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Abstract

We consider a multiobjective program with inequality and equality constraints and a set
constraint. The equality constraints are Fréchet differentiable and the objective function
and the inequality constraints are locally Lipschitz. Within this context, a Lyusternik type
theorem is extended, establishing afterwards both Fritz–John and Kuhn–Tucker necessary
conditions for Pareto optimality. 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this work we consider the next multiobjective program:

(P) Minf (x)

subject tog(x) � 0, h(x) = 0, x ∈ Q,

wheref,g,h are functions fromR
n to R

p , R
m andR

r , respectively, andQ is
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a nonempty subset ofRn. We suppose thatf andg are locally Lipschitz,h is
Fréchet differentiable and Min is meant in Pareto’s sense.

During the last two decades, a lot of works have been dedicated to the study
of several constraint qualifications that allow establishing necessary conditions of
Kuhn–Tucker type. For the case of differentiable programs, see for instance, the
book of Bazaraa and Shetty [1] or the papers of Singh [2], Di [3] or Jiménez and
Novo [4].

At the same time, since the introduction by F.H. Clarke, in 1972, of the
concept of generalized gradient for locally Lipschitz functions and the subsequent
development of this theory (see Clarke [5]), constraint qualifications for programs
with Lipschitz conditions has been an important subject of study, as is shown
in the works of Clarke [6], Hiriart-Urruty [7,8], Minami [9], Ishizuka and
Shimizu [10], Craven [11–13], Jourani [14], Wang, Dong and Liu [15] or
Mititelu [16,17].

However, in most of these papers, equality constraints are not considered
(Ishizuka and Shimizu, Wang, Dong and Liu) and, in those in which they
are considered, the constraint qualifications are mostly restrictive (Clarke,
Mititelu).

In this paper we consider equality constraints defined by Fréchet differentiable
functions (not necessaryC1 nor locally Lipschitz), together with inequality
constraints and a set constraint. The work is structured as follows: Section 2 is
devoted to notations, definitions and some of the previous results we are going
to use. In Section 3 we obtain a result that can be considered as an extension
of Lyusternik theorem within this context (see, for instance, Jahn [18]). This
classical theorem establishes, under suitable conditions, different equality or
content relationships between the contingent cone (or Bouligand cone) to a set
defined by equality constraints and the linearized cone to the feasible set, a
result that is basic for obtaining optimality conditions. In Section 4 we obtain,
from this extension, both Fritz–John and Kuhn–Tucker optimality conditions for
program (P) whenQ is a convex set and, in Section 5, whenQ is an arbitrary
set. Finally, in Section 6 we make some final remarks that allow us to extend
the class of functions to which the obtained results are applicable and also to
use other generalized derivatives such as the Michel–Penot or the deconvolution
of the upper Hadamard derivative and its corresponding (small convex-valued)
subdifferentials instead of the Clarke’s derivative and subdifferential.

2. Notations and preliminaries

Let S be a subset ofRn. As usual, clS, intS, riS, coneS and linS, denote
closure, interior, relative interior, generated cone and subspace generated byS,
respectively. Letx andy be two points ofRn, then we will writex � y if xi � yi ,
i = 1, . . . , n andx < y if xi < yi , i = 1, . . . , n.
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We are going to use the following tangent cones toS at x0 ∈ clS:

(a) The contingent cone is

T (S, x0) = {
v ∈ R

n: ∃tk > 0, ∃xk ∈ S, xk → x0 such that

tk(xk − x0) → v
}
.

(b) The cone of attainable directions is

A(S,x0) =
{
v ∈ R

n: ∃δ > 0, ∃γ : [0, δ] → R
n, such that

γ (0) = x0, γ (t) ∈ S ∀t ∈ (0, δ],
γ ′(0) = lim

t→0+
γ (t)− γ (0)

t
= v

}
.

(c) The cone of linear directions is

Z(S,x0) = {
v ∈ R

n: ∃δ > 0 such thatx0 + tv ∈ S ∀t ∈ (0, δ]}.
The polar cone toD ⊂ R

n is D∗ = {v ∈ R
n: 〈v, d〉 � 0 ∀d ∈ D}, and the

normal cone toS at x0 is the polar of the contingent cone:N(S,x0) = T (S, x0)
∗.

WhenS is a convex set we haveT (S, x0) = cl cone(S − x0) andN(S,x0) = {v ∈
R

n: 〈v, x − x0〉 � 0 ∀x ∈ S}.
Let f :Rn → R, x0, v ∈ R

n. We consider the next generalized directional
derivatives off at x0 in the directionv:

Df (x0, v) = lim sup
t→0+

f (x0 + tv) − f (x0)

t
,

d̄f (x0, v) = lim sup
(t,u)→(0+,v)

f (x0 + tu) − f (x0)

t
,

d0f (x0, v) = lim sup
(x,t)→(x0,0+)

f (x + tv) − f (x)

t
.

