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It is shown that the data-to-solution map for the generalized
reduced Ostrovsky (gRO) equation is not uniformly continuous
on bounded sets in Sobolev spaces on the circle with exponent
s > 3/2. Considering that for this range of exponents the gRO
equation is well posed with continuous dependence on initial data,
this result makes the continuity of the solution map an optimal
property. However, if a weaker Hr-topology is used then it is
shown that the solution map becomes Hölder continuous in Hs .
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1. Introduction and results

We consider the initial value problem for the generalized reduced Ostrovsky equation (gRO)

∂t u + 1

k + 1
∂x

(
uk+1) − γ ∂−1

x u = 0, (1.1)

u(x,0) = u0(x), x ∈ T, t ∈ R, (1.2)
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where k is a positive integer, γ is a constant, T = R/2πZ is the torus, and Hs(T) is the Sobolev space
on the torus with exponent s. For s > 3/2 we prove that the Cauchy problem (1.1)–(1.2) is locally
well posed in Hs(T) and that the data-to-solution map is continuous but not uniformly continuous.
Furthermore, we show that the solution map is Hölder continuous in Hs(T) if it is equipped with an
Hr(T)-norm, 0 � r < s.

The gRO equation appears in the literature more often in the following local form

(
ut + ukux

)
x = γ u. (1.3)

When k = 1 this equation is obtained from the Ostrovsky equation found in Ostrovsky [20]

(ut + c0ux + αuux + βuxxx)x = γ u. (1.4)

By choosing β = 0, the equation is called the reduced Ostrovsky equation in Cai, Xie, and Yang [2],
in Parkes [21] and in Stepanyants [27]. With c0 = 0 = β and α = 1 = γ , it is called the Ostrovsky–
Hunter equation by Boyd [1] and the Vakhnenko equation by Morrison, Parkes and Vakhnenko [19]
and Vakhnenko and Parkes [32]. This equation was first presented by Vakhnenko [31] to describe
high-frequency waves in a relaxing medium. Furthermore, it has been shown to be integrable in
the sense that an inverse scattering problem can be formulated [32]. Hunter [13] noted that writing
the equation as (1.4) meant that there is no long wave dispersion. The equation would now model
waves with a wave frequency that is significantly larger than the Coriolis frequency. A numerical
solution was then found with an initial guess of a sine wave for the lowest amplitude wave. Hunter
showed that the equation is well posed if the initial condition and the corresponding solution u(x, t)
are mean zero. An exact N loop soliton solution was found for an arbitrary integer N � 2 in [19].
A transformation of the independent variables enabled the use of Hirota’s method. The solution was
then found in its implicit form. In Boyd [1], it is noted that the dilational symmetry of the Ostrovsky–
Hunter equation allows a restriction to the torus without loss of generality. Since the equation has
traveling wave and limiting wave properties that are found in other wave equations, they are used in
finding a solution. The method of matched asymptotic expansions is used to find an approximation
and the derived approximations are then tested for accuracy.

For k = 2 this equation becomes the short pulse equation (SPE). It is used in nonlinear optics as
a model for very short pulse propagation in nonlinear media by Schäfer and Wayne [25]. It has been
shown that the SPE provides a better approximation to the solution of Maxwell’s equation than the
nonlinear Schrödinger equation (NLSE). Sakovich and Sakovich discovered that the SPE is integrable as
well by finding a Lax pair and then transforming the equation into the sine-Gordon equation [23]. This
allowed the authors then to show it has explicit analytical solutions of loop and breather form [24].
Global well-posedness with small initial data was shown in Pelinovsky and Sakovich [22]. Studying the
SPE under its guise as the Ostrovsky–Hunter equation, Liu, Pelinovsky and Sakovich found sufficient
conditions for wave breaking on an infinite line and in a periodic domain [18]. Local well-posedness
for s � 2 was shown and conditions for wave breaking are found that are sharper than previous re-
sults. From an applications standpoint, the accuracy of the SPE increases as the pulse width shortens.
This has led to the derivation of a regularized SPE which has smooth traveling wave solutions, under
appropriate conditions by Costanzino, Manukian and Jones [4].

Well-posedness for the Ostrovsky equation (γ �= 0) has been presented in many sources. We con-
sider a few here and refer the reader to the references of the papers for further study. Local-in-time
well-posedness for Hs(R), s > 3/2, was proved using parabolic regularization while continuous de-
pendence came from Bona–Smith approximations in Varlamov and Liu [33]. This result was extended
to s > 3/4 in Linares and Milanés [17]. The result was further extended for s � −1/8 locally and
globally to L2(R) by Huo and Jia [14]. Using a variation of Bourgain’s called the “I-method”, global
well-posedness in Hs(R) for s > −3/10 is shown in Isaza and Mejía [15]. Other well-posedness results
are presented in [7,30,34].
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The first result of our work states that the periodic initial value problem for the gRO equation
is well posed in the sense of Hadamard in Sobolev spaces with exponent greater than 3/2. More
precisely, we have the following result.

Theorem 1.1. If s > 3/2 and u0 ∈ Hs(T) then there exist T > 0 and a unique solution u ∈ C([0, T ]; Hs(T)) of
the initial value problem (1.1)–(1.2), which depends continuously on the initial data u0 . Furthermore, we have
the estimate

∥∥u(t)
∥∥

Hs(T)
� k

√
2 · ecs T · ‖u0‖Hs(T), for 0 � t � T � 1

2kcs
ln

(
1 + 1

‖u0‖k
Hs(T)

)
, (1.5)

where cs > 0 is a constant depending on s.

Well-posedness of the gRO equation on the line and for s > 3/2 has been proved by Stefanov,
Shen and Kevrekidis [26]. Also, in [26] they proved some global well-posedness results. The proof
of Theorem 1.1 is based on a Galerkin-type approximation method, which for quasi-linear symmetric
hyperbolic systems can be found in Taylor [28,29].

