

3

)
,

F = ∂1b2(xi) dx
+ ∧ dx1 ∧ dx2 + ∂3b4(xi) dx

+ ∧ dx3 ∧ dx4,

(2.1)e2φ = f−1
5 , Fabc = εabcd∂df5, f5 = 1+ Ngsl

2
s

r2
,

with ✷K(xi)+(∂ibj )
2 = 0 and✷b(xi) = 0.f5 denotes the harmonic function that satisfies Green function equ

in the transverse 4-space. We have checked that the solution presented above satisfies all type IIB field e
Other Dp-brane(p � 6) solutions can be obtained by applyingT -duality alongx5, . . . , x8 directions. For example
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the D6-brane solutions, by applyingT -duality alongx5 (say), is given by:

ds2 = f6
−1/2

(
2dx+ dx− +K(xi)

(
dx+)2 +

4∑
i=1

(
dxi

)2 + (
dx5)2

)
+ f

1/2
6

(
dr2 + r2dΩ2

2

)
,

F = ∂1b2(xi) dx
+ ∧ dx1 ∧ dx2 ∧ dx5 + ∂3b4(xi) dx

+ ∧ dx3 ∧ dx4 ∧ dx5,

(2.2)e2φ = f
−3/2
6 , Fab = εabc∂cf6, f6 = 1+ Ngsls

r
.

Wheref6 is the harmonic function that satisfies Green function equation in the transverse 3-space. Simila
can continue the above exercise for finding out supergravity solutions of the higher branes like D7 as well
states of D-branes can also be constructed by applyingT -duality in the ‘delocalized’ D-brane solutions as explain
in [29]. For example, a D5–D7 bound state can be obtained from a D6 solution and so on. We would like
out that the solutions presented here are the generalization of the D-brane solutions found out in [10]. H
the crucial difference lies in the realization of supersymmetry, which will be discussed in the next section.

Now we present the classical solutions of a system of D3-branes oriented at anSU(2) angle with respect to eac
other in pp-wave background with nonconstant R–R 3-form flux. First, we present the supergravity soluti
single D3-brane oriented at an angleα ∈ SU(2) with respect to the reference axis. To start with, the D3-bran
lying alongx+, x−, x6 andx8 directions. By applying a rotation between(x5–x6)- and(x7–x8)-planes following
[21], with rotation angles(α1, α2) = (0, α), we get a configuration where the original D3-brane is tilted by
angleα. In stead of going more into the constructional details, below we write down the classical solutio
single D3-brane rotated by an angleα:

ds2 = √
1+X1

{
1

1+X1

(
2dx+ dx− +K(xi)

(
dx+)2

+ [
1+X1 cos2α

][(
dx5)2 + (

dx7)2
]
+ [

1+X1 sin2α
][(

dx6)2 + (
dx8)2

]

+ 2X1 sinα cosα
(
dx7dx8 − dx5dx6)) +

4∑
i=1

(
dxi

)2
}
,

F = ∂1b2(xi) dx
+ ∧ dx1 ∧ dx2 + ∂3b4(xi) dx

+ ∧ dx3 ∧ dx4,

F
(5)
+−68i = − ∂iX1

(1+X1)2
cos2α, F

(5)
+−67i =

∂iX1

(1+X1)2
cosα sinα,

F
(5)
+−57i =

∂iX1

(1+X1)2
sin2α, F

(5)
+−58i = − ∂iX1

(1+X1)2
cosα sinα,

(2.3)e2φ = 1,

andX1 is given by

(2.4)X1(�r ) = 1

2

(
 1

|�r − �r1|
)2

.