The first one is the upper Dini derivative, the second one is the upper Hadamard
derivative and the third one is the Clarke derivative.

If f is locally Lipschitz, the Clarke subdifferential off at x0 is the set

∂Clf (x0) = {
ξ ∈ R

n: 〈ξ, v〉 � d0f (x0, v) ∀v ∈ R
n
}
.

If f is convex, then we denote by∂f (x0) the subdifferential of Convex Analysis
and, iff is Fréchet differentiable,∇f (x0) denotes the differential off at x0.

Given the program

Min{f (x): x ∈ M},
wheref :Rn → R

p andM ⊂ R
n, a pointx0 ∈ M is said to be a weak Pareto

minimum, denoted byx0 ∈ WMin(f,M), if there exists nox ∈ M such that
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f (x) < f (x0). The usual concept of weak local Pareto minimum, for which the
previous condition is required on a neighborhood of the point is also used. It is
denoted byx0 ∈ WLMin(f,M).

In order to simplify the notations, the following sets are defined for the initial
program (P):

G = {
x ∈ R

n: g(x) � 0
}
, H = {

x ∈ R
n: h(x)= 0

}
,

S = {
x ∈ R

n: g(x) � 0, h(x) = 0
}
,

so thatS = G∩H and the feasible set of (P) isM = S ∩ Q.
Let fi , i ∈ I = {1, . . . , p}, gj , j ∈ J = {1, . . . ,m}, hk , k ∈ K = {1, . . . , r}

the components functions off , g and h, respectively, and, givenx0 ∈ S, let
J0 = {j ∈ J : gj (x0) = 0} the set of active indexes atx0.

We will suppose thatf andg are locally Lipschitz andh is continuous on a
neighborhood ofx0 and Fréchet differentiable atx0. The cones that will be used
to approximateS at x0 are the natural extension to this context of the linearized
cones:

C0(S, x0) = {
v ∈ R

n: d0gj (x0, v) < 0, ∀j ∈ J0; ∇hk(x0)v = 0, ∀k ∈ K
}
,

C(S, x0) = {
v ∈ R

n: d0gj (x0, v) � 0, ∀j ∈ J0; ∇hk(x0)v = 0, ∀k ∈ K
}
.

We denoteF = {x ∈ R
n: f (x) � f (x0)} andK(H) = Ker∇h(x0). The setsG

andF are defined by inequality constraints, and the conesC0(G), C(G), C0(F )

andC(F) can be defined analogously, obtaining thatC0(S) = C0(G) ∩ K(H)

andC(S) = C(G) ∩ K(H). (We omit the pointx0 in the notation for shortness
reasons.)

Let Q ⊂ R
n be a convex set. Let us denote cone+ Q = {v ∈ R

n: ∃λ > 0,
∃x ∈ Q, v = λx}. Obviously, if 0∈ Q then cone+ Q = coneQ and if 0 /∈ Q then
cone+ Q = coneQ\{0}. This cone allows to express the relative interior of the
cone generated by a convex set as follows (see Rockafellar [19, Corollary 6.8.1]).

Lemma 2.1. If Q is a nonempty convex set, thenri coneQ = cone+ ri Q.

3. An extension of a Lyusternik type theorem

In this section we obtain our main result (Theorem 3.2) that can be considered
as an extension of the classical Lyusternik theorem within this context. To prove
it, two previous Lemmas 3.1 and 3.3 are required.

Lemma 3.1. Let Q ⊂ R
n be a convex set,x0 ∈ S ∩ Q, h :Rn → R

r Fréchet
differentiable atx0 andg :Rn → R

m Lipschitz nearx0. If

C0(S)∩ ri cone(Q− x0) �= ∅ (1)
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then

cl
[
C0(S)∩ ri cone(Q− x0)

] = C(S) ∩ T (Q,x0).

Proof. To prove this result, we just need to note thatC0(S) is a convex cone,
a relative open ofK(H), whose closure isC(S) and apply Theorem 6.5 in
Rockafellar [19] taking into account that cl cone(Q − x0) = T (Q,x0), because
of the convexity ofQ. ✷

Note that if we apply Lemma 2.1, sinceC0(S) is a cone, condition (1) is
equivalent to

C0(S) ∩ ri(Q− x0) �= ∅.

Theorem 3.2. Let us suppose the following:

(a) h :Rn → R
r is continuous on a neighborhood ofx0 and Fréchet differentiable

at x0.
(b) Q ⊂ R

n is a convex set andx0 ∈ H ∩Q.
(c) The regularity condition

(RC) 0∈
r∑

k=1

vk∇hk(x0)+N(Q,x0) ⇒ v = 0

holds.

Then

cl
[
K(H)∩ cone(Q − x0)

] =A(H ∩ Q,x0) = T (H ∩ Q,x0)

=K(H)∩ T (Q,x0).

