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a b s t r a c t

We present two global existence results for an initial value problem associated to a
large class of fractional differential equations. Our approach differs substantially from
the techniques employed in the recent literature. By introducing an easily verifiable
hypothesis, we allow for immediate applications of a general comparison type result
from [V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations,
Nonlinear Anal. TMA 69 (2008), 2677–2682].
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1. Introduction

Fractional calculus is a powerful tool which plays an important role in the modeling of multi-scale problems. Fractional
calculus has been found appropriate to describe the dynamics of complex systems in several branches of science and
engineering.
The generalization of differential calculus to non-integer orders of derivatives can be traced back to Leibniz [1–3].

However, the initial data (given also in a fractional order frame) in the initial value problems involving fractional differential
operators are of amore delicate nature and their physicalmeaning is not yet fully understood [4, p. 230], [3, p. 80]. Therefore,
the incorporation of classical derivatives (of integer order) of the initial data in the fractional differential operator was
suggested by many authors [5–7]. In this spirit, consider the initial value problem{

Da0(x− x0)(t) = f (t, x(t)), t > 0,
x(0) = x0,

(1)

where the nonlinearity f : R+ × R→ R is assumed continuous. Here, R+ has its usual meaning of nonnegative semi-axis.
Important recent investigations regarding these types of problems, its applications and various generalizations can be read
in [8–13].
The differential operator Da0 in (1) is the Riemann–Liouville differential operator of order 0 < a < 1, namely

Da0x(t) =
1

0(1− a)
·
d
dt

[∫ t

0

x(s)
(t − s)a

ds
]
,

where 0(1− a) =
∫
+∞

0 e−t t−adt is the Gamma function.
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Assuming that the initial value problem has a solution x(t), the formulas 0(a)0(1− a) = π
sinπa and∫ t

0
f (s, x(s))ds =

sinπa
π

∫ t

0

1
(t − s)a

∫ s

0

f (τ , x(τ ))
(s− τ)1−a

dτds,

see [14, p. 196], allow us to rewrite (1) via an integration as∫ t

0

1
0(1− a)(t − s)a

[
x(s)− x0 −

1
0(a)

∫ s

0

f (τ , x(τ ))
(s− τ)1−a

dτ
]
ds = 0, (2)

where t > 0.
In obvious accordance with formula (2), we are interested here in the solutions of (1) in the sense of [5–7], that is, the

continuous functions x(t)which satisfy the singular integral equation

x(t) = x0 +
1

0(a)

∫ t

0

f (s, x(s))
(t − s)1−a

ds, t ≥ 0. (3)

The fractional calculus mathematical models appear in connection with the self-similar dynamics in complex systems.
In the paper [15] a detailed discussion of this topic is made. Various applications, like in the reaction kinetics of proteins, the
anomalous electron transport in amorphous materials, the dielectrical or mechanical relaxation of polymers, the modeling
of glass-forming liquids and others, are successfully performed in numerous papers. See the presentations from [16,3].
Several recent advancements in the theory and applications of non-integer differentiation and integration are described

in [17]. For instance, fractional Lagrangian and Hamiltonian treatments of the field andmechanical systems are proposed by
Băleanu andMuslih in [17, p. 115 and following]. Other results concerning the promising new theory of fractional variational
principles can be found in the contributions by [18–30].
In two very recent contributions [31,32], Lakshmikantham and Vatsala investigated the existence theory of (3) and

its delay integral equation counterpart by means of integral inequalities and perturbation techniques. A Peano type local
existence theorem has been established and also a comparison principle for global existence was presented.

Theorem 1 (Comparison Principle, [31]). Assume that there exists the function g : R+ × R+ → R+ continuous and
nondecreasing with respect to the second argument such that

|f (t, x)| ≤ g(t, |x|) for all t ≥ 0, x ∈ R.

If the maximal solution of the initial value problem{
Da0(u− u0)(t) = g(t, u(t)), t > 0,
u(0) = u0,

(4)

exists in R+ then all the solutions of (1) with |x0| ≤ u0 exist in R+.