The second result of this paper, which is motivated by the works of Himonas and Holliman [8],
Himonas and Kenig [9], Himonas, Kenig and Misiołek [10], Himonas, Misiołek and Ponce [11], and
Holliman [12], demonstrates that continuous dependence of the solution on initial data is sharp.

Theorem 1.2. If s > 3/2 then the data-to-solution map for the generalized reduced Ostrovsky equation de-
fined by the Cauchy problem (1.1)–(1.2) is not uniformly continuous from any bounded subset of H s(T) into
C([0, T ]; Hs(T)).

The proof of the analogous result for the Camassa–Holm equation relies on the conservation of
the H1-norm [9,10], while the proof of the corresponding result for the Degasperis–Procesi equation
relies on the conservation of a twisted L2-norm [8]. However, the method of the proof for Theo-
rem 1.2 does not invoke any conserved quantities as in Grayshan [6]. To demonstrate the sharpness
of continuity, sequences of approximate solutions that contain terms of both high and low frequency
are constructed. The actual solutions are then found by solving the Cauchy problem with initial data
given by the approximate solutions at time t = 0. Then the error produced by solving the Cauchy
problem and by using approximate solutions is shown to be inconsequential. The proof is also based
on the well-posedness result Theorem 1.1 and in particular on estimate for the size of the solution
and its lifespan.

We note that our method of proof of well-posedness does not rely upon a fixed point theorem for
contraction mappings. Since there is not uniform continuity on the space where the solutions live,
the local well-posedness of gRO in Hs(T) cannot be shown by use of this method.

Although the data-to-solution map is not uniformly continuous on Hs(T), in our third result we
show that if a properly weakened topology is chosen then it becomes Hölder continuous. More pre-
cisely, we prove the following result.

Theorem 1.3. Let s > 3/2 and 0 � r < s. Then the data-to-solution map of the Cauchy problem for the gener-
alized reduced Ostrovsky equation (1.1)–(1.2) is Hölder continuous with exponent

α =
{

1, if 0 � r � s − 1,

s − r, if s − 1 < r < s
(1.6)

as a map from B(0,ρ) ⊂ Hs(T), with Hr(T)-norm, into C([0, T ]; Hr(T)). More precisely, we have

∥∥u(t) − w(t)
∥∥

r � c
∥∥u(0) − w(0)

∥∥α
r (1.7)
C([0,T ];H (T)) H (T)
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for all u(0), w(0) ∈ B(0,ρ) = {u ∈ Hs(T): ‖u‖Hs(T) < ρ} and u(t), w(t) the solutions corresponding to the
initial data u(0), w(0), respectively. The lifespan T > 0 and the constant c > 0 depend on s, r and ρ .

The proof of Theorem 1.3 follows the work of Chen, Liu, and Zhang [3] and Grayshan [6]. The
paper is structured as follows. In Section 2, we define the inverse partial and approximate solutions,
estimate the Hσ (T) norm of the error, and construct sequences of initial data that demonstrate the
non-uniformity of the data-to-solution map. In Section 3, we provide an overview of the local well-
posedness result for s > 3/2 with an accompanying solution size estimate. Finally, in Section 4, we
prove Theorem 1.3.

2. Proof of Theorem 1.2

Before giving the proof of the non-uniform dependence for the gRO equation we shall state the
definition of the inverse ∂−1

x and its basic properties. A more detailed discussion of ∂−1
x can be found

in Fokas and Himonas [5] and Holliman [12]. For f ∈ Hs(T) the inverse of ∂x is defined by the formula

∂−1
x f (x)

.= ∂̃−1
x f (x) − 1

2π

2π∫
0

∂̃−1
y f (y)dy, (2.1)

where ∂̃−1
x is given by

∂̃−1
x f (x)

.=
x∫

0

f (y)dy − x

2π

2π∫
0

f (y)dy.

It defines a continuous linear map ∂−1
x : Hs(T) → Ḣ s+1(T) satisfying the estimate∥∥∂−1

x f
∥∥

Ḣ s+1(T)
� ‖ f ‖Ḣ s(T) � ‖ f ‖Hs(T). (2.2)

Also, it is both a left and right inverse of the operator ∂x : Ḣ s+1(T) → Ḣ s(T). Moreover, it satisfies the
relations

∂−1
x ∂x f (x) = f (x) − f̂ (0), f ∈ Hs(T),

∂x∂
−1
x f (x) = f (x) − 1

2π
f̂ (0), f ∈ Hs(T).

Since for any r � 0 and g ∈ Ḣr(T) we have ‖g‖Hr(T) � 2r/2‖ f ‖Ḣr (T) , from (2.2) we also obtain the
following inequality ∥∥∂−1

x f
∥∥

Hr(T)
� 2r/2

∥∥∂−1
x f

∥∥
Ḣr(T)

� 2r/2‖ f ‖Ḣr−1(T). (2.3)

Recall that for any real number s the Sobolev space Hs(T) is defined by the norm

‖ f ‖2
Hs(T) = 1

2π

∑
k∈Z

(
1 + k2)s∣∣ f̂ (k)

∣∣2
.

The homogeneous Sobolev space Ḣ s(T) is the subspace of Hs(T) defined by the condition f̂ (0) = 0
and its norm is defined by
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‖ f ‖2
Ḣ s(T)

=
∑
k∈Ż

|k|2s
∣∣ f̂ (k)

∣∣2
,

where Ż = Z − {0}. Here, the Fourier transform is defined by

f̂ (k) =
∫
T

e−ixk f (x)dx.

Next, we will prove Theorem 1.2 for Sobolev exponents s > 3/2. The basis of our proof rests upon
finding two sequences of solutions, {un}, {vn} in C([0, T ]; Hs(T)), to the gRO i.v.p. (1.1)–(1.2) that
share a common lifespan and satisfy

∥∥un(t)
∥∥

Hs(T)
+ ∥∥vn(t)

∥∥
Hs(T)

� 1,

lim
n→∞

∥∥un(0) − vn(0)
∥∥

Hs(T)
= 0,

and

lim inf
n

∥∥u1,n(t) − u−1,n(t)
∥∥

Hs(T)
�

∣∣sin(t)
∣∣ for t ∈ (0, T ] for k-odd,

lim inf
n

∥∥u1,n(t) − u0,n(t)
∥∥

Hs(T)
�

∣∣sin(t/2)
∣∣ for t ∈ (0, T ] for k-even.