Lemma 3.3. If (RC) holds, thenK(H)∩ ri(Q− x0) �= ∅.

Proof. Let us suppose thatK(H) ∩ ri(Q − x0) = ∅. By the separation theorem,
there existu ∈ R

n\{0} andα ∈ R such that

〈u,x − x0〉 � α � 〈u,y〉, ∀x ∈ Q, ∀y ∈ K(H). (2)

As x = x0 ∈ Q andy = 0 ∈ K(H), we have thatα = 0. Thereforeu ∈ N(Q,x0)

and,

−u ∈ K(H)∗ = lin
{∇hk(x0): k ∈ K

}
,

consequently−u = ∑r
k=1 vk∇hk(x0). From the hypothesis it follows thatv = 0,

thusu = 0, that is a contradiction.✷
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Proof of Theorem 3.2. Firstly, let us see that

K(H)∩ ri cone(Q − x0) ⊂ A(H ∩ Q,x0). (3)

For this, it is enough to prove that

K(H)∩ ri(Q − x0) ⊂ A(H ∩ Q,x0), (4)

because ifw ∈ K(H)∩ ri cone(Q−x0), using Lemma 2.1, we obtain thatw = λv

with λ > 0 andv ∈ ri(Q−x0). If (4) is true,v ∈ A(H ∩Q,x0) and, consequently,
w ∈ A(H ∩Q,x0).

Let us see that (4) is verified. In fact, letv ∈ K(H)∩ ri(Q − x0) and letV be
the smallest affine variety containingQ.

If dim V = n − l, thenV is intersection ofl hyperplanesMj , j = 1, . . . , l,
V = ⋂l

j=1Mj , defined byMj = {x ∈ R
n: 〈cj , x − x0〉 = 0}, beingc1, . . . , cl

linearly independent. Let us see that∇h1(x0), . . . ,∇hr(x0), c1, . . . , cl are linearly
independent. Suppose that

r∑
k=1

vk∇hk(x0)+
l∑

j=1

λj cj = 0.

SinceQ ⊂ V it follows thatN(V,x0) ⊂ N(Q,x0), butN(V,x0) = lin{c1, . . . , cl},
hence

l∑
j=1

λjcj ∈ N(Q,x0)

and, by (RC), we deduce thatv = 0. Because of the linear independence of
c1, . . . , cl , we have thatλ = 0.

Let h̃ :Rn → R
r+l defined byh̃(x) = (h1(x), . . . , hr (x), 〈c1, x − x0〉, . . . , 〈cl,

x − x0〉) and let us consider the system

h̃(x) = h̃(x0)+ t∇h̃(x0)v. (5)

Sinceh̃ is continuous on a neighborhood ofx0 and Fréchet differentiable atx0
with maximal rank Jacobian, from Theorem 5.3, Chapter 3, in Hestenes [20], the
system (5) has a solution

x = γ (t), −δ � t � δ such thatγ (0)= x0 andγ ′(0) = v. (6)

Taking into account the firstr components of (5),̃h(x0) = 0 and∇h̃(x0)v = 0
(sincev ∈ K(H), v ∈ Q − x0 ⊂ T (Q,x0) and±cj ∈ N(Q,x0) = T (Q,x0)

∗), it
follows h(γ (t)) = 0,∀t ∈ [−δ, δ]. Considering the lastl components,〈

cj , γ (t) − x0
〉 = 0, ∀t ∈ [−δ, δ], j = 1, . . . , l.

Therefore,γ (t) ∈ V . Let us see thatγ (t) ∈ Q. Let α(t) = (γ (t) − x0 − tv)/t ,
henceγ (t) = x0+ t (v+α(t)), and by (6), limt→0+ α(t) = 0. Sincev ∈ ri(Q−x0),
we havev = q0 − x0 with q0 ∈ ri Q ⊂ V and, sinceγ (t) ∈ V , it follows that

α(t) = t−1(γ (t) − x0
) − (q0 − x0) ∈ V − x0
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becauseV − x0 is a linear subspace. Sinceq0 ∈ ri Q, there existsε > 0 such
thatB(q0, ε) ∩ V ⊂ Q. Since limt→0+(x0 + v + α(t)) = q0 andx0 + v + α(t) =
q0 + α(t) ∈ V , for t small enough,x0 + v + α(t) ∈ B(q0, ε) ∩ V ⊂ Q. Thus for
t > 0 small enough, by convexity,γ (t) = (1− t)x0+ t (x0 + v+α(t)) ∈ Q. Then,
γ (t) ∈ H ∩ Q, for all t > 0 small enough and, consequently,v ∈ A(H ∩Q,x0).