The existence and uniqueness theory of solutions to initial value problems for fractional differential operators of various
orders is discussed in [3,4]. As the authors [4, p. 232] explain, there should be a great interest in studying such a qualitative
theory in the case 0 < a < 1. To emphasize this, recall that the solution x(t) to the initial value problem for a general
fractional differential equation (with Miller–Ross sequential fractional derivatives)

0D
σn
t u = f (t, u)

and [
0D

αn−1
t 0D

αn−1
t · · · 0D

α1
t u(t)

]
t=0
= ak, k = 1, n,

where σk =
∑k
i=1 αi, k ≤ n and αi ∈ (0, 1], satisfies the singular integral equation

x(t) =
n∑
i=1

aitσi−1

0(σi)
+

1
0(σn)

∫ t

0
(t − τ)σn−1f (s, x(s))ds,

see [3, p. 127–128].
For a connectionwith some applications see, for instance, [16, p. 7180]. In [16], the fractional orders have the significance

of introducing memory in the physical processes (memory of stress and strain). It is interesting to note that the Peano type
result for fractional differential equations from [31, Theorem 3.1] has been proved by means of the memory-like procedure
of Tonelli [33, p. 23].
The asymptotic behavior of solutions to fractional differential equations has been studied in [15] in the case of the linear

fractional differential equation

τ−a0 D
a
0 [Φ(t)]+ Φ(t)− Φ(0) = 0.
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The solutions were expressed using a Mittag–Leffler transcendental function of order a

Φ(t) = Φ(0)Ea

(
−

(
t
τ0

)a)
,

see [15, p. 49]. In this way, Φ(t) ∼ t−a as the time t increases indefinitely. Several improvements in integrating linear
fractional differential equations of various orders are proposed by Bonilla, Rivero and Trujillo in [17, pp. 77 and following].
The special formula of the Riemann–Liouville differential operator produces a lot of complications when one tries to

mimic the proof of the fundamental results from the existence, uniqueness and asymptotic integration theory of ordinary
differential equations. They have been bypassed only recently using delicate machineries like the generalized Banach Fixed
Point Theoremdue toWeissinger [34], theMittag–Leffler transcendental functions theory [35] or the exponentiallyweighted
Chebyshev norms theory due to Bielecki [36].
Our aim here is to complete the conclusions of Theorem 1 by establishing two results of global existence for (3).

2. Main results

Theorem 2. Assume that there exists the continuous function F : R+ → R+ such that

|f (t, x)− f (t, y)| ≤ F(t)|x− y|

for all t ≥ 0, x, y ∈ R. Then the integral equation (3) has a unique solution defined in R+.

This theorem is a fundamental in the case of ordinary differential equations (a = 1). The book by Kartsatos [37], aswell as
many othermonographs devoted to the qualitative theory of ordinary differential equations, contains a detailed presentation
of the typical proof. This consists of the introduction of a complete metric space endowed with an exponentially weighted
metric (the Bielecki metric), followed by a verification of the claim that a certain integral operator acting on themetric space
is a contraction. The metric space is given by families of continuous functions defined on a bounded interval of arbitrary
length. This is the key feature which allows one to say that a solution of (3)whose existence can be established on any compact
subinterval of R+ exists, naturally, throughout R+.
In his rapid demonstration of the Picard–Lindelöf theorem of existence and uniqueness of the solution to a Cauchy

problem, Brezis [38] shows how a prospective study of the growth of a solution to (3) leads to establishing the existence
of solutions throughout R+ at once, that is, without the unpleasant artifice of bringing into the study the arbitrarily long
compact subintervals of R+. His proof, however, regarded a particular case of the nonlinearity f (t, x). The trick needed
in the general circumstances is more involved and it will be given in the following in the unifying context of the integral
equation (3).
The second result deals with prescribed growth of solutions to the fractional differential equations.

Theorem 3. Assume that the function g from Theorem 1 verifies throughout R+ the inequality

g(t, u(t)) ≤ Ket − ε0,

where K ≥ ε0 > 0 are fixed, for all the continuous functions u : R+ → R+ subjected to

u(t) ≤ Let , t ≥ 0,

for a certain L such that

L ≥ |x0| +
K
a0(a)

(
1+

∫
+∞

0

sa

es
ds
)
.

Then the maximal solution of (4) is defined throughout R+ and the integral equation (3) has a solution in R+ which behaves as
O(et) when t increases indefinitely.

