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Abstract

We consider a multiobjective program with inequality and equality constraints and a set
constraint. The equality constraints are Fréchet differentiable and the objective function
and the inequality constraints are locally Lipschitz. Within this context, a Lyusternik type
theorem is extended, establishing afterwards both Fritz—John and Kuhn—Tucker necessary
conditions for Pareto optimalityl 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this work we consider the next multiobjective program:

(P) Min f(x)
subjecttog(x) <0, h(x) =0, x € Q,

where f, g, h are functions fromR” to R”, R™ andR", respectively, and is
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a nonempty subset @&”". We suppose that andg are locally Lipschitzj is
Fréchet differentiable and Min is meant in Pareto’s sense.

During the last two decades, a lot of works have been dedicated to the study
of several constraint qualifications that allow establishing necessary conditions of
Kuhn—Tucker type. For the case of differentiable programs, see for instance, the
book of Bazaraa and Shetty [1] or the papers of Singh [2], Di [3] or Jiménez and
Novo [4].

At the same time, since the introduction by F.H. Clarke, in 1972, of the
concept of generalized gradient for locally Lipschitz functions and the subsequent
development of this theory (see Clarke [5]), constraint qualifications for programs
with Lipschitz conditions has been an important subject of study, as is shown
in the works of Clarke [6], Hiriart-Urruty [7,8], Minami [9], Ishizuka and
Shimizu [10], Craven [11-13], Jourani [14], Wang, Dong and Liu [15] or
Mititelu [16,17].

However, in most of these papers, equality constraints are not considered
(Ishizuka and Shimizu, Wang, Dong and Liu) and, in those in which they
are considered, the constraint qualifications are mostly restrictive (Clarke,
Mititelu).

In this paper we consider equality constraints defined by Fréchet differentiable
functions (not necessar¢gl nor locally Lipschitz), together with inequality
constraints and a set constraint. The work is structured as follows: Section 2 is
devoted to notations, definitions and some of the previous results we are going
to use. In Section 3 we obtain a result that can be considered as an extension
of Lyusternik theorem within this context (see, for instance, Jahn [18]). This
classical theorem establishes, under suitable conditions, different equality or
content relationships between the contingent cone (or Bouligand cone) to a set
defined by equality constraints and the linearized cone to the feasible set, a
result that is basic for obtaining optimality conditions. In Section 4 we obtain,
from this extension, both Fritz—John and Kuhn—Tucker optimality conditions for
program (P) wherQ is a convex set and, in Section 5, whénis an arbitrary
set. Finally, in Section 6 we make some final remarks that allow us to extend
the class of functions to which the obtained results are applicable and also to
use other generalized derivatives such as the Michel-Penot or the deconvolution
of the upper Hadamard derivative and its corresponding (small convex-valued)
subdifferentials instead of the Clarke’s derivative and subdifferential.

2. Notationsand preliminaries

Let S be a subset oR”. As usual, cf, intS, ri S, coneS and linS, denote
closure, interior, relative interior, generated cone and subspace generafed by
respectively. Lekx andy be two points ofR”, then we will writex < y if x; < y;,
i=1...,nandx <yifx; <y, i=1,...,n.
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We are going to use the following tangent cones &t xg € cl S:

(a) The contingent cone is
T(S,x0)={veR" 3 >0, Ix; € S, xx — xo such that
tr(xr — x0) = v}.

(b) The cone of attainable directions is

A(S, xg) = {UER": 35 > 0, Iy :[0, 8] — R", such that

y(0) =xo, y(#) € SVt € (0, 4],
: (1) =y
0= lim 222
v O t—|>0+ t v
(c) The cone of linear directions is

Z(S,x0) = {v € R": 35 > 0 such thato + tv € S Vr € (0, 8]}.

The polar cone toD c R" is D* = {v € R": (v,d) < 0 Vd € D}, and the
normal cone t&5 at xg is the polar of the contingent con¥<(S, xo) = T'(S, xo)*.
Whens is a convex set we havi(S, xg) = clcon&S — xg) andN (S, xg) ={v €
R"™: (v,x —x0) <0Vx € S}.