If dim V = n, that is, if intQ �= ∅, thenV = R
n and we do not need any

hyperplane, because in this case it is enough to defineh̃ = h and the solution
x = γ (t) verifiesγ (t) ∈ V . The above deduction ofγ (t) ∈ Q is valid, if riQ is
replaced by intQ.

Secondly, we prove the conclusion of theorem. From (RC), by Lemma 3.3 it
follows thatK(H) ∩ ri(Q − x0) �= ∅, and sinceK(H) is a cone, by Lemma 2.1
the above condition is equivalent toK(H) ∩ ri cone(Q − x0) �= ∅, obtaining, by
Lemma 3.1, that

cl
[
K(H)∩ cone(Q − x0)

] = cl
[
K(H)∩ ri cone(Q− x0)

]
=K(H)∩ T (Q,x0). (7)

On the other hand,

A(H ∩ Q,x0) ⊂ T (H ∩ Q,x0) ⊂ T (H,x0)∩ T (Q,x0)

⊂K(H)∩ T (Q,x0). (8)

Finally, taking closure in (3) and taking into account (7), (8) and that the cone of
attainable directions is closed, we have the conclusion.✷

Di [3] supposes thatQ is a closed convex set and only obtains the expression
T (H ∩Q,x0) = K(H)∩T (Q,x0) for the contingent cone. Our result is stronger.

Remark 3.4.
(1) Note that ifQ = R

n andh is of classC1 on a neighborhood ofx0 with
maximal rank Jacobian, this theorem becomes the Lyusternik theorem (see, for
instance, Jahn [18, Theorems 4.21 and 4.22]), it expresses:

K(H)= T (H,x0).

(2) If (RC) is not verified, the conclusion of theorem may be false as the next
simple example shows: inR2, takingh(x, y) = y − x2 andQ = {(x, y): y = 0}.

(3) According to the proof of this theorem, (RC) implies that the gradients
∇h1(x0), . . . ,∇hr(x0) are linearly independent.

(4) In the particular case that the convexQ has nonempty interior, we get the
next sufficient condition for (RC).

If K(H) ∩ int(Q − x0) �= ∅ and∇h1(x0), . . . ,∇hr(x0) are linearly indepen-
dent, then (RC) holds.
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In fact, let

0=
r∑

k=1

vk∇hk(x0)+ d,

with d ∈ N(Q,x0) and let us take

u ∈ K(H)∩ int(Q− x0).

Multiplying the above equality byu, it follows that 〈d,u〉 = 0. Now, for λ > 0
small enough we have thatu ± λd ∈ Q − x0 and consequently,〈d,u ± λd〉 � 0,
hence±λ〈d, d〉 � 0, following 〈d, d〉 = 0, it meansd = 0. Therefore,

0=
r∑

k=1

vk∇hk(x0),

and because of the linear independence of gradients, we havev = 0.
(5) The regularity condition (RC) has been used by many authors, see for

example Rockafellar [21, p. 198].

4. Necessary optimality conditions with a convex set constraint

Necessary optimality conditions, both Fritz–John and Kuhn–Tucker type, for
the problem (P) are obtained in this section. First of all, two theorems analyzing
different relationship among the used conical approximation are given. We will
suppose throughout the section thatQ is a convex set.

Theorem 4.1. Letx0 ∈ S ∩ Q and assume the following:

(a) h :Rn → R
r is continuous on a neighborhood ofx0 and Fréchet differentiable

at x0.
(b) The regularity condition(RC)holds.
(c) g :Rn → R

m is Lipschitz nearx0.

Then

C0(S)∩ cone(Q − x0) ⊂ A(S ∩Q,x0).

Proof. Let v ∈ C0(S) ∩ cone(Q − x0) = C0(G) ∩ K(H) ∩ cone(Q − x0). Then
v ∈ K(H)∩ cone(Q− x0) and by Theorem 3.2,v ∈ A(H ∩Q,x0). Hence, there
exist δ > 0 and a functionγ : [0, δ] → R

n such thatγ (0) = x0, γ
′(0) = v and

γ (t) ∈ H ∩Q, ∀t ∈ [0, δ]. Let us see thatγ (t) ∈ G for t small enough, following
thatγ (t) ∈ S ∩ Q and, consequently,v ∈ A(S ∩ Q,x0).

Becausegj is Lipschitz nearx0, we obtain thatd̄gj (x0, v) = Dgj (x0, v)

(Glover and Jeyakumar [22, Proposition 2.1]) and because upper Dini derivative is
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less than Clarke derivative or equal to it, we have thatd̄gj (x0, v) � d0gj (x0, v) <

0, ∀j ∈ J0, v ∈ C0(G). Therefore, taking into account thatgj (x0) = 0, by
Proposition 4.2.10 in Flett [23],

lim sup
t→0+

gj (γ (t))

t
� d̄gj (x0, v) < 0, ∀j ∈ J0.