3. Proofs

Proof of Theorem 2. Introduce the continuous functions

h(t) = 1+ |x0| +
1

0(a)

∫ t

0

|f (s, x0)|
(t − s)1−a

ds

and

Hλ(t) = h(t) exp
(
t +

λ

q

∫ t

0
[h(s)F(s)]qds

)
, t ≥ 0,

for a fixed λ > 0. Here, q is taken such that 1p +
1
q = 1 and 1 < p < min

{ 1
a ,

1
1−a

}
.
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Introduce the complete metric spaceX = (X, dλ), where X is the set of all elements of C(R+,R) that behave as O(Hλ(t))
when t goes to +∞ and dλ(x, y) = supt≥0

{
|x(t)−y(t)|
Hλ(t)

}
for any x, y ∈ X . Since Hλ(t) ≥ 1, all the constant functions belong

to X .
Given the operator T : X→ C(R+,R)with the formula

(Tx)(t) = x0 +
1

0(a)

∫ t

0

f (s, x(s))
(t − s)1−a

ds,

we have the following estimates

|(Tx)(t)− (Ty)(t)| ≤
1

0(a)

∫ t

0

F(s)
(t − s)1−a

|x(s)− y(s)|ds

=
1

0(a)

∫ t

0

es

(t − s)1−a
· F(s)

|x(s)− y(s)|
es

ds

≤ I(t) · J(x, y)(t),

where (notice that 1− a− 1
p =

1
q − a)

I(t) =
1

0(a)

(∫ t

0
(t − s)p(a−1)epsds

) 1
p

=
1

0(a)

(∫ t

0
sp(a−1)ep(t−s)ds

) 1
p

=
et

0(a)

(∫ pt

0

(
s
p

)p(a−1)
e−s ·

ds
p

) 1
p

≤
et

0(a)
· p

1
q−a0(1− p(1− a))

= c(a, p) · et

and (recall that h(t) ≥ 1)

J(x, y)(t) =
(∫ t

0
[F(s)]q ·

|x(s)− y(s)|q

esq
ds
) 1
q

=

(∫ t

0

d
ds

(
exp

(
λ
∫ s
0 [h(τ )F(τ )]

qdτ
)

λ

)(
|x(s)− y(s)|
Hλ(s)

)q
ds

) 1
q

≤

(∫ t

0

d
ds

(
exp

(
λ
∫ s
0 [h(τ )F(τ )]

qdτ
)

λ

)
ds

) 1
q

dλ(x, y)

≤ λ
−
1
q ·
Hλ(t)
et
· dλ(x, y).

By combining these estimates, we infer that

dλ(Tx, Ty) ≤ c(a, p)λ
−
1
q · dλ(x, y) for all x, y ∈ X .

The formula is valid only if we establish that Tx ∈ X whenever x ∈ X . This follows from the next estimates

|(Tx)(t)| ≤ |(Tx)(t)− (Tx0)(t)| + |(Tx0)(t)|

≤ c(a, p)λ−
1
q Hλ(t) · dλ(x, x0)+ h(t)

≤ Hλ(t) · (c(a, p)λ
−
1
q dλ(x, x0)+ 1)

= O(Hλ(t)) as t →+∞.

In conclusion, the operator T : X→ X is a contraction for every λ > [c(a, p)]q. Its unique fixed point is the solution of
(3) with (global) existence in the future. �

Proof of Theorem 3. We start by showing that the integral equation

u(t) = |x0| + ε +
1

0(a)

∫ t

0

g(s, u(s))+ ε
(t − s)1−a

ds, ε ∈ (0, ε0],

has a solution u(t; ε) defined in R+.
Consider the set U = {u ∈ C(R+,R) : 0 ≤ u(t) ≤ Let for all t ≥ 0}. A partial order on U is given by the usual pointwise

order ‘‘≤’’, that is, we say that u1 ≤ u2 if and only if u1(t) ≤ u2(t) for all t ≥ 0, where u1, u2 ∈ U .
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Introduce the operator T : U → C(R+,R) by the formula

(Tu)(t) = |x0| + ε +
1

0(a)

∫ t

0

g(s, u(s))+ ε
(t − s)1−a

ds.