Let f:R" — R, xo,v € R". We consider the next generalized directional
derivatives off at xg in the directiorv:

f(xo+tv) — f(xo0)

D f(x0,v) = limsup

-0+ t
- .
df(xo,v) = limsup fxo+tu) f(xo)’
(t,u)—(0F,v) t
1) —
d°f(xo,v) = limsup fx t1v) f(x).
(x.1)=> (x0.0") t

The first one is the upper Dini derivative, the second one is the upper Hadamard
derivative and the third one is the Clarke derivative.
If f islocally Lipschitz, the Clarke subdifferential gfat xg is the set
dc1 f (x0) = {& € R": (£, v) <d°f (x0,v) Vv e R"}.

If f is convex, then we denote By (xo) the subdifferential of Convex Analysis
and, if f is Fréchet differentiabléy f (xg) denotes the differential of at xo.
Given the program
Min{ f(x): x € M},

where f:R" — R?” and M C R", a pointxg € M is said to be a weak Pareto
minimum, denoted by € WMin(f, M), if there exists nax € M such that
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f(x) < f(xg). The usual concept of weak local Pareto minimum, for which the
previous condition is required on a neighborhood of the point is also used. It is
denoted by € WLMin (f, M).

In order to simplify the notations, the following sets are defined for the initial
program (P):

G={xeR" g(x)<0}, H={xeR" h(x)=0},
S = {x eR": g(x) <0, h(x):O},

so thatS = G N H and the feasible set of (P) M = SN Q.

Let fi,iel={1...,p}gj,jeJ={1,....m}, h, ke K={1,...,r}
the components functions of, g and i, respectively, and, giverg € S, let
Jo={j € J: g;(xo0) =0} the set of active indexes a4.

We will suppose thayf andg are locally Lipschitz and: is continuous on a
neighborhood ofg and Fréchet differentiable ap. The cones that will be used
to approximates at xg are the natural extension to this context of the linearized
cones:

Co(S, x0) = {v € R": d°;(x0,v) <0, ¥j € Jo; Vhr(xo)v=0, Vke K},
C(S,x0) = {v e R": d%;(x0,v) <0, Vj € Jo; Vik(x0)v=0, Vke K}.

We denoteF = {x e R": f(x) < f(x0)} and K(H) = KerVh(xp). The setsG
and F are defined by inequality constraints, and the cafig%7), C(G), Co(F)
and C(F) can be defined analogously, obtaining tlda{S) = Co(G) N K(H)
andC(S) = C(G) N K(H). (We omit the pointxg in the notation for shortness
reasons.)

Let O Cc R" be a convex set. Let us denote cor@ = {v € R": 31 > O,
dx € 0, v = Ax}. Obviously, if 0e Q then cone Q =coneQ and if 0¢ Q then
cone. O = coneQ\{0}. This cone allows to express the relative interior of the
cone generated by a convex set as follows (see Rockafellar [19, Corollary 6.8.1]).

Lemma 2.1. If Q is a nonempty convex set, thenoneQ = cone.ri Q.

3. An extension of a Lyusternik type theorem

In this section we obtain our main result (Theorem 3.2) that can be considered
as an extension of the classical Lyusternik theorem within this context. To prove
it, two previous Lemmas 3.1 and 3.3 are required.

Lemma 3.1. Let 0 C R” be a convex setyg € SN Q, h:R" — R" Fréchet
differentiable atxp andg : R" — R™ Lipschitz nearg. If

Co(S)NricongQ — xg) £ ¢ (1)
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then

cl[Co(S) NriconegQ — x0)| = C(S) N T(Q, xo).
Proof. To prove this result, we just need to note tligf(S) is a convex cone,
a relative open ofK (H), whose closure igC(S) and apply Theorem 6.5 in

Rockafellar [19] taking into account that clcdig®— xo) = T(Q, xo), because
of the convexity ofQ. 0O

Note that if we apply Lemma 2.1, sin@&(S) is a cone, condition (1) is
equivalent to

Co(S) Nri(Q — x0) # 0.
Theorem 3.2. Let us suppose the following

() h:R" — R" is continuous on a neighborhoodxfand Fréchet differentiable
at xo.

