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Abstract Hydrologic risk assessment and uncertainty analysis by mathematical and statistical

methods provide useful information for decision makers. This study presents the application of risk

and uncertainty analysis to dam overtopping due to various inflows and wind speeds for the Meij-

aran Dam in the north of Iran. The procedure includes univariate flood and wind speed frequency

analyses, reservoir routing, and integration of wind set-up and run-up to calculate the reservoir

water elevation. Afterwards, the probability of overtopping was assessed by applying two uncer-

tainty analysis methods (Monte Carlo simulation and Latin hypercube sampling), and considering

the quantile of flood peak discharge, initial depth of water in the reservoir, and spillway discharge

coefficient as uncertain variables. The results revealed that rising water level in the reservoir is the

most important factor in overtopping risk analysis and that wind speed also has a considerable

impact on reservoirs that are placed in windy areas.
� 2012 Ain Shams University. Production and hosting by Elsevier B.V.
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1. Introduction

The proper design of a dam’s spillway and the flood control
capacity of a reservoir can ensure the safety of the dam and

avoid any undesirable problems, such as overtopping. Hence,
an exact estimate of flood design and extreme inflow hydro-
graphs is required for the design of such important hydraulic
structures. The flood design can be defined as the maximum

flood that a structure can safely pass while the most common
method for evaluating this flood is using univariate frequency
analysis of recorded peak discharges. Although univariate

flood frequency analysis is used to estimate peak discharges
for a particular return period, dams still suffer from
ier B.V. All rights reserved.
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Nomenclature

C spillway discharge coefficient

D mean water depth along the fetch length (m)
F fetch length (km)
F�1x inverse function
H0 average depth of water from bed (m)

H wave height (m)
Hs significance wave height (m)
Hmax maximum height of water (m)

HR height of dam (m)
Ys wind set up (m)
Yr wave run-up (m)

Hw total weight height (m)
I inflow (m3/s)
km kilometer
L load

m meter
MCM million cubic meters
Mf depth integrated wave moment flux per unit width

P[.] probability of.
Pk random permutation

Q outflow (cms)

R resistance
S storage (MCM)
t time (s)
T flood return period

Tw wind return period
ui uniform random number
V wind speed over the surface of water (km/h)

VTw wind speed in a specific return period (km/h)
xk random variates
z performance function

Zf flood performance function
Zfw flood and wind performance function
Dt time interval (s)
a risk

q density of water (kg/m3)
b reliability index indicator
l mean of variable

r standard deviation
h slope of the dam body
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overtopping, which comprises about one third of all uncon-
trolled breach failures [1].

Traditionally, the approach to dam design focuses deter-
ministic analysis on extreme events, such as probable maxi-
mum flood (PMF). PMF can be defined as amount of flood

that may be expected from the most severe combination of
meteorological and hydrologic conditions that are logically
possible. In other words, PMF considers the upper range of

flood potential and assumes zero-failure reliability. However,
the standard dam design has not been absolutely solved be-
cause of the uncertainty in variables and applied models, and
remains a difficult issue in hydrosystem engineering [2]. By

improving the mathematical and statistical models, the
increasing ability of computer programs, and the availability
of data records for longer periods, it is time to move from

the deterministic approaches in engineering design to probabi-
listic methods that consider higher order uncertainty in vari-
ables and models. Bowles [3] studied the tolerable risk

concept in hydrosystem engineering and presented some exam-
ples for tolerable risk criteria in dam safety. Wang and Bowles
[4] studied different breach locations of an earthen dam due to
wave overtopping. Their results showed that wind direction, as

well as wind speed, have an effect on breach location. Kwon
and Moon [5] introduced three major innovations to improve
overtopping risk elevations using probabilistic concepts for

existing dams. The first comprises used nonparametric proba-
bility density estimation methods for selected variables; the
second was applying Latin hypercube sampling to improve

Monte Carlo simulation efficiency; and the third was the use
of bootstrap re-sampling to determine initial water surface le-
vel. Marengo [6] studied the probability of overtopping during

dam construction by focusing on upstream water surface ele-
vation during flooding. Kuo et al. [7] conducted risk analysis
for the Feitsui Reservoir by considering five uncertainty anal-
ysis methods (MFOSM, RPEM, HPEM, LHS, and MCS) and

four initial water levels for five return periods. Goodarzi et al.
[20] presented the application of risk and uncertainty analysis
to dam overtopping based on univariate and bivariate flood
frequency analyses by applying Gumbel logistic distribution.