2.1. Approximate gRO solutions

For any n, a positive integer, we define the approximate solution uω,n = uω,n(x, t) as

uω,n(x, t)
.= ωn−1/k + n−s cos(nx − ωt), (2.4)

where

ω = −1,1 if k is odd and ω = 0,1 if k is even. (2.5)

Then substituting the above approximate solutions into gRO (1.1) gives the error

E(t) = E = ωn−s sin(nx − ωt)

+ [
ωn−1/k + n−s cos(nx − ωt)

]k · [−n−s+1 sin(nx − ωt)
]

+ γ ∂−1
x

[
uω,n]. (2.6)

Taking into account that for ω satisfying condition (2.5) we have ωk = ω; thus, the first term in the
error, which has Hs norm of 1, cancels. Therefore, we have

E = −
k∑

j=1

(
k

j

)
ωk− jn− 1

k (k− j)− js−s+1 cos j(nx − ωt) sin(nx − ωt) + γ ∂−1
x

[
uω,n].
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Next, using the identity sin(2α) = 2 sinα cosα, we write E in the following form

E = −1

2

k∑
j=1

(
k

j

)
ωk− jn− 1

k (k− j)− js−s+1 cos j−1(nx − ωt) sin
[
2(nx − ωt)

] + γ ∂−1
x

[
uω,n].

Finally, using the formulas

∥∥cos(nx − α)
∥∥

Hσ (T)
≈ nσ and

∥∥sin(nx − α)
∥∥

Hσ (T)
≈ nσ (2.7)

and the Algebra Property, we estimate the Hσ -norm of E as follows

‖E‖Hσ (T) � 1

2

k∑
j=1

(
k

j

)
ωk− jn− 1

k (k− j)− js−s+1n( j−1)σ · nσ + |γ |∥∥∂−1
x uω,n

∥∥
Hσ (T)

. (2.8)

Also, using inequality (2.3) we have

∥∥∂−1
x uω,n

∥∥
Hσ (T)

� 2σ/2
∥∥uω,n

∥∥
Hσ−1(T)

� n−s+(σ−1). (2.9)

Since |ω| � 1 from (2.8) and (2.9) we get

‖E‖Hσ (T) �
k∑

j=1

n( j−k) 1
k −( j+1)s+1+σ ( j−1+1) + n−s+(σ−1) =

k∑
j=1

n j( 1
k −s+σ )−s + n−s−1+σ . (2.10)

Recall that σ < s − 1 < s − 1
k . Thus, σ − s + 1

k � s − 1
k − s + 1

k = 0. Along with k � 1, we now have

k∑
j=1

n j( 1
k −s+σ )−s � n

1
k −s+σ−s � n1−s+σ−s = n1−2s+σ . (2.11)

Therefore, from (2.10) and (2.11) we see that for s > 3/2 the error of the approximate solutions
satisfies the estimate

‖E‖Hσ (T) � n−rs , (2.12)

where

rs =
{

2s − σ − 1, if s � 2,

s + 1 − σ , if s � 2.
(2.13)
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2.2. Actual gRO solutions

Let uω,n(x, t) be the actual solutions to the gRO i.v.p. (1.1)–(1.2) with initial data uω,n(x,0) =
uω,n(x,0). More precisely, uω,n(x, t) solves

∂t uω,n = −uk
ω,n∂xuω,n + γ ∂−1

x uω,n, (2.14)

uω,n(x,0) = ωn−1/k + n−s cos(nx), x ∈ T, t ∈ R. (2.15)

Notice that (2.7) implies that the initial data uω,n(x,0) ∈ Hs(T) for all s � 0, since

∥∥uω,n(·,0)
∥∥

Hs(T)
� ωn−1/k + n−s

∥∥cos(nx)
∥∥

Hs(T)
≈ 1,

for n sufficiently large. Hence, by Theorem 1.1, there is a T > 0 such that for n > 1, the Cauchy
problem (2.14)–(2.15) has a unique solution in C([0, T ]; Hs(T)) with lifespan T > 0 such that uω,n

satisfies (1.5) for t ∈ [0, T ].
To estimate the difference between the actual solutions and the approximate solutions, we define

v = uω,n − uω,n which satisfies the following i.v.p.

∂t v = E −
[

1

k + 1
∂x

(
uω,n)k+1 − 1

k + 1
∂x(uω,n)

k+1
]

+ γ ∂−1
x v,

where

v(x,0) = 0, x ∈ T, t ∈ R.

For ease of notation, we rewrite the i.v.p. as

∂t v = E − 1

k + 1
∂x[w · v] + γ ∂−1

x v, (2.16)

where

w = (
uω,n)k + (

uω,n)k−1
uω,n + · · · + uω,n(uω,n)

k−1 + (uω,n)
k

and E satisfies the estimate in (2.12).
We will now show that the Hs norm of the difference v decays to zero as n goes to infinity. Apply

the operator Dσ to both sides of (2.16), multiply by Dσ v , and integrate over the torus to get

1

2

d

dt

∥∥v(t)
∥∥2

Hσ (T)
=

∫
T

Dσ E Dσ v dx (2.17)

− 1

k + 1

∫
T

Dσ ∂x(w · v)Dσ v dx (2.18)

+ γ

∫
T

Dσ ∂−1
x v Dσ v dx. (2.19)

Applying the Cauchy–Schwarz inequality to the first integral, we get (2.17)
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∣∣(2.17)
∣∣ � ‖E‖Hσ (T)‖v‖Hσ (T). (2.20)

To estimate the second term, we commute Dσ ∂x and w to find

(2.18) ≈
∫
T

[
Dσ ∂x, w

]
v · Dσ v dx (2.21)

+
∫
T

w Dσ ∂x v · Dσ v dx. (2.22)

Starting with (2.21), we apply Cauchy–Schwarz to find∣∣(2.21)
∣∣ �

∥∥[
Dσ ∂x, w

]
v
∥∥

L2(T)

∥∥Dσ v
∥∥

L2(T)
. (2.23)

The commutator can be handled by the following Calderon–Coifman–Meyer type commutator esti-
mate that can be found in Himonas, Kenig and Misiołek [10].