(b) O cR"isaconvexsetangy € HN Q.

(c) The regularity condition

(RC) 0 Y " v Vi (x0) + N(Q.x0) = v=0
k=1

holds.
Then

cl[K(H)Ncon&Q —x0)| = A(HN Q,x0) =T (H N Q, xo)
=K(H)NT(Q, x0)-

Lemma 3.3. If (RC)holds, thenK (H) Nri(Q — xg) # @.

Proof. Let us suppose that (H) Nri(Q — xo) = @. By the separation theorem,
there existt € R"\{0} anda € R such that

(u,x —x0) S < (u,y), VxeQ,VyeK(H). &)

Asx =xp€ Q andy =0¢€ K(H), we have thatr = 0. Thereforex € N(Q, xo)
and,

—u € K(H)* =1lin{Vhi(x0): k € K},

consequently-u = Y _; vk Vhg(xo). From the hypothesis it follows that= 0,
thusu = 0, that is a contradiction. O
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Proof of Theorem 3.2. Firstly, let us see that

K(H)NricongQ — xp) C A(H N Q, xp). 3)
For this, it is enough to prove that
K(H)Nri(Q —x0) CA(HN Q, xo), (4)

because iiv € K(H)Nricong Q — xgp), using Lemma 2.1, we obtain that= Av
with A > 0 andv € ri(Q — xp). If (4) is true,v € A(H N Q, xo) and, consequently,
weAHNQ, xo0).

Let us see that (4) is verified. In fact, lee K (H) Nri(Q — xo) and letV be
the smallest affine variety containing.

If dmV =n —1, thenV is intersection of hyperplanes\;, j =1,...,1,
V = (24 M;, defined byM; = {x € R": (c;.x — xo) = 0}, beingci,....c;
linearly independent. Let us see théi1 (xg), ..., Vi, (x0), c1, ..., c; are linearly
independent. Suppose that

r l
Z v Vhi(xo) + Z)\jcj' =0.
k=1 =1

SinceQ c V itfollowsthatN(V, xg) C N(Q, xg), butN(V, xg) =lin{c1, ..., ¢},
hence

1
Y hjej € N(Q, x0)
j=1

and, by (RC), we deduce that= 0. Because of the linear independence of
c1,...,c, we have that =0.

Let iz :R" — R’ defined byi(x) = (h1(x), ..., hr(x), (c1, X — x0), - . ., {ci,
x — xo)) and let us consider the system

h(x) = h(xo) + tVh(xo)v. )
Since# is continuous on a neighborhood af and Fréchet differentiable at
with maximal rank Jacobian, from Theorem 5.3, Chapter 3, in Hestenes [20], the
system (5) has a solution

x=y(@), —8<t<8suchthaty(0)=uxgandy’(0)=v. (6)
Taking into account the first components of (5)(xg) = 0 and VA (xg)v = 0
(sinceve K(H),ve Q —x0C T(Q,x0) andxc; € N(Q,x0) =T (Q, x0)*), it
follows a(y (¢)) =0, Vt € [—6, §]. Considering the lagtcomponents,

(cj.y(®) —x0)=0, Vie[-68,8], j=1,...,L
Therefore,y (t) € V. Let us see thay (¢r) € Q. Leta(r) = (y(t) — xo — tv)/t,
hencey (r) = xo+t(v+a(t)), and by (6), lim_, o+ () = 0. Sincev € ri(Q — xp),
we havev = gg — xo With go € ri Q C V and, sincey (t) € V, it follows that

a(t) =1"(y (1) — x0) — (g0 — x0) € V — x0
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becauseV — xq is a linear subspace. Singg € ri Q, there exists > 0 such
that B(go, ) NV C Q. Since lim_ g+ (xo + v + a(#)) = go andxo + v + «(¢) =
qgo + a(t) € V, fort small enoughxo + v + «(t) € B(go, &) NV C Q. Thus for
t > 0 small enough, by convexity,(r) = (1 —f)xo+t(xo+v+a(t)) € Q. Then,
y(t) € HN Q, for all t > 0 small enough and, consequentiys A(H N Q, xo).