Other researchers who investigated dam safety risk assessment
were Wood [8], Cheng et al. [9,10], the Committee on the
Safety of Existing Dams [11], and Singh and Snorrason [12,13].

This study presents a probability-based method for estimat-
ing dam overtopping probability by considering the uncer-
tainty arising from peak discharges, initial water levels, and

spillway discharge coefficient. The Monte-Carlo simulation
(MCS) and Latin hypercube sampling (LHS), as the two most
effective sampling approaches were applied to perform the
uncertainty analysis. These results can be analyzed statistically

to predict system behavior. As the accuracy of these methods
strongly depends on sample size, large sample numbers
(20,000 for Monte-Carlo and 10,000 for LHS) were considered

in this study to increase calculation precision.
The overall process of risk and uncertainty analysis in this

study includes the following steps: data collection, flood and

wind frequency analysis, identification of uncertainty factors
in the overtopping analysis, reservoir routing, and risk and
uncertainty analyses (Fig. 1).
2. Dam risk model

If a system is unable to perform expected tasks, the system will

fail, and, accordingly, undesirable consequences will occur.
Failure can be defined as the load (L) exceeding system resis-
tance or capacity (R). Identifying load and resistance is a fun-
damental issue in risk analysis and it noticeably depends on the

type of hydraulic structure and problem physics. Tung et al.
[14] defined the probability of failure as:

Probability of failure ¼ PðL > RÞ ð1Þ

where P([.]) is the probability of failure.

Risk can also be represented as [16]:

a ¼ Risk ¼ PðZ < 0Þ ð2Þ



Figure 1 Flow chart for dam overtopping probability.

Table 1 Goodness-of-fit tests for the system outcomes.

T-Year Goodness-of-fit test Kolmogorov–Smirnov Anderson–Darling

Probability distribution Statistic value Table value Statistic value Table value

2 Log-normal 0.009 0.030 0.183 2.501

2 Normal 0.015 0.030 0.818 2.501

10 Log-normal 0.009 0.030 0.183 2.501

10 Normal 0.015 0.030 0.818 2.501

20 Log-normal 0.011 0.030 0.209 2.501

20 Normal 0.018 0.030 0.886 2.501

50 Log-normal 0.011 0.030 0.214 2.501

50 Normal 0.018 0.030 0.899 2.501

100 Log-normal 0.011 0.030 0.208 2.501

100 Normal 0.018 0.030 0.884 2.501
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where Z is performance function which can be defined as
Z= R � L, Z = (R/L) � 1, and Z = ln (R/L).

The performance function of an engineering system can be
described in several forms in which the selection of each form

depends on the distribution type of the performance function.
In this study, the system outcomes have been compared with
the log-normal and normal distributions, and the goodness-

of-fit test was applied to choose the appropriate distribution
based on the Kolmogorov–Smirnov and Anderson–Darling
tests (Table 1). The results of the test revealed that log-normal

distribution fits the data better than normal distribution; and
thus, the log form of performance function was selected. Hence,
the form of performance function (Z) can be written as follows:
Z ¼ ln
R

L

� �
ð3Þ

More information on various performance function forms
and their application to hydraulic engineering systems are pre-
sented by Yen [15].