Lemma 2.1. If σ + 1 � 0, ρ > 3/2 and σ + 1 � ρ , then∥∥[
Dσ ∂x, w

]
v
∥∥

L2 � C‖w‖Hρ ‖v‖Hσ . (2.24)

Applying Lemma 2.1 with σ + 1 � 0, ρ = s > 3/2 and σ + 1 � s tells us∣∣(2.21)
∣∣ � ‖w‖Hs(T)‖v‖Hσ (T)‖v‖Hσ (T) = ‖w‖Hs(T)‖v‖2

Hσ (T). (2.25)

For the second term, we apply integration-by-parts to find

∣∣(2.22)
∣∣ ≈

∣∣∣∣ ∫
T

∂x w
(

Dσ v
)2

dx

∣∣∣∣. (2.26)

Applying Hölder’s inequality and the Sobolev Embedding Theorem with s > 3/2 results in∣∣(2.22)
∣∣ � ‖∂x w‖L∞(T)‖v‖2

Hσ (T) � ‖w‖Hs(T)‖v‖2
Hσ (T). (2.27)

We now consider the non-local term, where we apply the Cauchy–Schwarz inequality and use the
continuity of ∂−1

x to find ∣∣(2.19)
∣∣ � ‖v‖2

Hσ (T). (2.28)

Finally, combining (2.20), (2.25), (2.27) and (2.28) we obtain an energy estimate for v

1

2

d

dt

∥∥v(t)
∥∥2

Hσ (T)
� ‖E‖Hσ (T)‖v‖Hσ (T) + ‖w‖Hs(T)‖v‖2

Hσ (T) + ‖v‖2
Hσ (T). (2.29)

We shall show that ‖w‖Hs(T) � 1. Substituting in the definition of w gives us

‖w‖Hs(T) = ∥∥(
uω,n)k + (

uω,n)k−1
uω,n + · · · + (uω,n)

k
∥∥

Hs(T)
.

The triangle inequality, the Algebra Property and (2.7) result in



M. Davidson / J. Differential Equations 252 (2012) 3797–3815 3805
‖w‖Hs(T) � n−1/k + 1.

The actual solutions are bounded by the solution size estimate in Theorem 1.1∥∥uω,n(t)
∥∥

Hs(T)
�

∥∥uω,n(0)
∥∥

Hs(T)
� n−1/k + 1.

We consider a general term ‖uω,n‖ j−k
Hs(T)

‖uω,n‖ j
Hs(T)

and use the above two inequalities to find

‖w‖Hs(T) �
∥∥uω,n

∥∥k
Hs(T)

+ ∥∥uω,n
∥∥k−1

Hs(T)
‖uω,n‖Hs(T) + · · · + ‖uω,n‖k

Hs(T)

�
(
n−1/k + 1

)k + (
n−1/k + 1

)k−1(
n−1/k + 1

) + · · · + (
n−1/k + 1

)k � 1k = 1.

Thus, we have

‖w‖Hs(T) � 1. (2.30)

We can refine (2.29) by first using (2.30) to write

1

2

d

dt

∥∥v(t)
∥∥2

Hσ (T)
� ‖E‖Hσ (T)‖v‖Hσ (T) + ‖v‖2

Hσ (T). (2.31)

Solving (2.31) and using the error estimate (2.12) gives∥∥v(t)
∥∥

Hσ � n−rs , (2.32)

which shows that the Hσ -norm of v(t) decays for all t ∈ [0, T ]. Also from the well-posedness esti-
mates for gRO we have that ∥∥v(t)

∥∥
Hs+1 �

∥∥uω,n(0)
∥∥

Hs+1 � n, (2.33)

which shows that the Hs+1-norm of v(t) may grow for t ∈ [0, T ]. Next, using interpolation between
σ and s + 1 we show that the Hs-norm of v(t) decays. In fact, using (2.32) and (2.33) we have∥∥v(t)

∥∥
Hs �

∥∥v(t)
∥∥1/(s+1−σ )

Hσ

∥∥v(t)
∥∥(s−σ )/(s+1−σ )

Hs+1 � n
−1

s+1−σ (rs−s+σ ).

Finally, from this inequality and the definition of rs (2.35) we see that for given s > 3/2 and 1/2 <

σ < s − 1 the difference v(t) between approximate solutions and solutions with the same initial data
satisfies the estimate ∥∥v(t)

∥∥
Hs(T)

� n−ρs , t ∈ [0, T ], (2.34)

where

ρs =
{

(s − 1)/(s + 1 − σ), if s � 2,

1/(s + 1 − σ), if s � 2.
(2.35)

Proof of non-uniform dependence. Here we will prove Theorem 1.2 for Sobolev exponents s > 3/2.
The basis of our proof rests upon finding two sequences of solutions to the gRO i.v.p. (1.1)–(1.2) that
share a common lifespan and satisfy three conditions. For k-odd, we take the sequence of solutions
with ω = ±1 and for k-even the sequence of solutions with ω = 0,1. The three conditions they satisfy
are as follows
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(1) ‖uω,n(t)‖Hs(T) � 1 for t ∈ [0, T ],
(2) ‖u1,n(0) − u−1,n(0)‖Hs(T) → 0 as n → ∞ for k-odd,

‖u1,n(0) − u0,n(0)‖Hs(T) → 0 as n → ∞ for k-even, and
(3) lim infn ‖u1,n(t) − u−1,n(t)‖Hs(T) � |sin(t)| for t ∈ (0, T ] for k-odd,

lim infn ‖u1,n(t) − u0,n(t)‖Hs(T) � |sin(t/2)| for t ∈ (0, T ] for k-even.