If dimV = n, that is, if intQ # @, thenV = R" and we do not need any
hyperplane, because in this case it is enough to défireh and the solution
x = y(¢) verifiesy (¢t) € V. The above deduction gf(z) € Q is valid, if ri Q is
replaced by inD.

Secondly, we prove the conclusion of theorem. From (RC), by Lemma 3.3 it
follows that K (H) Nri(Q — xp) # @, and sinceK (H) is a cone, by Lemma 2.1
the above condition is equivalent ¥6(H) N ricong Q — xo) # ¥, obtaining, by
Lemma 3.1, that

cl[K(H)NcongQ — xo)| =cl[K (H) Nricong Q — x0) ]
=KH)NT(Q, x0). (7)
On the other hand,

AHNQ,x0) CT(HN Q,x0) CT(H,x0) NT(Q, x0)
CK(H)NT(Q, x0). (8)

Finally, taking closure in (3) and taking into account (7), (8) and that the cone of
attainable directions is closed, we have the conclusian.

Di [3] supposes thap is a closed convex set and only obtains the expression
T(HNQ,xp)=K(H)NT(Q, xo) for the contingent cone. Our result is stronger.

Remark 3.4.

(1) Note that if @ = R" andh is of classC! on a neighborhood afg with
maximal rank Jacobian, this theorem becomes the Lyusternik theorem (see, for
instance, Jahn [18, Theorems 4.21 and 4.22]), it expresses:

K(H)=T(H, x0).

(2) If (RC) is not verified, the conclusion of theorem may be false as the next
simple example shows: iR?, takingi(x, y) =y —x2andQ = {(x, y): y =0}.

(3) According to the proof of this theorem, (RC) implies that the gradients
Vhi(xo), ..., Vh,(xo) are linearly independent.

(4) In the particular case that the conv@xhas nonempty interior, we get the
next sufficient condition for (RC).

If K(H)Nint(Q —xo) # ¥ andVhi(xo), ..., Vh,(xg) are linearly indepen-
dent, then (RC) holds.
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In fact, let

,
0= Z Ve Vhi(xo0) +d,
k=1

with d € N(Q, xo) and let us take
ue K(H)Nint(Q — xo).

Multiplying the above equality by, it follows that(d, u) = 0. Now, forA > 0
small enough we have thatt Ad € Q — xg and consequentlyd, u + Ad) <0,
henceti(d, d) <0, following (d, d) = 0, it means! = 0. Therefore,

0= wVhi(xo),
k=1
and because of the linear independence of gradients, wevhag
(5) The regularity condition (RC) has been used by many authors, see for
example Rockafellar [21, p. 198].

4. Necessary optimality conditionswith a convex set constraint

Necessary optimality conditions, both Fritz—John and Kuhn—Tucker type, for
the problem (P) are obtained in this section. First of all, two theorems analyzing
different relationship among the used conical approximation are given. We will
suppose throughout the section tiiats a convex set.

Theorem 4.1. Letxg € S N Q and assume the following

(@) h:R" — R" is continuous on a neighborhoodxf and Fréchet differentiable
at xo.

(b) The regularity conditiofRC) holds.

(c) g:R" — R™ is Lipschitz nearg.

Then
Co(S)yNncongQ —xo) CA(SN Q, xo).

Proof. Let v e Co(S) NcongQ — xg) = Co(G) N K(H) Ncon&€Q — xp). Then
ve K(H)NcongQ — xg) and by Theorem 3.2, € A(H N Q, xo). Hence, there
exist§ > 0 and a functiony : [0, §] — R” such thaty (0) = xo, y’(0) = v and
y(t) e HN Q,Vt €0, 4]. Let us see that () € G for r small enough, following
thaty () € SN Q and, consequently,e A(SN Q, xp).