2.1. Risk modeling for flood and wind overtopping

Overtopping happens when the flood outlet cannot release

water fast enough and water rises above the dam and spills
over (Fig. 2). In overtopping analysis, the maximum water
height in the reservoir (Hmax) and dam height (HR) can be



Figure 2 Overtopping risk concept based on probabilistic approach.
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considered as the load and resistance of the system, respec-

tively. Therefore, the overtopping probability with respect to
the performance function due to different inflows and wind
speeds can be expressed as follows [16]:

Zf ¼ ln
HR

Hmax

� �
ð4Þ

and

Zfw ¼ ln
HR

Hmax þHw

� �
ð5Þ

where Zf is flood performance function, Zfw is flood and wind
performance function, HR is dam crest height, Hw is the total

wave height, and Hmax is the highest water level during a flood
event, calculated based on reservoir routing. Finally, the over-
topping probability will be computed as:

Risk ¼ 1�Ø
lz

rz

� �
¼ 1�ØðbÞ ð6Þ

in which b is the reliability index indicator and is defined as the
mean ratio of the performance function (lz) to its standard

deviation (rz).

3. Reservoir routing

The main objective of overtopping analysis of an earth-filled
dam is estimating the water height in the reservoir under var-
ious inflows and wind speeds, and comparing the result with

the dam crest elevation. The known, frequently used flood
model, is the continuity equation with the following basic
form:

I�Q ¼ ds

dt
ð7Þ

where I and Q are reservoir inflow and outflow (m3/s), s is stor-
age (m3), and t is time (s). The implementation form of reser-

voir routing can be written as:

It þ Itþ1
2

�Qt þQtþ1
2

¼ Stþ1 � St

Dt
ð8Þ
where It and It+1 are inflow into the reservoir (m3/s), Qt and
Qt+1 are outflow from the reservoir (m3/s), St and St+1 are res-
ervoir storage (m3) at t and t+ 1, respectively, and Dt is time

interval (s).
The maximum water height in the reservoir could be

estimated by solving Eq. (8) step by step. Time intervalDt deter-
mines the length of each step in the reservoir routing and output
precision will be increased with decreasing Dt. In this study, a
time interval of 30 min was selected to reduce uncertainty
due to the highest water level possibility, which may occur

between t and t + 1. The fourth order Runge–Kutta was
applied to solve reservoir routing throughout this investigation.

4. Wind model

Wind can be defined as the horizontal movement of air, which
is created if the thermal temperature balance changes because

of unequal energy. Wind can start waves, raise the height of
water in a reservoir, and, consequently, increase the probabil-
ity of the occurrence of overtopping. In other words, if the

water elevation is very near the crest, the generated waves
might wash over and result in dam failure. Wind set-up and
wave run-up are applicable factors in evaluating the effect of

wind speed on the water surface elevation in reservoirs. Hence,
there is a requirement to make a relationship between the
wind return period (Tw) and wind speed in the desired return
period (VTw) to calculate wind set-up, wave run-up, and the

total height of water elevation. USBR [18,19] provided a
method to estimate wind-generated waves in reservoirs, which
is commonly accepted in the dam engineering community.

Based on USBR [19], the minimum duration to reach a
maximum wave height, tmin in hours, is calculated by the
following equation:

tmin ¼ 1:544
F0:66

V0:41
ð9Þ

where V is the wind speed over water in km/h, and F is fetch
length in km. The significant wave height Hs (m), which is
the average of the highest one-third of the waves of a given
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group or spectrum can be calculated by the following equation

[19]:

Hs ¼ 0:00237V1:23F0:5 ð10Þ

When wind hits the beach, a setup is created and the water

level rises higher than the normal water level in the reservoir.
This event is called wind set-up. USBR [19] has provided the
following equation to compute wind set-up:

Ys ¼
V2F

62772D
ð11Þ

where Ys (m) is wind set-up, F is fetch length km, V is wind

speed over the water surface (km/h) and D (m) is mean water
depth along the fetch length.