Property (1) for k-even or odd follows from the solution size estimate in Theorem 1.1. We have∥∥uω,n(t)
∥∥

Hs(T)
�

∥∥uω,n(0)
∥∥

Hs(T)
� 1.

Property (2), for k-odd, follows from the definition of our approximate solutions (2.4). We have∥∥u1,n(0) − u−1,n(0)
∥∥

Hs(T)
= ∥∥u1,n(0) − u−1,n(0)

∥∥
Hs(T)

= ∥∥n−1/k + n−s cos(nx) + n−1/k − n−s cos(nx)
∥∥

Hs(T)

= 4πn−1/k → 0 as n → ∞.

Similarly, for k-even we have∥∥u1,n(0) − u0,n(0)
∥∥

Hs(T)
= ∥∥u1,n(0) − u0,n(0)

∥∥
Hs(T)

= ∥∥n−1/k + n−s cos(nx) − n−s cos(nx)
∥∥

Hs(T)

= 2πn−1/k → 0 as n → ∞.

For property (3), we consider k-odd first. Using the reverse triangle inequality we get∥∥u1,n(t) − u−1,n(t)
∥∥

Hs �
∥∥u1,n(t) − u−1,n(t)

∥∥
Hs − ∥∥u1,n(t) − u1,n(t)

∥∥
Hs − ∥∥u−1,n(t) − u−1,n(t)

∥∥
Hs

�
∥∥u1,n(t) − u−1,n(t)

∥∥
Hs − n−ρs ,

from which we obtain that

lim inf
n→∞

∥∥u1,n(t) − u−1,n(t)
∥∥

Hs � lim inf
n→∞

∥∥u1,n(t) − u−1,n(t)
∥∥

Hs . (2.36)

Since, by the trigonometric identity cos(α − β) − cos(α + β) = 2 sinα sinβ , we have

u1,n(t) − u−1,n(t) = 2n1/k + 2n−s sin(nx) sin(t),

inequality (2.36) gives

lim inf
n→∞

∥∥u1,n(t) − u−1,n(t)
∥∥

Hs(T)
� lim inf

n→∞
(∣∣sin(t)

∣∣ − n1/k) �
∣∣sin(t)

∣∣, (2.37)

which completes the proof of property (3) in the case that k is odd.
We now consider k-even. Similarly, using the reverse triangle inequality, the definition of approxi-

mate solutions, and the fact that the difference between solutions and approximate solutions decays,
we get

lim inf
∥∥u1,n(t) − u0,n(t)

∥∥
Hs � lim inf

∥∥u1,n(t) − u0,n(t)
∥∥

Hs , (2.38)

n→∞ n→∞
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where now

u1,n(t) − u0,n(t) = n1/k + 2n−s sin(nx − t/2) sin(t/2).

Therefore (2.38) gives

lim inf
n→∞

∥∥u1,n(t) − u0,n(t)
∥∥

Hs(T)
� lim inf

n→∞
(∣∣sin(t/2)

∣∣ − n1/k) �
∣∣sin(t/2)

∣∣, (2.39)

which completes the proof of Theorem 1.2. �
3. Proof of Theorem 1.1

The generalized reduced Ostrovsky equation (1.1) (as is) cannot be thought of as an o.d.e. on the
space Hs(T). Specifically, we note that for u ∈ Hs(T) the product uk∂xu ∈ Hs−1(T). This difficulty is
overcome by showing the existence of solutions to a mollified smooth version of the gRO i.v.p., which
we later show gives rise to solutions of (1.1)–(1.2). Consider the mollified smooth version of the gRO
i.v.p.

∂t u = − Jε
[
( Jεu)k · ∂x Jεu

] + γ ∂−1
x u := Fε, (3.1)

u(x,0) = u0(x), u0 ∈ Hs(T), x ∈ T, t ∈ R, (3.2)

where for each ε ∈ (0,1], the operator Jε is the Friedrichs mollifier. We fix a Schwartz function
j ∈ S(R) that satisfies 0 � ĵ(ξ) � 1 for every ξ ∈ R and ĵ(ξ) = 1 for ξ ∈ [−1,1]. This allows us to
define the periodic functions jε as

jε(x) = 1

2π

∑
n∈Z

ĵ(εn)einx.

Then Jε is given by Jε f (x) = jε ∗ f (x). This construction of jε results in a lemma that will prove
repeatedly useful throughout the paper.

Lemma 3.1. If r � s and I − Jε : Hs → Hr , then

‖ f − Jε f ‖Hr = o
(
εs−r). (3.3)

Proof. Let f ∈ Hs(T), then applying Hr(T) norm to (I − Jε) f gives us

lim
ε→0

‖ f − Jε f ‖2
Hr(T)

ε2(s−r)
= lim

ε→0

∑
k∈Z

(1 + k2)r |̂ f (k)|2|1 − ĵ(εk)|2
ε2(s−r)

� lim
ε→0

∑
k∈Z|εk|>1

∣∣1 − ĵ(εk)
∣∣2∣∣ f̂ (k)

∣∣2(
1 + k2)s = 0. �

Using the Algebra Property, we see that the mollified i.v.p. is an o.d.e. on Hs(T). Moreover, for
each ε ∈ (0,1], the map Fε : Hs(T) → Hs(T) in (3.1) is continuously differentiable with the derivative
at u0 ∈ Hs(T) given by

F ′
ε(u0)u = − Jε

(
k( Jεu0)

k−1 Jεu · ∂x Jεu0 + ( Jεu0)
k · ∂x Jεu

) + γ ∂−1
x u.