Wherer is the radius vector in the transverse space, defined byr2 = ∑4
i=1(x

i)2, r1 is the location of D3-brane an
X1 is the harmonic function in the transverse space. One can easily check that the above ansatz solve type
equations, with✷K(xi) = −(∂ibj )

2 and✷b(xi) = 0.
Next, we present the supergravity solution of a system of two D3-branes oriented at an angleα with respect to

each other. In this case, to start with two D3-branes are parallel to each other and are lying alongx+, x−, x6, x8

directions. By applying anSU(2) rotation as described earlier, the second brane rotated by an angleα, now lies
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alongx+, x−, x5 andx7 directions. The metric, dilaton and the field strengths of such a system is given by:

ds2 = √
1+X

{
1

1+X

(
2dx+ dx− +K(xi)

(
dx+)2 + (1+X2)

[(
dx5)2 + (

dx7)2
]
+ (

dx6)2 + (
dx8)2

+X1

[(
cosα dx5 − sinα dx6)2 + (

cosα dx7 + sinα dx8)2
])

+
4∑

i=1

(
dxi

)2
}
,

F = ∂1b2(xi) dx
1 ∧ dx2 + ∂3b4(xi) dx

3 ∧ dx4,

F
(5)
+−68i = ∂i

{
X2 +X1 cos2α +X1X2 sin2α

(1+X)

}
,

F
(5)
+−58i = −F

(5)
+−67i = ∂i

{
X1 cosα sinα

(1+X)

}
,

(2.5)F
(5)
+−57i = −∂i

{
(X1 +X1X2)sin2α

(1+X)

}
, e2φ = 1,

andX is the harmonic function in the transverse space which is given by

(2.6)X = X1 +X2 +X1X2 sin2α,

where as defined earlier,X1,2 = 1
2

(  1,2
|�r−�r1,2|

)2. Once again we have checked that the above solution solve typ

field equations, with✷K(xi) = −(∂ibj )
2 and✷b(xi) = 0. More D-brane bound states can be obtained by appl

T -duality transformation alongx5, . . . , x8 directions. We would like to point out that the D-brane solutio
presented here are the generalizations of the solutions presented in [15,21]. D-branes in plane wave ba
with nonconstant NS–NS flux can be obtained by applyingS-duality on the above solutions. We, however, w
skip those details. In the next section we will analyze the supersymmetry of these solutions by solving t
Killing spinor equations explicitly.

3. Supersymmetry analysis

The supersymmetry variation of dilatino and gravitino fields of type IIB supergravity in ten dimensions, in
frame, is given by [30,31]:

(3.1)δλ± = 1

2

(
Γ µ∂µφ ∓ 1

12
Γ µνρHµνρ

)
ε± + 1

2
eφ

(
±Γ MF

(1)
M + 1

12
Γ µνρF (3)

µνρ

)
ε∓,

δΨ±
µ =

[
∂µ + 1

4

(
w

µâb̂
∓ 1

2
H

µâb̂

)
Γ âb̂

]
ε±

(3.2)+ 1

8
eφ

[
∓Γ µF (1)

µ − 1

3!Γ
µνρF (3)

µνρ ∓ 1

2 · 5!Γ
µνραβF

(5)
µνραβ

]
Γµε∓,

where we have used(µ, ν,ρ) to describe the ten-dimensional spacetime indices, and hat’s represe
corresponding tangent space indices. Solving the above two equations for the D5-brane solution (2.1)
several conditions on the spinors.

First the dilatino variation gives:

(3.3)Γ âf5,âε± + f
−1/4
5 Γ +̂î ĵ ∂

î
b
ĵ
(xi)ε∓ + 1

3!Γ
âb̂ĉε

âb̂ĉd̂
f5,d̂ ε∓ = 0.
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On the other hand, the gravitino variation (3.2) gives the following conditions on the spinors:

(3.4)δψ±+ ≡ ∂+ε± + 1

4
f

−1/4
5 ∂

î
K(xi)Γ

+̂î ε± − 1

8
f

−1/2
5 Γ +̂î ĵ ∂

î
b
ĵ
(xi)Γ

−̂ε∓ = 0,

(3.5)δψ±− ≡ ∂−ε± = 0,

(3.6)δψ±
i ≡ ∂iε± − 1

8
f

−1/2
5 Γ +̂ĵ k̂∂

ĵ
b
k̂
(xi)δiîΓ

î = 0,

(3.7)δψ±
a ≡ ∂aε± − 1

8

∂af5

f5
ε± − 1

8
Γ +̂î ĵ ∂

î
b
ĵ
(xi)δaâΓ

âε∓ = 0.