If a wave approaches or hits a structure, such as a dam, part

of the energy is destroyed because of turbulence and the rest of
the energy is used to run-up the dam embankment. Therefore,
wave run-up is defined as the vertical difference between

the highest water level caused by the run-up on the dam and
the water level at the slope foot. According to the height of
the run-up, it can be determined whether overtopping occurs
or not. This parameter is a function of the measured wave

characteristics including significant wave height, wavelength,
slope of dam body roughness, and dam permeability. Hughes
[17] presented an equation to compute the maximum wave

run-up based on the wave moment flux as follows:

YR

H0

¼ 3:84 � Tanh � MF

q � g �H2
0

� �1=2

ð12Þ

where YR is the maximum run-up of regular waves (m), H0 is
water depth from the bed to the current water elevation (m),
Mf is depth integrated wave moment flux per unit width, q is

the density of water (kg/m3), and h is the embankment slope.
Hughes [17] also presented an empirical relationship for esti-
mating momentum flux as follows:

MF

q � g �H2
0

� �
max

¼ A0

H0

gT2

� ��A1

ð13Þ

where A0 = 0.6392(H/H0)
2.0256, A1 = 0.1804(H/H0)

�0.391, and

H (m) is wave height, which can equal significant weight height
[4]. Finally, the total wave height, which is an integration of
the wind set-up and wave run-up in the reservoir, was calcu-

lated as follows:

Hw ¼ YR þ YS ð14Þ
5. Uncertainty analysis

In water resource engineering, making a decision about system
operation and capacity is strongly dependent on the system’s
reaction under some predictable conditions. However, it is
not possible to assess the system’s reaction with distinct cer-

tainty, as the various system components are subject to differ-
ent kinds of uncertainty. Uncertainty refers to the condition or
variable, which is not able to be quantified exactly and it has

random characteristics. One problem regarding the different
uncertain variables in complex and non-linear models like res-
ervoir routing is deriving the PDF of uncertain variables and

determining the appropriate statistical moments or probability
distribution of model outputs. Furthermore, any analysis in
the real world is based on historical recorded data, while
usually historical records are not long enough and the data
includes all sorts of errors. Sampling is potentially an applica-
ble method to compound several random input values and get

results with appropriate accuracy. Hence, the Monte Carlo
simulation and Latin hypercube sampling, as two significant
sampling techniques, were used in this study to quantify the

uncertainty in overtopping analysis.

5.1. Monte Carlo simulation (MCS)

Simulation is a process of recreating a real situation, usually
based on a set of hypotheses and mathematical formula. Sim-
ulation is a useful tool for evaluating system performance in

different conditions and also to test new theories in the form
of a computer program. The Monte Carlo process is a numer-
ical simulation that replicates stochastic variables according to
a certain statistical distribution. In other words, Monte Carlo

uses random numbers to model a desired process. To generate
continuous random numbers based on the Monte Carlo simu-
lation, consider X as a random variable and Fx(X) as its cumu-

lative distribution function (CDF), the inverse function for any
value of u � u(0, 1) can be written as:

X ¼ F�1x ðuÞ ð15Þ

where F�1x ðuÞ is the inverse function and u has a uniform distri-

bution on (0, 1).
It should be noted that the continuous probability distribu-

tions in hydrosystem engineering is strictly uptrend for all ran-
dom variables X and thus, there is a unique relationship

between Fx(x) and u as u= Fx(X). To generate m random vari-
ables using the CDF-inverse method, the following steps
should be repeated m times:

1. Draw a uniform random variate as u�u(0,1), (random
number generator).

2. Find x such that x ¼ F �1x ðuÞ.

There are two major concerns about the Monte Carlo sim-

ulation. First, it needs large computations to generate random
values, and second, result accuracy strongly depends on the
number of iterations and simulations. In the Monte Carlo sim-
ulation increasing sample size is a pre-requisite to achieving

higher precision results. However, the achieved results will lead
to sampling errors related to the number of selected random
variates with an inverse relation to the sample size number.

On the other hand, increasing sample size entails an increase
in computer time needed for generating random variates and
the simulation process.

5.2. Latin hypercube sampling (LHS)

There are some reduction variance techniques to increase the

precision of the Monte Carlo simulation outcome without
needing to increase the sample size [14]. Some of the most
important methods of variance reduction are antithetic-
variates technique, control variates, importance sampling tech-

nique, Latin hypercube sampling (LHS), correlated sampling,
and stratified sampling technique [14]. LHS is one of the main
variance reduction techniques that can increase the efficiency

of the output statistics parameters. In this method, the range
of each variable is divided into n non-overlapping intervals



Figure 3 Comparison of LHS and MCS outcomes.