Becauseg; is Lipschitz nearxg, we obtain thatd_gj (xg,v) = l_)gj(.xo, v)
(Glover and Jeyakumar [22, Proposition 2.1]) and because upper Dini derivative is
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less than Clarke derivative or equal to it, we have t}gqt(xo, v) < dogj (x0,v) <
0, Vj € Jo, v € Co(G). Therefore, taking into account thati (xo) = 0, by
Proposition 4.2.10 in Flett [23],

lim supig" ();(t))

t—0t
Then, there exist; € (0, 8] for j € Jo such thatg; (¥ (r)) <0, vVt € (0,4;). For
eachj € J\Jo, due to the continuity of; at xg and ofy atr =0, there exists
8; > 0 such thatg;(y (1)) <0, vVt € [0, §;). Taking 8o = Min{§;: j € J}, we
obtaing;(y (1)) <0, Vt € (0, 8p) andVj € J; subsequentlyy () e G. O

Sa_fgj(xo, v) <0, Vjel.

If there is no equality constraint, the proof of Theorem 4.1 is not valid, because
it is based on the existence of solution of system (5). Therefore, next we give an
analogous theorem and a straightforward proof in this case.

Theorem 4.2. Letxg € G N Q and let us suppose thgt: R” — R™ is Lipschitz
nearxg, then

(i) Co(G)Ncon&Q —xo) C Z(G N Q,x0) CA(GN Q, x0).
(i) Besides, if the constraint qualification
(CQ1L):Co(G) N (Q —x0) #V
is true, then we have that

cl[Co(G) Ncon&Q — x0) |
=C(G)NT(Q,x0) CclZ(GN Q,x0) CA(GN Q, x0).

Proof. (i) First of all, let us see that
Co(G) C Z(G, xp). (9)
Let v € Co(G). Thendogj (x0,v) <0,Vj € Jo, and henceﬁgj(xo, v) < 0.
This means that
"msupgj (xo0 + tv) — gj(x0)
t—0t t

therefore exists; > 0 such that

<0, Vjelo,

i(xo+1tv) —gi(x
sup gj(xo ) —gj(x0) -
1€(0,6}) f

0.

Taking into account thag; (xo) = 0, it follows thatg; (xo + tv) < 0,Vr € (0, ¢;)
andVj e Jo. If j € J\Jo, gj(x0) <0, and by the continuity of; at xq, there
existse; > 0 such thafg;(x) <0, Vx € B(xo, ¢;). Takinge = Min{e;: j € J},
then we have thag;(xo + tv) < 0, Vr € (0,¢) and Vj € J. Consequently,
veZ(G,xg).
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Moreover, from (9) it follows that

Co(G) Ncon&Q — xq) C Z(G, x0) N Z(Q, x0)
=Z(GNQ,xp) CAGNQ,x0),

since coneQ — xp) = Z(Q, xo) and the last inclusion is valid for any set.

(ii) (CQ1L) is equivalent toCo(G) N ri(Q — xg) # @. In fact, if Co(G) N
r(Q — xo) = ¥, then intCo(G) N clri(Q — xo) = @, but Co(G) is open and
clri(Q —xp) = cl(Q — xp), following thatCo(G) N cl(Q — xg) = @, contradicting
the hypothesis.

Using Lemmas 3.1 and 2.1, we have that

cl[Co(G) Ncon&Q — x0)| = C(G) N T(Q, xo). (10)
Therefore, taking closure in (i), considering (10) and that the cone of attainable
directions is closed, the conclusion follows

In the next theorem, necessary conditions for a weak local minimum for
program (P) are shown. The first one is a Fritz—John type condition, the second
one is a primal form and another Fritz—John condition and the third one, requiring
additional hypotheses, is a Kuhn—Tucker type condition.

Theorem 4.3. Let 0 C R” be a convex sekp € S N Q and assume the following

(a) h:R" — R"is continuous on a neighborhoodxfand Fréchet differentiable
at xg.

(b) f:R" — RP andg:R" — R™ are Lipschitz neaxy.

(c) xo e WLMIn(f, SN Q).

Then

(i) There existgx, i, v) € R? x R x R, (A, , v) # 0 such that
(A, u) =0,

)4
0e Y iderfixo) + Y mjdcig)(xo)
i=1 Jj€lo (11)

+ Y Vhi(x0) + N(Q, x0).
k=1

(i) If, moreover(RC)holds, then

Co(S)NcongQ —xg) N Co(F)=@ and
(11)is true with (A, ) # 0.
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(i) If, in addition to(ii), the constraint qualification

(CQ2):Co(S)N(Q —x0) #9
holds, then(11)is true withA £ 0.