Hence, for each ε ∈ (0,1], (3.1)–(3.2) has a unique solution uε with lifespan Tε > 0.
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3.1. Energy estimate

For each ε, there is a solution uε to the mollified gRO (3.1)–(3.2). The lifespan of each of these
solutions has a lower bound Tε . In this subsection, we shall demonstrate that there is actually a
lower bound T > 0 that does not depend upon ε. This estimate is crucial in our proofs. To show the
existence of T , we shall derive an energy estimate for the uε . Applying the operator Ds to both sides
of (3.1), multiplying by Dsuε , and integrating over the torus yields the Hs(T)-energy of uε

1

2

d

dt

∥∥uε(t)
∥∥2

Hs(T)
= −

∫
T

Ds[ Jε
(
( Jεuε)

k · ∂x Jεuε

)] · Dsuε dx (3.4)

+ γ

∫
T

Ds∂−1
x uε · Dsuε dx. (3.5)

To bound the energy, we will need the following Kato–Ponce [16] commutator estimate.

Lemma 3.2 (Kato–Ponce). If s > 0, then there is a cs > 0 such that

∥∥[
Ds, f

]
g
∥∥

L2 � cs
(∥∥Ds f

∥∥
L2‖g‖L∞ + ‖∂x f ‖L∞

∥∥Ds−1 g
∥∥

L2

)
. (3.6)

To estimate the Burgers term (3.4), we rewrite it using the self-adjointness of Jε in L2, commute
Ds and vk , and apply Lemma 3.2 and the Sobolev Embedding Theorem with s > 3/2. For the non-
local term (3.5), the Cauchy–Schwarz inequality and the continuity of ∂−1

x provide the upper bound.
Given that s > 3/2, we have the resulting estimate

1

2

d

dt

∥∥uε(t)
∥∥2

Hs(T)
� cs

[∥∥uε(t)
∥∥k+2

Hs(T)
+ ∥∥uε(t)

∥∥2
Hs(T)

]
, 0 � t � Tε,

where cs is a constant and Tε is the lifespan of uε . Solving this differential inequality we see that the
solution uε exists at least until time T0, where

T0 = 1

kcs
ln

(
1 + 1

‖u0‖k
Hs(T)

)
.

For simplicity, we define T = T0/2 and find

∥∥uε(t)
∥∥k

Hs(T)
� 2‖u0‖k

Hs(T)e
kcs T , for 0 � t � T ,

which can be written as (1.5). We have now obtained a lower bound for Tε and an upper bound for
‖uε‖Hs(T) that are both independent of ε.

3.2. Existence of solutions

From the sequence of solutions to the mollified i.v.p. (3.1)–(3.2), we extract a sufficiently refined
subsequence which converges to a solution of the gRO i.v.p. (1.1)–(1.2). The main tools utilized in
this argument are Alaoglu’s Theorem, Ascoli’s Theorem, the compactness of the torus, and Rellich’s
Theorem. After refining the subsequence adequately, we obtain a subsequence which converges to
a solution of the gRO i.v.p. (1.1)–(1.2) in C([0, T ]; Hs(T)). For more details, we refer the reader to
Himonas and Holliman [8].
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3.3. Uniqueness

Here we will show the solution to the gRO i.v.p. (1.1)–(1.2) is unique. Our strategy is to develop an
energy estimate for the difference of two solutions. Fix the initial data u0 ∈ Hs(T) and let u and w be
two solutions to the gRO i.v.p. (1.1)–(1.2) with u(x,0) = u0(x) = w(x,0) ∈ Hs(T). Then the difference
v = u − w satisfies the following Cauchy problem

∂t v = − 1

k + 1
∂x

(
(u − w) ·

k∑
j=0

u j wk− j

)
+ γ ∂−1

x v,

with initial data v(0) = 0. For convenience, let w̃ = ∑k
j=0 u j wk− j . Then we have

∂t v = − 1

k + 1
∂x(v w̃) + γ ∂−1

x v. (3.7)

Let σ ∈ [0, s − 1]. The Hσ (T)-energy estimate is then given by

1

2

d

dt
‖v‖2

Hσ (T) = − 1

k + 1

∫
T

Dσ ∂x(v w̃) · Dσ v dx + γ

∫
T

Dσ ∂−1
x v · Dσ v dx. (3.8)

To bound (3.8), we commute Dσ ∂x and w̃ , which results in two integrals. The commutator integral
is estimated by applying the Cauchy–Schwarz inequality followed by Lemma 2.1 and the solution size
estimate (1.5). The second integral is bounded using integration by parts, the Sobolev Embedding
Theorem and the solution size bound (1.5). The non-local term is estimated by the Cauchy–Schwarz
inequality and the continuity of ∂−1

x . The resulting energy estimate is

1

2

d

dt

∥∥v(t)
∥∥2

Hσ (T)
�

∥∥v(t)
∥∥2

Hσ (T)
, (3.9)

which we solve to find the inequality

∥∥v(t)
∥∥2

Hσ (T)
�

∥∥v(0)
∥∥2

Hσ (T)
e2cs T .

We recall that v = u − w where u and w are both solutions to the gRO i.v.p. (1.1)–(1.2). This means
we have

∥∥v(t)
∥∥

Hσ (T)
�

∥∥v(0)
∥∥

Hσ (T)
ecs T

� ‖u0 − u0‖Hσ (T)e
cs T = 0. (3.10)

Thus, we have uniqueness. �
3.4. Continuity of the data-to-solution map

Proposition 3.3. The data-to-solution map for the gRO i.v.p. (1.1)–(1.2) from Hs(T) to C([0, T ]; Hs(T)) given
by u0 �→ u is continuous.
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Proof. Fix u0 ∈ Hs(T) and let {u0,n} ⊂ Hs(T) be a sequence such that

lim
n→∞ u0,n = u0 in Hr(T).