Then, there existδj ∈ (0, δ] for j ∈ J0 such thatgj (γ (t)) < 0, ∀t ∈ (0, δj ). For
eachj ∈ J\J0, due to the continuity ofgj at x0 and ofγ at t = 0, there exists
δj > 0 such thatgj (γ (t)) < 0, ∀t ∈ [0, δj ). Taking δ0 = Min{δj : j ∈ J }, we
obtaingj (γ (t)) < 0, ∀t ∈ (0, δ0) and∀j ∈ J ; subsequently,γ (t) ∈ G. ✷

If there is no equality constraint, the proof of Theorem 4.1 is not valid, because
it is based on the existence of solution of system (5). Therefore, next we give an
analogous theorem and a straightforward proof in this case.

Theorem 4.2. Let x0 ∈ G ∩ Q and let us suppose thatg :Rn → R
m is Lipschitz

nearx0, then

(i) C0(G)∩ cone(Q− x0) ⊂ Z(G∩Q,x0) ⊂ A(G∩ Q,x0).
(ii) Besides, if the constraint qualification

(CQ1):C0(G)∩ (Q− x0) �= ∅
is true, then we have that

cl
[
C0(G)∩ cone(Q− x0)

]
= C(G)∩ T (Q,x0) ⊂ clZ(G∩Q,x0) ⊂ A(G∩ Q,x0).

Proof. (i) First of all, let us see that

C0(G) ⊂ Z(G,x0). (9)

Let v ∈ C0(G). Thend0gj (x0, v) < 0, ∀j ∈ J0, and hence,Dgj (x0, v) < 0.
This means that

lim sup
t→0+

gj (x0 + tv) − gj (x0)

t
< 0, ∀j ∈ J0,

therefore existsεj > 0 such that

sup
t∈(0,εj)

gj (x0 + tv) − gj (x0)

t
< 0.

Taking into account thatgj (x0) = 0, it follows thatgj (x0 + tv) < 0, ∀t ∈ (0, εj )
and∀j ∈ J0. If j ∈ J\J0, gj (x0) < 0, and by the continuity ofgj at x0, there
existsεj > 0 such thatgj (x) < 0, ∀x ∈ B(x0, εj ). Takingε = Min{εj : j ∈ J },
then we have thatgj (x0 + tv) < 0, ∀t ∈ (0, ε) and ∀j ∈ J . Consequently,
v ∈ Z(G,x0).
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Moreover, from (9) it follows that

C0(G)∩ cone(Q− x0) ⊂ Z(G,x0)∩ Z(Q,x0)

= Z(G∩Q,x0) ⊂ A(G∩Q,x0),

since cone(Q − x0) = Z(Q,x0) and the last inclusion is valid for any set.
(ii) (CQ1) is equivalent toC0(G) ∩ ri(Q − x0) �= ∅. In fact, if C0(G) ∩

ri(Q − x0) = ∅, then intC0(G) ∩ cl ri(Q − x0) = ∅, but C0(G) is open and
cl ri(Q− x0) = cl(Q− x0), following thatC0(G)∩ cl(Q− x0) = ∅, contradicting
the hypothesis.

Using Lemmas 3.1 and 2.1, we have that

cl
[
C0(G)∩ cone(Q− x0)

] = C(G)∩ T (Q,x0). (10)

Therefore, taking closure in (i), considering (10) and that the cone of attainable
directions is closed, the conclusion follows.✷

In the next theorem, necessary conditions for a weak local minimum for
program (P) are shown. The first one is a Fritz–John type condition, the second
one is a primal form and another Fritz–John condition and the third one, requiring
additional hypotheses, is a Kuhn–Tucker type condition.

Theorem 4.3. LetQ ⊂ R
n be a convex set,x0 ∈ S ∩Q and assume the following:

(a) h :Rn → R
r is continuous on a neighborhood ofx0 and Fréchet differentiable

at x0.
(b) f :Rn → R

p andg :Rn → R
m are Lipschitz nearx0.

(c) x0 ∈ WLMin (f,S ∩Q).

Then

(i) There exists(λ,µ, ν) ∈ R
p × R

J0 × R
r , (λ,µ, ν) �= 0 such that

(λ,µ) � 0,

0∈
p∑

i=1

λi∂Clfi(x0)+
∑
j∈J0

µj∂Clgj (x0)

+
r∑

k=1

νk∇hk(x0)+N(Q,x0).




(11)

(ii) If, moreover,(RC) holds, then

C0(S)∩ cone(Q− x0)∩ C0(F ) = ∅ and

(11) is true with(λ,µ) �= 0.
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(iii) If, in addition to(ii) , the constraint qualification

(CQ2):C0(S) ∩ (Q − x0) �= ∅
holds, then(11) is true withλ �= 0.