In writing the above gravitino variation equations we have made use of the D5-brane supersymmetry cond

(3.8)Γ âε± + 1

3!εâb̂ĉd̂Γ
b̂ĉd̂ ε∓ = 0.

One notices that the supersymmetry condition (3.6), for nonconstantF3: ∂
î
∂
ĵ
b
k̂

�= 0, can be satisfied only i

Γ +̂ε± = 0 [5].
UsingΓ +̂ε± = 0 and the brane supersymmetry condition (3.8), the dilatino variation (3.3) is satisfied. No

supersymmetry condition (3.7) is satisfied for the spinorε±: ε± = exp(−(1/8) lnf5)ε
0±, with ε0± being a function

of x+ only. Sinceε0± is independent ofxi andxa whereas∂
î
b
ĵ

is a function ofxi only, from the gravitino variation
(3.4), one gets the following conditions to have nontrivial solutions:

(3.9)∂
î
bj (xi)Γ

îĵ ε0± = 0

and

(3.10)∂+ε0± = 0.

For the particular case whenF+12 = F+34, Eq. (3.9) gives the following condition with constant spinor,ε0±:

(3.11)Γ 1̂2̂3̂4̂ε0± = ε0±.

Therefore the D5-brane solution (2.1) preserves 1/8 supersymmetry.
Now we analyze the supersymmetry of the system of two D3-branes as presented in (2.5). The dilatino v

gives:

(3.12)Γ +̂î ĵ ∂
î
b
ĵ
(xi)ε∓ = 0.

The gravitino variation gives the following conditions on the spinors to be solved:

δψ±+ ≡ ∂+ε± + 1

4
∂
î

(
(1+X)−1/4K(xi)

)
Γ +̂î − 1

8
∂
î
b
ĵ
(xi)Γ

+̂î ĵ Γ −̂ε∓

∓ 1

8
Γ +̂−̂6̂8̂î

[
(1+X1 sin2α)2∂iX2 + cos2α∂iX1

(1+X)3/2(1+X1 sin2α)

]
Γ +̂ε∓

∓ 1

8
Γ +̂−̂5̂7̂î

[
1

(1+X)5/2

(
1+X1 sin2α

)(
X1

2 cos2α sin2α∂iX2 + (1+X2)
2 sin2α∂iX1

)

− (X1
2 cos2α sin2α)((1 +X1 sin2α)2∂iX2 + cos2α∂iX1)

(1+X)5/2(1+X1 sin2α)

+ 1

(1+X)5/2

(
2X2

1 cos2α sin2α∂iX2 + 2X3
1 cos2α sin4α∂iX1
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discuss
− 2X1(1+X2)cos2α sin2α∂iX1
)]

Γ +̂ε∓

∓ 1

8

{
Γ +̂−̂5̂8̂î − Γ +̂−̂6̂7̂î

(1+X)2(1+X1 sin2α)

}[(−X1 cosα sinα∂iX2

+ (1+X2)sinα cosα∂iX1 −X2
1 sin3α cosα∂iX1

)(
1+X1 sin2α

)
(3.13)+X1 cosα sinα

(
1+X1 sin2α

)2
∂iX2 +X2 cos3α sinα∂iX1

]
Γ +̂ε∓ = 0,

(3.14)δψ±− ≡ ∂−ε± = 0,

(3.15)δψ±
a ≡ ∂aε± − 1

8
(1+X)1/4∂

î
b
ĵ
(xi)Γ

+̂î ĵ Γaε∓ = 0 (a = 5, . . . ,8),

(3.16)δψ±
i ≡ ∂iε± − 1

8

∂iX

(1+X)
ε± − 1

8
(1+X)1/2∂

ĵ
b
k̂
(xi)Γ

+̂ĵ k̂δ
iî
Γ îε∓ = 0.