Proof. First, we prove (ii). Let us suppose that there existsCo(S) NcongQ —

x0) N Co(F). Using Theorem 4.1, or Theorem 4.2(i) if there is no equality
constraint,v € A(S N Q, xo) and, therefore, there exist a number 0 and

a functiony : [0, §] — R" such thaty(0) = xo, y(0) = v andy () € SN Q,

Vvt € [0, 8]. Since f; is Lipschitz nearrg andd® f; (xo, v) < 0, reasoning as for
the proof of Theorem 4.1 (now witlf; instead ofg;), we have

fily ) — fi(x0)
t

limsup <dfi(xo,v) <d%fi(xo,v) <0, Vi=1,...,p.

t—0t
Then, we havef; (v (1)) < fi(xo) for all t > 0 small enough and for each=
1,..., p, contradicting the weak minimality of.
Next, we prove second part of (ii). We have established that there exists no
v € R” such that
dOfi(xo,v) <0, Vi=1,...,p,
dogj(xo, v) <0, VjeJy,
Vhy(xg)v =0, Vk=1,...,r,
v e Q — xo.
By Theorem 21.2 in Rockafellar [19], which can be used siki¢& ) Nri(Q —
x0) # ¥ by Lemma 3.3, there existé., i, v) € R? x R0 x R, (r, ) >0,
(A, m) # 0, such that

V4 r
Z/\idoﬁ‘ (x0,v) + Z 1;d%; (xo0, v) + Z vk Vg (xp)v > 0,
i=1 jedo k=1
Yv € Q — xp. (12)
Thereforep = xg — xo =0¢€ Q — xp is a minimum on the convex sé& — xg of
the convex function

V4 r
o) =Y 1id°fi(xo,v) + Y 1jd%;(x0,v) + Y vk Vhr(xo)v.

i=1 jeJo k=1
Hence,

p
0€d9p(0) + N(Q,x0) = ) _ 4:3d°fi(x0,)(0) + Y _ 1;8d°; (x0,)(0)

i=1 jelo

+ Y Vhi(x0) + N(Q, x0),
k=1
which is equivalent to (11).
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Now, we prove (i). If (RC) does not hold, i.e., if there existg R", v # 0,
such that

0€ ) wVii(xo) + N(Q, x0),
k=1
then the conclusion is obviously obtained with 1) = (0, 0). So, we can assume
that (RC) holds, and part (ii) allows us to conclude.
Finally, let us prove (iii). Suppose that= 0 and take: € Co(S) N (Q — xp).
If somew; > 0, then we have that

.
Z 11;d%%  (xo, u) + Z vk Vhi(xo)u <0,
jedo k=1

which contradicts the result obtained in (12) taking u (with » = 0).
Let us note that the constraint qualification (CQ?2) is transformed into (CQ1)
in absence of equality constraints.

5. Necessary optimality conditionswith an arbitrary set constraint

In this section several necessary optimality conditions are provided when the
problem (P) involves an arbitrary constraint set. These conditions are expressed
in terms of the sequential interior tangent cone.

Let us recall that the sequential interior tangent cone (or cone of quasi-interior
directions, [24, Definition 6]) taQ c R" at xo, denoted IT(Q, xo), is the cone
defined by the following expression:

Let v e R, v € IT(Q, xp) if and only if there exist a number> 0 and a
sequence, — 0" such that

xo+tueQ, YueB(v,e), VneN. (13)

Theorem 5.1. Let Q C R” be an arbitrary setxg € S N Q and suppose the
following:

(@) h:R" — R" is continuous on a neighborhoodxf and Fréchet differentiable
at xo.

(b) g:R" — R™ is Lipschitz neatyo.

(c) f:R" — RP? is Lipschitz neang andxg € WLMin (f, SN Q).

Then
() If Vh(xo) has full rank, therCo(S) NITs(Q, xg) N Co(F) = @.