Figure 4 The schematic view of Meijaran basin.

Table 2 Goodness of fit test of the maximum annual flood.

Probability distribution Anderson–darling

Statistic value Table value Remark

Gumbel Max 0.274 2.501 Ok

GEVa 0.201 2.501 Ok

Log–Logistic 0.270 2.501 Ok

Gamma 0.226 2.501 Ok

Log-Gamma 0.363 2.501 Ok

Pearson 5 (3P) 0.243 2.501 Ok

Log-Pearson 3 0.207 2.501 Ok

Normal 0.742 2.501 Ok

a General extreme value.
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with the equal probability 1/n. Then, a random variate is se-
lected from each range with regards to the desire probability

distribution [16]. A simple and primary algorithm for applying
the LHS method is:

1. Determine n.
2. Generate random uniform variates uK � u(0,1).
3. Calculate Pk from the following equation:

Pk ¼
1

n
uk þ

k� 1

n

� �
ð16Þ
where k = 1, 2, . . . , n.
4. Determine random variates xk from the inverted CDF as

follows [5]:

Xk ¼ F�1½Pk� ð17Þ

The main difference between LHS and MCS outcomes is

shown in Fig. 3, where each generated random variate from
the LHS is placed in a separate interval with the equal proba-
bility 1/n. In other words, each region only includes one ran-

dom variate, while the generated random variates from the
Monte Carlo (MC) technique are randomly distributed and
there may be more than one random variate, or no random
variate placed in an equal probability area.

6. Overtopping probability of existing dam

6.1. Study area and data collection

The proposed hydrologic dam risk was applied to the Meijaran

Dam in the north of Iran. The dam basin is located near the
south-west of the Caspian Sea, on the Nesa River. The Nesa
River watershed is between 50�350 and 50�420 longitude

36�490 and 36�520 latitude. The elevation of the watershed’s
highest point is 2143 m above the mean sea level with the aver-
age slope of 39% at the mountains part. The schematic view of

the Meijaran Basin is shown in Fig. 4.



Table 3 Mean and standard deviation of inflows to Meijaran

Reservoir.

T-Year 2-Years 10-Years 20-Years 50-Years 100-Years

l1 9.54 41.82 56.16 77.68 84.674

r1 1.10 6.74 12.03 22.92 31.13

l1: Mean of peak discharges and r1: standard deviation of peak

discharges.

Table 4 Goodness of fit test for maximum annual wind speed.

Probability distribution Anderson–darling

Statistic value Table value Remark

Gumbel Max 0.842 2.501 Ok

GEVa 0.806 2.501 Ok

Weibull 1.228 2.501 Ok

Gamma 0.832 2.501 Ok

Normal 0.941 2.501 Ok

Log-Normal (3P) 0.810 2.501 Ok

Pearson 5 (3P) 0.804 2.501 Ok

Log-Pearson 3 0.795 2.501 Ok

Log-Gamma 0.811 2.501 Ok

Gamma (3P) 0.832 2.501 Ok

a General extreme value.
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The construction of Meijaran Dam with a 186 m crest

length and 55 m height was started in 1996 and was completed
in 2003. The most important objectives for building this dam
were to supply agricultural water for 2050 ha, especially tea

farms, flood prevention along the Nesa River, secure domestic
supplies to downstream cities, and tourism development. All
daily inflow data (1968–2008) into the reservoir and daily res-

ervoir water elevation (2003–2009) were collected by the Maz-
andaran Ministry of Energy Data Center land based/surface
data collection. Team members collected all available daily
meteorological data including inflows, water elevation, rain-

fall, temperature, etc., for each station along the Nesa River,
and the recorded data were imported in Microsoft Excel work-
books for data quality assurance/quality control. The four

continuous-record stream flow gaging stations on the Nesa
River are (1) Ramsar station, (2) ChalakRud station, (3) Tir
or Shirrud station, and (4) Haratbar station.