Proof. First, we prove (ii). Let us suppose that there existsv ∈ C0(S)∩cone(Q−
x0) ∩ C0(F ). Using Theorem 4.1, or Theorem 4.2(i) if there is no equality
constraint,v ∈ A(S ∩ Q,x0) and, therefore, there exist a numberδ > 0 and
a functionγ : [0, δ] → R

n such thatγ (0) = x0, γ (0) = v and γ (t) ∈ S ∩ Q,
∀t ∈ [0, δ]. Sincefi is Lipschitz nearx0 andd0fi(x0, v) < 0, reasoning as for
the proof of Theorem 4.1 (now withfi instead ofgj ), we have

lim sup
t→0+

fi(γ (t)) − fi(x0)

t
� d̄fi (x0, v) � d0fi(x0, v) < 0, ∀i = 1, . . . , p.

Then, we havefi(γ (t)) < fi(x0) for all t > 0 small enough and for eachi =
1, . . . , p, contradicting the weak minimality ofx0.

Next, we prove second part of (ii). We have established that there exists no
v ∈ R

n such that


d0fi(x0, v) < 0, ∀i = 1, . . . , p,
d0gj (x0, v) < 0, ∀j ∈ J0,
∇hk(x0)v = 0, ∀k = 1, . . . , r,
v ∈ Q− x0.

By Theorem 21.2 in Rockafellar [19], which can be used sinceK(H)∩ ri(Q−
x0) �= ∅ by Lemma 3.3, there exists(λ,µ, ν) ∈ R

p × R
J0 × R

r , (λ,µ) � 0,
(λ,µ) �= 0, such that

p∑
i=1

λid
0fi(x0, v) +

∑
j∈J0

µjd
0gj (x0, v) +

r∑
k=1

νk∇hk(x0)v � 0,

∀ν ∈ Q − x0. (12)

Therefore,v = x0 − x0 = 0 ∈ Q − x0 is a minimum on the convex setQ − x0 of
the convex function

ϕ(v) =
p∑

i=1

λid
0fi(x0, v) +

∑
j∈J0

µjd
0gj (x0, v) +

r∑
k=1

νk∇hk(x0)v.

Hence,

0 ∈ ∂ϕ(0)+N(Q,x0)=
p∑

i=1

λi∂d
0fi(x0, ·)(0)+

∑
j∈J0

µj∂d
0gj (x0, ·)(0)

+
r∑

k=1

νk∇hk(x0)+N(Q,x0),

which is equivalent to (11).
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Now, we prove (i). If (RC) does not hold, i.e., if there existsν ∈ R
r , ν �= 0,

such that

0∈
r∑

k=1

νk∇hk(x0) +N(Q,x0),

then the conclusion is obviously obtained with(λ,µ) = (0,0). So, we can assume
that (RC) holds, and part (ii) allows us to conclude.

Finally, let us prove (iii). Suppose thatλ = 0 and takeu ∈ C0(S) ∩ (Q − x0).
If someµj > 0, then we have that

∑
j∈J0

µjd
0gj (x0, u)+

r∑
k=1

νk∇hk(x0)u < 0,

which contradicts the result obtained in (12) takingv = u (with λ = 0).
Let us note that the constraint qualification (CQ2) is transformed into (CQ1)

in absence of equality constraints.

5. Necessary optimality conditions with an arbitrary set constraint

In this section several necessary optimality conditions are provided when the
problem (P) involves an arbitrary constraint set. These conditions are expressed
in terms of the sequential interior tangent cone.

Let us recall that the sequential interior tangent cone (or cone of quasi-interior
directions, [24, Definition 6]) toQ ⊂ R

n at x0, denoted ITs(Q,x0), is the cone
defined by the following expression:

Let v ∈ R
n, v ∈ ITs(Q,x0) if and only if there exist a numberε > 0 and a

sequencetn → 0+ such that

x0 + tnu ∈ Q, ∀u ∈ B(v, ε), ∀n ∈ N. (13)

Theorem 5.1. Let Q ⊂ R
n be an arbitrary set,x0 ∈ S ∩ Q and suppose the

following:

(a) h :Rn → R
r is continuous on a neighborhood ofx0 and Fréchet differentiable

at x0.
(b) g :Rn → R

m is Lipschitz nearx0.
(c) f :Rn → R

p is Lipschitz nearx0 andx0 ∈ WLMin (f,S ∩ Q).

Then

(i) If ∇h(x0) has full rank, thenC0(S) ∩ ITs(Q,x0)∩ C0(F ) = ∅.
(ii) If ITs (Q,x0) is a convex cone, then there exists(λ,µ, ν) ∈ R

p × R
J0 × R

r ,
(λ,µ) � 0, (λ,µ, ν) �= 0 such that
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0 ∈
p∑

i=1

λi∂Clfi(x0) +
∑
j∈J0

µj∂Clgj (x0)

+
r∑

k=1

νk∇hk(x0)+ ITs (Q,x0)
∗. (14)

(iii) If ITs(Q,x0) is a convex cone,C0(S) ∩ ITs (Q,x0) �= ∅ and∇h(x0) has full
rank, then(14) is true withλ �= 0.