(i) If IT4(Q, xo) is a convex cone, then there exigts i, v) € R? x R% x R",
(A, ) =0, (A, i, v) # 0such that
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)4
0e Y xiderfixo)+ Y jdcig;(xo)

i=1 jedo

+ Y Vhi(x0) +1T5(Q, x0)*. (14)
k=1
(i) If IT,(Q, x0) is a convex con&;o(S) NIT(Q, xp) # ¥ and Vi(xp) has full
rank, then(14)is true witha # 0.

Before giving the proof we need a lemma.

Lemma 5.2. Suppose that the above conditiqa3and (b) are verified and that
Vh(xp) has full rank, therCo(S) NIT (0, x0) C T(SN Q, x0).

Proof. Letv e Co(S) NIT4(Q, x0). From the definition of the sequential interior
tangent cone there exist> 0 andt, — 0" such that (13) holds.

LetI"’ ={veR" x =xo+tu withu € B(v, ¢), t € [0, 1]}. We have thal” is
a convex set and € K(H) Nint(I" — xg). This last condition implies that the
regularity condition (RC) holds for the convex sBtbecausevi(xg) has full
rank and we can apply Remark 3.4(6). Then, by Theorenw3z2A(H N I, xo)
and consequently, there exi&t> 0 andy :[0, 8] — R” such thaty (0) = xo,
y(t) e HN T Vi €[0,8] andy’(0) = v. Let a(t) = (y(t) — xo — tv)/t. Since
lim;_o0+a() = 0, for the above: there existssp € (0, §] such thatv + «a(z) €
B(v, &) Vt € (0, 6p), and fordg there existsig € N such that, € (0, o) for every
n > ng. Hence, by (13)

Xp=yt) =x0+t,(v+al,) € Q Vn2=no.

Therefore,v € T(H N Q, xg). From here it is continued as in the proof of
Theorem 4.1 (the sequeneg = y (1) is considered instead of the curygr)
and we obtain that, € G andtherw e T(SN Q, x0)). O

Proof of Theorem 5.1. (i) If we suppose that there exists € Co(S) N
ITs(Q, x0) N Co(F), thend® f; (xo, v) <0,i =1,..., p, and, by Lemma5.2, there
existx, € SN Q andt, — 01 such that lim_, tn_l(x,, — x0) = v. From here we
proceed as in the proof of Theorem 4.3(i) (the sequends used instead of the
curvey (1)).

(i) If Vh(xg) has not full rank the conclusion is evidently true. Otherwise,
condition (i) holds. If IT;(Q, xo) = @, then the conclusion is obviously verified
because IT(Q, x0)* =R". If IT;(Q, x0) # ¥ but IT;(Q, x0) N K(H) = @, since
IT;(Q, x0) is an open convex cone arki(H) is a closed convex cone, then,
applying the separation theorem [19, Theorems 11.3 and 11.7], there exists
u € R™\{0} such that

(u,x) <0< (u,y), VxelTy(Q,x0), Vye K(H).
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Hence, u € IT (0, x0)* and —u € K(H)* = lin{Vhi(xg): k € K}, there-
fore there existsv € R” such that—u = Y ;_; v Vhr(x0). Consequently,
Y k—1Vk Vhi(x0) + u = 0, and (ii) holds withv = 0, otherwise it would be =0
which is a contradiction. Finally, if IJ{Q, xo) N K (H) # @, since (i) holds, that
is, there exists ne € R” such that

d°fi(xo,v) <0, i=1,...,p,
d%;(x0,v) <0, VjelJo,
Vhi(xg)v =0, k=1,...,r,
v elT;(Q, x0),
we can follow as in the proof of Theorem 4.3(ii) (the role@®@f- xq is now played

by ITs(Q, xo0) U {0}).
(iii) In the first place, in (ii)(A, ) # 0, otherwise it would be

0€ ) wVii(xo) +IT5(Q, x0)*
k=1
with v #£ 0, that is, (RC) does not hold for the convex (@, xo) and this is in
contradiction with what is obtained by applying Remark 3.4(6). To prove that
A # 0 we argue as for the proof of Theorem 4.3(iii)a

6. Final remarks

In Theorems 4.1, 4.2, 4.3 and 5.1 we have supposed that the fungtamsg
are Lipschitz nearg, but they are also valid if we suppose that these functions
are Hadamard differentiable ap with convex derivative, and even in the case
that we only suppose the existence of upper Hadamard derivatiug (@pper
stable functions) and that this be convex as function of the direction. In this last
case, to define the con€g(S), C(S), Co(F) andC (F) we have to use the upper
Hadamard derivative instead of that of Clarke’s and in the expressions in which
the Clarke subdifferential ((11) and (14)) appears we have to substitute it by the
upper Hadamard subdifferential:

df(x0)={€ eR": (£,v) <df(x0,v) Vv eR"}.