Then if u is the solution to the gRO i.v.p. (1.1)–(1.2) with initial data u0 and if un is the solution to
the gRO i.v.p. with initial data u0,n , we will prove that

lim
n→∞ un = u, in C

([0, T ]; Hs).
Our approach is to use energy estimates. To avoid some of the difficulties of estimating the term
involving uk∂xu, we will use the Jε convolution operator to smooth out the initial data. Let ε ∈ (0,1].
We take uε to be the solution to the gRO i.v.p. with smoothed initial data Jεu0 = jε ∗ u0. Similarly,
let uε

n be the solution with initial data Jεu0,n . Applying the triangle inequality, we arrive at

‖u − un‖C([0,T ];Hs) �
∥∥u − uε

∥∥
C([0,T ];Hs)

+ ∥∥uε − uε
n

∥∥
C([0,T ];Hs)

+ ∥∥uε
n − un

∥∥
C([0,T ];Hs)

. (3.11)

We will prove that for any η > 0, there exists an N such that for all n > N , each of these terms can
be bounded by η/3 for suitable choices of ε and N . We note that the choice of a sufficiently small ε
will be independent of N and will only depend on η; whereas, the choice of N will depend on both
η and ε. However, after ε has been chosen, N can be chosen so as to force each of the three terms to
be small.

3.4.1. Estimation of ‖uε − uε
n‖C([0,T ];Hs(T))

We can bound this term directly using an Hs(T)-energy estimate. Let v = v(n, ε) = uε − uε
n . Then

v satisfies the following Cauchy problem

∂t v = − 1

k + 1
∂x

[(
uε − uε

n

) k∑
j=0

(
uε

) j(
uε

n

)k− j

]
+ γ ∂−1

x (v),

where v(0) = uε(0) − uε
n(0) = Jεu0 − Jεu0,n . For ease of notation, define

w̃ =
k∑

j=0

(
uε

) j(
uε

n

)k− j
(3.12)

and we can write

∂t v = − 1

k + 1
∂x(v w̃) + γ ∂−1

x v. (3.13)

Apply the operator Ds to both sides of (3.13), multiply by Ds v and integrate over the torus to obtain
the Hs(T)-energy

1

2

d

dt

∥∥v(t)
∥∥2

Hs(T)
= − 1

k + 1

∫
T

Ds∂x(v w̃) · Ds v dx (3.14)

+ γ

∫
Ds∂−1

x v · Ds v dx. (3.15)
T
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To estimate (3.14), we commute Ds∂x and w̃ and apply Lemma 2.1 and the Sobolev Embedding theo-
rem to get

∣∣(3.14)
∣∣ � ‖w̃‖Hs+1(T)‖v‖2

Hs(T). (3.16)

We shall consider ‖w̃‖Hs+1(T) . From our construction of Jε , we can see that our initial data
Jεu0, Jεu0,n ∈ C∞ . Therefore, we may apply our solution size estimate (1.5), in conjunction with the
Algebra Property for s + 1 > 1/2, to the definition of ‖w̃‖Hs+1(T) to find

‖w̃‖Hs+1(T) �
k∑

j=0

‖ Jεu0‖ j
Hs+1(T)

‖ Jεu0,n‖k− j
Hs+1(T)

.

In examining ‖ Jεu0‖Hs+1(T) we shall use that if f ∈ Hs+1(T), then

‖ f ‖Hs+1(T) � ‖ f ‖Hs(T) + ‖∂x f ‖Hs(T).

Using this inequality and ‖∂x Jε f ‖Hs(T) � α
ε ‖ f ‖Hs(T) , we can write

‖ Jεu0‖Hs+1(T) � ‖ Jεu0‖Hs(T) + ‖∂x Jεu0‖Hs(T) � 1

ε
.

Similarly, we have

‖ Jεu0,n‖Hs+1(T) � 1

ε
‖u0‖Hs(T) � 1

ε
.

Therefore, we have

(3.16) � 1

ε
‖v‖2

Hs(T). (3.17)

Now we consider the non-local term (3.15). Using the Cauchy–Schwarz inequality and the continuity
of ∂−1

x results in

∣∣(3.15)
∣∣ � ‖v‖2

Hs(T). (3.18)

Combining (3.17) and (3.18), we have the following energy estimate

1

2

d

dt

∥∥v(t)
∥∥2

Hs(T)
� 1

ε
‖v‖2

Hs(T), (3.19)

which implies

∥∥v(t)
∥∥2

Hs(T)
�

∥∥v(0)
∥∥2

Hs(T)
e2 cs

ε t = ∥∥uε
0 − uε

0,n

∥∥2
Hs(T)

e2 cs
ε t .

Recalling that the solutions are mollified, we write

∥∥uε
0 − uε

0,n

∥∥
s e

cs
ε T = ∥∥ Jε

(
uε

0 − uε
0,n

)∥∥
s e

cs
ε T � ‖u0 − u0,n‖Hs(T)e

cs
ε T .
H (T) H (T)
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When we bound the first and third terms of (3.11), we will force ε to be small. After ε (independent
of N) is chosen, we can bound ‖uε − uε

n‖C([0,T ];Hs(T)) by taking N large enough that

‖u0 − u0,n‖Hs(T) <
η

3
e− cε T

ε .

Then we have

∥∥uε − uε
n

∥∥
C([0,T ];Hs(T))

� η

3
.

3.4.2. Estimation of ‖uε − u‖C([0,T ];Hs(T)) and ‖uε
n − un‖C([0,T ];Hs(T))

Since the arguments will be largely the same for both terms, we will omit the subscript n until
such a time as differences in their handlings emerge. For convenience, let v = uε −u. We use Newton’s
Binomial and the product rule to write

∂t v = 1

k + 1

[
k+1∑
j=1

(
k + 1

j

)
(−1) j j

(
uε

)k+1− j
v j−1∂x v (3.20)

+
k+1∑
j=1

(
k + 1

j

)
(−1) j(k + 1 − j)

(
uε

)k− j
v j∂xuε

]
(3.21)

+ γ ∂−1
x v, (3.22)

with initial condition v0 = Jεu0 − u0.
As in previous arguments, our strategy is to prove an Hs(T)-energy estimate for v . To bound the

terms that arise from the generalized Burgers equation, we consider an arbitrary term within the sum.
We rewrite each term as a commutator and then apply the Cauchy–Schwarz inequality before using
Lemma 3.2, the Sobolev Embedding Theorem, and the Algebra Property. For the non-local terms, we
employ the Cauchy–Schwarz inequality and the continuity of ∂−1

x . The resulting energy estimate is

1

2

d

dt
‖v‖2

Hs(T) �
k+1∑
j=1

(∥∥uε
∥∥k− j+1

Hs(T)
‖v‖ j+1

Hs(T)

+ ∥∥uε
∥∥k− j

Hs(T)

∥∥uε
∥∥

Hs+1(T)
‖v‖ j

Hs−1(T)
‖v‖Hs(T) + ‖v‖2

Hs(T)

)
. (3.23)

By interpolating between 0 and s, we have

‖v‖Hs−1(T) � ‖v‖
1
s

H0(T)
‖v‖1− 1

s
Hs(T)

� ‖v‖
1
s

L2(T)
.