6.2. Flood frequency analysis

Different statistical distributions were fitted to the annual max-

imum floods in order to estimate the peak flows in various re-
turn periods. The used distributions were: Gumbel Max,
Figure 5 Wind rose
General Extreme Value (GEV), Gamma, Log-Gamma, Log–
Logistic, Normal, Pearson 5 (3P), and Log-Pearson 3. After-
ward, a goodness-of-fit test was applied to choose the appro-

priate distribution based on the Anderson–Darling test
(Table 2). Although the result of test demonstrated that all dis-
tributions considered could be selected for recorded flood data,

the GEV distribution fits better than other distribution. From
frequency analysis, the values of mean and standard deviation
of estimated peak discharge were obtained at a given return
period and the results are presented in Table 3.

6.3. Wind flood frequency analysis

According to recorded monthly wind data for 33 years, there

are two main wind speed directions in the Meijaran Dam ba-
sin, namely, north-west and west. Although the west wind
of Meijaran basin.



Table 5 Value of wind speed and minimum duration to reach

maximum wave height.

T-Year CDF V (km/h) tmin (h)

2 0.500 15.73 0.164

10 0.900 23.64 0.139

20 0.950 26.82 0.132

50 0.980 31.09 0.124

100 0.990 34.42 0.119

T: Return period, CDF: cumulative density function, V: wind

speed, and tmin: minimum duration of wind.

Table 6 Statistical properties for uncertain parameters.

Variable Type PDF l r

H0 Random Normal 46.0 1.01

I Random GEV Table 2 Table 2

c Random Normal 2.13 0.071

H0: Initial water depth, I: inflow discharge, c: discharge coefficient,

l: mean, and r: standard deviation.
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speed is less than the north-west wind speed, the direction of
the west wind is along the fetch length and can generate higher

waves. The wind rose of Meijaran basin is presented in Fig. 5.
In this regard, the west wind data is applied to evaluate the

wind set-up and wave run-up in Meijaran’s reservoir. Different

statistical distributions were fitted to the 33 years (1975–2008)
annual maximum wind speed in order to estimate the maxi-
mum speeds in various return periods. The distributions uti-

lized were: Gumbel max, General extreme value, Gamma,
Log-gamma, Gamma 3P, Weibull, Log-normal 3P, Normal,
Pearson 5 (3P), and Log-Pearson 3. A goodness-of-fit test
was applied to select the appropriate distribution based on

the Anderson–Darling test and the results showed the
Table 7 Risk of overtopping by Monte Carlo method due to differ

H0 (m) T

2-Year 10-Year

46.0 1.97E�12 3.41E�11
47.5 6.29E�11 5.96E�10
49.0 6.09E�10 1.63E�08
50.5 5.20E�08 5.94E�07
52.0 3.91E�07 2.91E�06
H0: Initial water depth and T: flood return period.

Table 8 Risk of overtopping by LHS method due to different floo

H0 (m) T

2-Year 10-Year

46.0 9.84E�12 9.30E�11
47.5 1.04E�10 6.86E�10
49.0 7.09E�10 3.16E�08
50.5 1.37E�07 1.22E�06
52.0 9.65E�07 7.55E�06
Log-Pearson III distribution fits better than other distribution,
and, thus, it was selected for frequency analysis of wind speed
data (Table 4). Afterwards, the values of wind speeds were

computed at 2, 10, 20, 50, and 100-year return periods and
the results are presented in Table 5.

6.4. Uncertainty analysis

The considered uncertainty parameters in this study are as
follows:

1. Quantile of flood peak discharge in different return periods
(I): the main reasons for considering peak floods as uncer-

tain variables are error in data recording, lack of data, and
lateral inflow into the reservoir. The values of mean and
standard deviation of peak discharges for the Meijaran
Reservoir are presented in Table 3. The estimated peak dis-

charges based on GEV distribution have been used to gen-
erate inflow hydrographs, and then, the generated
hydrographs were routed into the reservoir to compute

the maximum water height.
2. The initial water level (H0): the average depth of water in

the reservoir was computed based on the observed and

recorded water elevation over 6 years (2003–2009) during
the wet seasons. The mean and standard deviation of water
depth were 46.0 (m) and 1.01 (m), respectively. In addition,
six more depths (at 1.5 m increments) were assumed as ini-

tial water depth to consider the effect of changing initial
water depth on the probability of overtopping.