We have the next estimates

0 ≤ (Tu)(t) ≤ |x0| +
K
0(a)

∫ t

0
(t − s)a−1esds

and ∫ t

0
(t − s)a−1esds =

∫ t

0
sa−1et−sds =

ta

a
+
et

a

∫ t

0

sa

es
ds

≤ (L− |x0|)
0(a)
K
· et

which lead to Tu ∈ U whenever u ∈ U .
Since g is nondecreasing with respect to the second argument, the application T is isotone, that is, Tu1 ≤ Tu2 whenever

u1 ≤ u2, and it satisfies 0 ≤ T (0). By application of the Knaster–Tarski fixed point theorem [39, p. 14], T has a fixed point in
U , denoted u(·; ε).
Two properties of the family (u(·; ε))ε∈(0,ε0] must be established now. The first is that u(·; ε1) < u(·; ε2) whenever

ε1 < ε2. The second property claims that the family is relatively compact in C(I,R) for any compact interval I ⊂ R+.
To prove the first property, introduce ε3 =

ε1+ε2
2 and the integral operator Vε3 : C(R+,R) → C(R+,R) given by the

formula

(Vε3u)(t) = |x0| + ε3 +
1

0(a)

∫ t

0

g(s, u(s))+ ε3
(t − s)1−a

ds.

We have the next estimates

u(0; ε1) = (Tu(·; ε1))(0) = |x0| + ε1 < u(0; ε2)

and

u(t; ε1) = (Tu(·; ε1))(t) < (Vε3u(·; ε1))(t), t ≥ t0,

and

u(t; ε2) > (Vε3u(·; ε2))(t), t ≥ t0.

According to [31, Theorem 2.1], we conclude that u(t; ε1) < u(t; ε2) throughout R+.
To prove the second property, set I = [0, t0] for a certain t0 > 0. Fix also t1 ≤ t2 from I . We have the following estimates

|u(t2; ε)− u(t1; ε)| ≤
1

0(a)

∫ t1

0

[
(t1 − s)a−1 − (t2 − s)a−1

]
g(s, u(s; ε))ds

+
ε

0(a)

∫ t1

0

[
(t1 − s)a−1 − (t2 − s)a−1

]
ds+

1
0(a)

∫ t2

t1
(t2 − s)a−1[g(s, u(s; ε))+ ε]ds

≤
1

0(a)

∫ t1

0

[
(t1 − s)a−1 − (t2 − s)a−1

]
(Kes)ds+

1
0(a)

∫ t2

t1
(t2 − s)a−1(Kes)ds

≤
Ket0

0(a+ 1)
[2(t2 − t1)a + ta1 − t

a
2]

≤
2Ket0

0(a+ 1)
(t2 − t1)a.

This establishes the equicontinuity of the family in C(I,R). As a subset of U , the family is locally uniformly bounded which
means that it satisfies all the requirements of the Ascoli–Arzelà theorem [37]. We thus conclude the proof of the second
property.
Fix now the increasing sequence (tn)n≥0 from R+ such that limn→+∞ tn = +∞. The family (un(·; ε))ε∈(0,ε0], where

un(t; ε) = u(t; ε), t ∈ In = [0, tn],

is relatively compact in C(In,R). This means that there exists a sequence of functions un(·; εnm)m≥1 which converges
uniformly to the function un ∈ C(In,R) that verifies the integral equation

un(t) = |x0| +
1

0(a)

∫ t

0

g(s, un(s))
(t − s)1−a

ds, t ∈ In.
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The first property of the family (u(·; ε))ε∈(0,ε0] helps improving this conclusion:

lim
ε↘0
u(·; ε) = un uniformly in In. (5)

Formula (5) implies that the function un+1 is the extension to In+1 of the function un. The function u ∈ C(R+,R) given
by the formula

u(t) = un(t), t ∈ In, n ≥ 1, (6)

is thus a solution in R+ of problem (4) for u0 = |x0|.
We claim that u from (6) is actually the maximal solution of (4). To see this, consider another solution, denoted v. Then,

on any In, we have the estimates

v(0) = |x0| < u(0; εnm)

and

v(t) < (Vεnmv)(t), t ∈ In.

Since

u(t; εnm) = (Vεnmu(·; ε
n
m))(t), t ∈ In,

we conclude, via [31, Theorem 2.1], that

v(t) < u(t; εnm), t ∈ In,

and further, taking into account (5),

v(t) ≤ u(t), t ∈ In.

The claim is established.
The conclusion of Theorem 3 now follows from Theorem 1. �
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