In writing down the above supersymmetry variations, we have made use of the following conditions [15]:

(3.17)
(
Γ 5̂8̂ − Γ 6̂7̂)ε∓ = 0,

(
Γ 5̂7̂ + Γ 6̂8̂)ε∓ = 0,

(3.18)Γ +̂−̂6̂8̂ε∓ = ε±, Γ +̂−̂5̂7̂ε∓ = ε±.

To explain further, the conditions written in (3.17) comes from the rotation between the two D3-branes and
(3.18) are the D3-brane supersymmetry conditions. It is rather straightforward to conclude the conditions w
Eqs. (3.17) and (3.18) are in fact two independent conditions, thereby breaking 1/4 supersymmetry. As explaine
earlier, Eq. (3.16), for nonconstant∂

ĵ
b
k̂
, can be solved by the spinorε±: ε± = exp(−(1/8) ln(1+ X))ε0±, with ε0±

being a function ofx+, only if:

(3.19)Γ +̂ε± = 0.

Now putting the condition (3.19), the dilatino variation is satisfied. All the gravitino variations are also sa
leaving the following two equations to have nontrivial solutions:

(3.20)∂
î
b
ĵ
(xi)Γ

îĵ ε0∓ = 0,

and

(3.21)∂+ε0± = 0.

Once again for the particular caseF+12 = F+34, Eq. (3.20) gives:(1 − Γ 1̂2̂3̂4̂)ε0∓ = 0 for constant spinor,ε0±.
Therefore the system of D3-branes (2.5) preserves 1/16 supersymmetry [15].

4. Summary and discussion

In this Letter we have constructed various localized D-brane configurations in plane wave spacetim
nonconstant R–R 3-form flux. The supersymmetry of these branes have been analyzed by solving type IIB
spinor equations explicitly. The existence of other Dp-brane(p < 5) solutions in this plane wave spacetim
puts restriction on the localization of the branes and also on the behaviour of functionK(xi) parameterizing
the plane wave spacetime [13,32]. TheH-deformed D-branes can also be constructed following [27,28
Though the nonextremal D-branes admit horizons and known as black branes, this is not in general true
wave spacetime [27,28,34]. One could possibly look at the black brane solutions in this background and
properties of their horizon.
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The worldsheet construction of D5-brane and the corresponding nonlinear sigma model of the bac
considered in this Letter can be found out by referring to the following Green–Schwarz action [5] writ
lightcone gauge and the D5-brane boundary condition:

(4.1)LB = ∂+xi∂−xi − 1

2
m2b2

i + ∂+ya∂−ya,

(4.2)Lf = iθRγ
v∂+θR + iθLγ

v∂−θL − 1

4
im∂ibj (xi)θLγ

vγ ij θR,

(4.3)m ≡ α′pu = ∂±u,
whereθL andθR are the Majorana–Weyl spinors in the left- and right-moving sectors andxi (i = 1, . . . ,4) and
ya (a = 5, . . . ,8) denote the worldvolume and transverse directions of the D5-brane, respectively. The plan
background with nonconstant R–R flux can also be parametrized by holomorphic function on the worldsh
So it is useful to analyze the interacting Lagrangian in the presence of these nonperturbative objects. The c
of consistent D-brane which were obtained in [6] are expected to be different in the present case because
transverse space. So an interesting exercise will be to obtain all the consistent D-branes of [6]. That would
tell us about the integrability structure of the worldsheet theory in the presence of branes, if it works out
in a more general background. A systematic classification of all supersymmetric D-branes from world
point of view is also needed. Finally, it would really be nice to find out the holographic dual of these plane
backgrounds in the presence of branes. We hope to come back to these issues in future.
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