Before giving the proof we need a lemma.

Lemma 5.2. Suppose that the above conditions(a) and (b) are verified and that
∇h(x0) has full rank, thenC0(S) ∩ ITs(Q,x0) ⊂ T (S ∩ Q,x0).

Proof. Let v ∈ C0(S) ∩ ITs(Q,x0). From the definition of the sequential interior
tangent cone there existε > 0 andtn → 0+ such that (13) holds.

LetΓ = {v ∈ R
n: x = x0 + tu with u ∈ B(v, ε), t ∈ [0,1]}. We have thatΓ is

a convex set andv ∈ K(H) ∩ int(Γ − x0). This last condition implies that the
regularity condition (RC) holds for the convex setΓ because∇h(x0) has full
rank and we can apply Remark 3.4(6). Then, by Theorem 3.2,v ∈ A(H ∩ Γ,x0)

and consequently, there existδ > 0 andγ : [0, δ] → R
n such thatγ (0) = x0,

γ (t) ∈ H ∩ Γ ∀t ∈ [0, δ] andγ ′(0) = v. Let α(t) = (γ (t) − x0 − tv)/t . Since
limt→0+α(t) = 0, for the aboveε there existsδ0 ∈ (0, δ] such thatv + α(t) ∈
B(v, ε) ∀t ∈ (0, δ0), and forδ0 there existsn0 ∈ N such thattn ∈ (0, δ0) for every
n � n0. Hence, by (13)

xn = γ (tn) = x0 + tn(v + α(tn)) ∈ Q ∀n � n0.

Therefore,v ∈ T (H ∩ Q,x0). From here it is continued as in the proof of
Theorem 4.1 (the sequencexn = γ (tn) is considered instead of the curveγ (t)
and we obtain thatxn ∈ G and thenv ∈ T (S ∩Q,x0)). ✷
Proof of Theorem 5.1. (i) If we suppose that there existsv ∈ C0(S) ∩
ITs(Q,x0)∩C0(F ), thend0fi(x0, v) < 0, i = 1, . . . , p, and, by Lemma 5.2, there
existxn ∈ S ∩Q andtn → 0+ such that limn→∞ t−1

n (xn − x0) = v. From here we
proceed as in the proof of Theorem 4.3(i) (the sequencexn is used instead of the
curveγ (t)).

(ii) If ∇h(x0) has not full rank the conclusion is evidently true. Otherwise,
condition (i) holds. If ITs(Q,x0) = ∅, then the conclusion is obviously verified
because ITs(Q,x0)

∗ = R
n. If IT s(Q,x0) �= ∅ but ITs(Q,x0) ∩ K(H) = ∅, since

ITs (Q,x0) is an open convex cone andK(H) is a closed convex cone, then,
applying the separation theorem [19, Theorems 11.3 and 11.7], there exists
u ∈ R

n\{0} such that

〈u,x〉 � 0� 〈u,y〉, ∀x ∈ ITs (Q,x0), ∀y ∈ K(H).
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Hence, u ∈ ITs (Q,x0)
∗ and −u ∈ K(H)∗ = lin{∇hk(x0): k ∈ K}, there-

fore there existsν ∈ R
r such that −u = ∑r

k=1 νk∇hk(x0). Consequently,∑r
k=1 νk∇hk(x0)+ u = 0, and (ii) holds withν �= 0, otherwise it would beu = 0

which is a contradiction. Finally, if ITs(Q,x0) ∩ K(H) �= ∅, since (i) holds, that
is, there exists nov ∈ R

n such that


d0fi(x0, v) < 0, i = 1, . . . , p,
d0gj (x0, v) < 0, ∀j ∈ J0,
∇hk(x0)v = 0, k = 1, . . . , r,
v ∈ ITs(Q,x0),

we can follow as in the proof of Theorem 4.3(ii) (the role ofQ−x0 is now played
by ITs (Q,x0)∪ {0}).

(iii) In the first place, in (ii)(λ,µ) �= 0, otherwise it would be

0∈
r∑

k=1

νk∇hk(x0) + ITs(Q,x0)
∗

with ν �= 0, that is, (RC) does not hold for the convex ITs (Q,x0) and this is in
contradiction with what is obtained by applying Remark 3.4(6). To prove that
λ �= 0 we argue as for the proof of Theorem 4.3(iii).✷

6. Final remarks

In Theorems 4.1, 4.2, 4.3 and 5.1 we have supposed that the functionsf andg
are Lipschitz nearx0, but they are also valid if we suppose that these functions
are Hadamard differentiable atx0 with convex derivative, and even in the case
that we only suppose the existence of upper Hadamard derivative atx0 (upper
stable functions) and that this be convex as function of the direction. In this last
case, to define the conesC0(S), C(S), C0(F ) andC(F) we have to use the upper
Hadamard derivative instead of that of Clarke’s and in the expressions in which
the Clarke subdifferential ((11) and (14)) appears we have to substitute it by the
upper Hadamard subdifferential:

∂f (x0) = {
ξ ∈ R

n: 〈ξ, v〉 � d̄f (x0, v) ∀v ∈ R
n
}
.