3. Spillway discharge coefficient (C): its mean and standard

deviation were assumed to be 2.13 and 0.071, respectively.

The specifications of input parameters, such as mean l
standard deviation (r), and the probability distribution func-
tion (PDF), which were fitted to the random uncertain data,
are presented in Table 6.
ent floods.

20-Year 50-Year 100-Year

2.94E�10 6.34E�09 9.91E�08
3.37E�09 4.60E�08 4.75E�07
1.14E�07 5.60E�07 5.64E�06
4.03E�06 1.17E�05 2.12E�05
1.64E�05 4.66E�05 9.23E�05

ds.

20-Year 50-Year 100-Year

5.28E�10 7.51E�09 1.51E�07
4.57E�09 9.64E�08 8.64E�07
1.82E�07 1.38E�06 8.29E�06
6.63E�06 2.49E�05 5.90E�05
2.84E�05 1.12E�04 1.72E�04



Figure 6 Flood overtopping risks at initial water level 47.5 and 49.0 m based on MCS and LHS methods.
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6.5. Overtopping probability due to different floods

Based on the equations presented in the previous sections,

the probability of overtopping was calculated for various
floods at 2, 10, 20, 50, and 100-year return periods by con-
Table 9 Risk of Overtopping due to flood and wind using MCS.

Tw H0 (m) T

2-Years 10-Year

2-Years 46.0 2.27E�12 5.42E�1
47.5 7.27E�11 9.48E�1
49.0 7.03E�10 2.60E�0
50.5 6.00E�08 9.43E�0
52.0 4.55E�07 4.66E�0

10-Years 46.0 4.12E�12 9.47E�1
47.5 1.32E�10 1.65E�0
49.0 1.27E�09 4.53E�0
50.5 1.08E�07 1.64E�0
52.0 8.30E�07 8.20E�0

20-Years 46.0 8.12E�12 1.35E�1
47.5 2.59E�10 2.88E�0
49.0 2.50E�09 7.89E�0
50.5 2.13E�07 2.86E�0
52.0 1.65E�06 1.44E�0

50-Years 46.0 1.60E�11 1.93E�1
47.5 5.11E�10 4.12E�0
49.0 4.93E�09 1.12E�0
50.5 4.20E�07 4.07E�0
52.0 3.29E�06 2.08E�0

100-Years 46.0 3.16E�11 4.91E�1
47.5 1.01E�09 1.05E�0
49.0 9.71E�09 2.85E�0
50.5 8.25E�07 1.03E�0
52.0 6.54E�06 5.31E�0

Tw: Wind speed return period, T: flood return period, and H0: initial wa
sidering three uncertain variables as peak discharge, initial
water level, and spillway discharge coefficient. All uncertain

variables were assumed to be independent variables, while
the Monte-Carlo simulation (with a sample size of 20,000)
and Latin hypercube sampling (with a sample size of
s 20-Years 50-Years 100-Years

1 4.61E�10 1.10E�08 2.00E�07
0 5.26E�09 7.95E�08 9.52E�07
8 1.78E�07 9.61E�07 1.12E�05
7 6.25E�06 2.00E�05 4.18E�05
6 2.63E�05 8.44E�05 9.76E�05

1 7.41E�10 2.59E�08 4.09E�07
9 8.42E�09 1.85E�07 9.73E�07
8 2.83E�07 2.22E�06 5.60E�05
6 9.92E�06 4.59E�05 8.34E�05
6 4.33E�05 2.06E�04 4.15E�04

0 1.19E�09 6.07E�08 8.35E�07
9 1.35E�08 4.31E�07 1.97E�06
8 4.51E�07 5.14E�06 1.16E�05
6 1.57E�05 1.06E�04 5.55E�04
5 7.13E�05 5.02E�04 8.86E�04

0 1.91E�09 1.42E�07 1.70E�06
9 3.28E�08 8.79E�07 3.99E�06
7 7.19E�07 9.53E�06 4.08E�05
6 2.50E�05 4.52E�04 9.97E�04
5 1.17E�04 9.22E�04 1.89E�03

0 3.07E�09 3.33E�07 3.48E�06
8 5.25E�08 2.05E�06 8.08E�06
7 1.15E�06 2.20E�05 8.19E�05
5 5.91E�05 1.04E�03 5.93E�03
5 3.35E�04 2.25E�03 9.05E�03
ter level.