Taking this remark into account, Theorem 5.1 is a generalization of Theorem 9
of Giorgi and Guerraggio [24] in which it is supposed that C(xp) with full
rank Jacobianf andg are differentiable Fréchet ap and f is R-valued.

If f andg are Lipschitz neaxo, to define the cone€o(S), C(S), Co(F)
and C(F) we can use the Michel-Penot derivative or the deconvolution of the
upper Hadamard derivative (which coincides, in this case, with the deconvolution
of the upper Dini derivative) instead of the Clarke derivative. The resulting
theorems after adapting Theorems 4.1, 4.2, 4.3 and 5.1 are still valid. Of course,
we should use the corresponding subdifferential to the derivative that we are
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dealing with, instead of the Clarke subdifferential. The proof will not change,
since all these derivatives are greater than upper Hadamard derivative or equal to
it. See [25] for the definitions and properties of these derivatives. As an example
we state Theorem 6.1, resulting from 4.3, by using the deconvolution of upper
Hadamard derivative after the previous introduction of the necessary notations.

Let f:R" — R be a real function. The deconvolution of the upper Hadamard
derivative of f atxg is

d* f(x0,v) = Sup{d f (xo, v + w) — d f (x0, w): w e R"}.
If f is Lipschitz neawg, d* f (xo, v) is convex and finite for alb and we have:
D f(x0, v) =d f (x0,v) < d* f (x0,v) < d°f (x0, v). (15)
The associate subdifferential to this derivative is
9" f(xo) = {§ € R": (£,v) <d* f(x0,v) Yv € R"} = 8d" f (x0,)(0),
and it is contained, by (15), in the Clarke subdifferential:
3% f(x0) C dc1 f (x0). (16)

We suppose thaff :R" — R” and g:R" — R™ are Lipschitz nearg and
h:R" — R" is Fréchet differentiable af. It is denoted

Co(S.d*)={veR": d*g;(x0,v) <0,V € Jo; Vhr(xov =0, Vk € K},

C(S,d*)={veR" d*gj(xo,v) <0,Vj € Jo; Vhr(xo)v =0, Vk € K }.
And similarly, Co(F, d*) andC(F, d*). Obviously

Co(S,d% c Co(S,d*) and C(S,d°) c C(S,d%) (17)

(to make it clearer we now denaf® (S, %) andC (S, d°) what we had previously
denotedCo(S) andC(S)).

Theorem 6.1. Under the hypotheses of TheordBwe have
(i) There existgx, i, v) € R? x R x R”, (A, u, v) # 0 such that

(A, ) =0,

p
0e) 2d*filxo)+ Y njd*g;j(xo0)
i=1 jedo (18)

+ ) wVhi(xo) + N(Q. x0).
k=1
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(i) If, moreover(RC) holds, then

Co(S,d*) Ncon&Q — xo) N Co(F,d*) =@ and
(18)is true with (i, ) # 0.
(iii) If, in addition to(ii), the constraint qualification
(CQ2): Co(S.d*)N(Q —x0) # 9
holds, then(18)is true witha £ 0.

Note that (i), (i) and (iii) are finer than 4.3(i), 4.3(ii) and 4.3(iii) by (17)
and (16). Even (iii) is of less restrictive application than 4.3(iii) (because (GQ2)
(CQZY) by (17)).

Many authors have obtained Fritz—John and Kuhn-Tucker conditions for
locally Lipschitz programs. See, for example, Jourani [26, Theorems 4.2 and 4.6].
Treiman [27] considers scalars programs and uses the Mordukhovich and linear
subdifferentials. In these papers,is locally Lipschitz, so their results are not
comparable with our results.
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