Taking this remark into account, Theorem 5.1 is a generalization of Theorem 9
of Giorgi and Guerraggio [24] in which it is supposed thath is C1(x0) with full
rank Jacobian,f andg are differentiable Fréchet atx0 andf is R-valued.

If f and g are Lipschitz nearx0, to define the conesC0(S), C(S), C0(F )

andC(F) we can use the Michel–Penot derivative or the deconvolution of the
upper Hadamard derivative (which coincides, in this case, with the deconvolution
of the upper Dini derivative) instead of the Clarke derivative. The resulting
theorems after adapting Theorems 4.1, 4.2, 4.3 and 5.1 are still valid. Of course,
we should use the corresponding subdifferential to the derivative that we are
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dealing with, instead of the Clarke subdifferential. The proof will not change,
since all these derivatives are greater than upper Hadamard derivative or equal to
it. See [25] for the definitions and properties of these derivatives. As an example
we state Theorem 6.1, resulting from 4.3, by using the deconvolution of upper
Hadamard derivative after the previous introduction of the necessary notations.

Let f :Rn → R be a real function. The deconvolution of the upper Hadamard
derivative off at x0 is

d̄∗f (x0, v) = Sup
{
d̄f (x0, v +w)− d̄f (x0,w): w ∈ R

n
}
.

If f is Lipschitz nearx0, d̄
∗f (x0, v) is convex and finite for allv and we have:

Df (x0, v) = d̄f (x0, v) � d̄∗f (x0, v) � d0f (x0, v). (15)

The associate subdifferential to this derivative is

∂∗f (x0) = {
ξ ∈ R

n: 〈ξ, v〉 � d̄∗f (x0, v) ∀v ∈ R
n
} = ∂d̄∗f (x0, ·)(0),

and it is contained, by (15), in the Clarke subdifferential:

∂∗f (x0) ⊂ ∂Clf (x0). (16)

We suppose thatf :Rn → R
p and g :Rn → R

m are Lipschitz nearx0 and
h :Rn → R

r is Fréchet differentiable atx0. It is denoted

C0
(
S, d̄∗) = {

v ∈ R
n: d̄∗gj (x0, v) < 0,∀j ∈ J0;∇hk(x0)v = 0, ∀k ∈ K

}
,

C
(
S, d̄∗) = {

v ∈ R
n: d̄∗gj (x0, v) � 0,∀j ∈ J0;∇hk(x0)v = 0, ∀k ∈ K

}
.

And similarly,C0(F, d̄∗) andC(F, d̄∗). Obviously

C0
(
S,d0) ⊂ C0

(
S, d̄∗) and C

(
S,d0) ⊂ C

(
S, d̄∗) (17)

(to make it clearer we now denoteC0(S, d
0) andC(S,d0) what we had previously

denotedC0(S) andC(S)).

Theorem 6.1. Under the hypotheses of Theorem4.3we have:

(i) There exists(λ,µ, ν) ∈ R
p × R

J0 × R
r , (λ,µ, ν) �= 0 such that

(λ,µ) � 0,

0 ∈
p∑

i=1

λi∂
∗fi(x0)+

∑
j∈J0

µj∂
∗gj (x0)

+
r∑

k=1

νk∇hk(x0)+N(Q,x0).




(18)
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(ii) If, moreover,(RC) holds, then

C0(S, d̄
∗)∩ cone(Q − x0)∩ C0(F, d̄∗) = ∅ and

(18) is true with(λ,µ) �= 0.

(iii) If, in addition to(ii) , the constraint qualification

(CQ2∗): C0
(
S, d̄∗) ∩ (Q − x0) �= ∅

holds, then(18) is true withλ �= 0.

Note that (i), (ii) and (iii) are finer than 4.3(i), 4.3(ii) and 4.3(iii) by (17)
and (16). Even (iii) is of less restrictive application than 4.3(iii) (because (CQ2)⇒
(CQ2∗) by (17)).

Many authors have obtained Fritz–John and Kuhn–Tucker conditions for
locally Lipschitz programs. See, for example, Jourani [26, Theorems 4.2 and 4.6].
Treiman [27] considers scalars programs and uses the Mordukhovich and linear
subdifferentials. In these papers,h is locally Lipschitz, so their results are not
comparable with our results.
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