Note that the solution size estimate (1.5) implies that ‖v(t)‖Hs(T) � 1. By utilizing an L2-energy es-
timate, it can be shown that ‖v(t)‖L2(T) = o(εs). This is used to reduce the energy estimate to the
differential inequality

dy � y + δ,

dt
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where y = y(t) = ‖v(t)‖2
Hs(T)

and δ = δ(ε) → 0 as ε → 0. Integrating from 0 to t , with t ∈ [0, T ], we
have

y(t) � y(0)eT + δ
(
eT − 1

)
.

3.4.3. Case of y = ‖v(t)‖Hs(T)

We first note that

∥∥v(t)
∥∥

Hs(T)
= ‖ Jεu0 − u0‖Hs(T) + δ(ε).

We can make δ arbitrary small by our choice of ε. Since

‖ Jεu0 − u0‖Hs(T) = o
(
εs−s) = o(1),

we have that ‖v(t)‖Hs(T) → 0 as ε → 0. Therefore, if we choose ε sufficiently small, we can bound
the first term of (3.11) by η

3 .

3.4.4. Case of y = ‖vn(t)‖Hs(T)

We first note that

∥∥vn(t)
∥∥

Hs(T)
= ‖ Jεu0,n − u0,n‖Hs(T) + δ(ε).

Thus, we have

‖ Jεu0,n − u0,n‖Hs(T) + δ �
∥∥ Jε(u0,n − u0)

∥∥
Hs(T)

+ ‖ Jεu0 − u0‖Hs(T) + ‖u0,n − u0‖Hs(T) + δ

� ‖u0,n − u0‖Hs(T) + ‖ Jεu0 − u0‖Hs(T) + δ.

We pick ε small so that ‖ Jεu0 − u0‖Hs(T) + δ(ε) is bounded. Then we pick n (dependent on ε) large
so that

∥∥uε
n − un

∥∥
Hs(T)

� ‖u0,n − u0‖Hs(T) + ‖ Jεu0 − u0‖Hs(T) + δ(ε) <
η

3

for n sufficiently large and ε sufficiently small.
This completes our proof of the well-posedness Theorem 1.1. �

4. Proof of Theorem 1.3

In this section, we will prove that the solution map for the gRO i.v.p. (1.1)–(1.2) is Hölder con-
tinuous. We begin with the case 0 � r � s − 1, where s > 3/2. Let u0, w0 ∈ B(0,ρ) ⊂ Hs(T) and
u, w ∈ C([0, T ]; Hs(T)) denote the corresponding solutions to the gRO i.v.p. (1.1)–(1.2) with initial data
u0, w0, respectively. Notice that we can find a common lifespan T > 0 for all initial data u0 ∈ B(0,ρ).
This follows from the fact that the lifespan Tu of any solution u ∈ B(0,ρ) to gRO (1.1)–(1.2) satisfies
the following inequality

Tu � 1

2kcs
ln

(
1 + 1

‖u0‖Hs(T)

)
>

1

2kcs
ln

(
1 + 1

ρ

)
= T ,

where T does not depend upon u.



3814 M. Davidson / J. Differential Equations 252 (2012) 3797–3815
We need to show that there exist constant c and Hölder exponent α such that∥∥u(t) − w(t)
∥∥

C([0,T ];Hr(T))
� c‖u0 − w0‖α

Hr(T).

If we let v(t) = u(t) − w(t), then v satisfies the following energy estimate

1

2

d

dt

∥∥v(t)
∥∥2

Hr(T)
�

∥∥v(t)
∥∥2

Hr(T)
,

as shown in the proof of uniqueness, see (3.9), provided that r ∈ [0, s − 1].
Solving the differential inequality (3.10) gives∥∥u(t) − w(t)

∥∥
Hr(T)

� ecs T ‖u0 − w0‖Hr(T), 0 � t � T , (4.1)

where u0, w0 ∈ B(0,ρ). Thus, we have shown that the data-to-solution map is Lipschitz continuous
as a map

Hs(T) ⊃ B(0,ρ)
with Hr -norm

→ C
([0, T ]; Hr(T)

)
for 0 � r � s − 1.

Let s − 1 < r < s, where s > 3/2. Interpolating between s − 1 and s we have

∥∥v(t)
∥∥

Hr(T)
�

∥∥v(t)
∥∥s−r

Hs−1(T)

∥∥v(t)
∥∥r+1−s

Hs(T)
. (4.2)

Since for s − 1 we can apply inequality (4.1), we have∥∥v(t)
∥∥

Hs−1(T)
� ecs T ‖u0 − w0‖Hs−1(T). (4.3)

Also, using the solution size estimate (1.5), we have∥∥v(t)
∥∥

Hs(T)
� k

√
2 · ecs T (‖u0‖Hs(T) + ‖w0‖Hs(T)

)
� k

√
2 · ecs T · 2ρ. (4.4)

Combining (4.2), (4.3), and (4.4) gives∥∥v(t)
∥∥

Hr(T)
� ecs T ·(s−r)( k

√
2 · ecs T · 2ρ

)r+1−s‖u0 − w0‖s−r
Hs−1(T)

.

Finally, taking into consideration the fact that s − 1 < r from the last inequality we obtain∥∥u(t) − w(t)
∥∥

Hr(T)
� cr,T ,ρ‖u0 − w0‖s−r

Hr(T)
, 0 � t � T ,

which shows that the solution map is Hölder continuous with exponent s − r. �
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