Table 10 Risk of Overtopping due to flood and wind using LHS.

Tw H0 (m) T

2-Years 10-Years 20-Years 50-Years 100-Years

2-Years 46.0 1.14E�11 1.48E�10 8.28E�10 1.31E�08 3.05E�07
47.5 1.20E�10 1.09E�09 7.15E�09 1.67E�07 1.73E�06
49.0 8.18E�10 5.03E�08 2.83E�07 2.37E�06 1.65E�05
50.5 1.59E�07 1.94E�06 1.03E�05 4.25E�05 1.17E�04
52.0 1.12E�06 1.21E�05 4.57E�05 2.02E�04 3.63E�04

10-Years 46.0 2.06E�11 2.59E�10 1.33E�09 3.07E�08 6.22E�07
47.5 2.17E�10 1.90E�09 1.14E�08 3.88E�07 1.77E�06
49.0 1.48E�09 8.77E�08 4.51E�07 5.49E�06 4.96E�05
50.5 2.87E�07 3.38E�06 1.63E�05 9.76E�05 2.33E�04
52.0 2.05E�06 2.13E�05 7.52E�05 4.93E�04 1.54E�03

20-Years 46.0 4.07E�11 3.69E�10 2.14E�09 7.19E�08 1.27E�06
47.5 4.29E�10 3.32E�09 1.83E�08 9.03E�07 3.58E�06
49.0 2.92E�09 1.53E�07 7.18E�07 1.27E�05 9.96E�05
50.5 5.64E�07 5.88E�06 2.59E�05 2.24E�04 1.55E�03
52.0 4.07E�06 3.74E�05 1.24E�04 1.20E�03 3.30E�03

50-Years 46.0 8.02E�11 5.27E�10 3.43E�09 1.69E�07 2.59E�06
47.5 8.44E�10 4.74E�09 4.46E�08 1.84E�06 7.26E�06
49.0 5.74E�09 2.18E�07 1.14E�06 2.35E�05 3.49E�04
50.5 1.11E�06 8.37E�06 4.11E�05 9.62E�04 2.78E�03
52.0 8.11E�06 5.39E�05 2.04E�04 2.21E�03 7.04E�03

100-Years 46.0 1.58E�10 1.34E�09 5.52E�09 3.95E�07 5.29E�06
47.5 1.66E�09 1.20E�08 7.14E�08 4.29E�06 1.47E�05
49.0 1.13E�08 5.53E�07 1.82E�06 5.44E�05 7.01E�04
50.5 2.18E�06 2.12E�05 9.71E�05 2.21E�03 1.65E�02
52.0 1.61E�05 1.38E�04 5.80E�04 5.39E�03 3.37E�02

Tw: Wind speed return period, T: flood return period; and H0 = initial water level.

Figure 7 Overtopping risk versus different return periods with and without considering wind speeds, in the initial water level

H0 = 49.0 m.
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10,000) were applied for uncertainty analysis. The probability
of overtopping due to floods in different return periods and
initial water levels for both MCS and LHS methods are pre-

sented in Tables 7 and 8. Based on the results, by increasing
the initial water level in each step, the probability of overtop-
ping (in a constant return period) was raised for both uncer-
tainty approaches adopted in this study. Fig. 6 shows the
variation of overtopping probability for the initial water lev-

els of 47.5 (m), and 49.0 (m) in both the MCS and LHS
methods.



Table 12 Ratio of overtopping risks in different H0 and T to risk in H0 = 46 and T = 2 (LHS).

H0 nT,H

T 2–2 2–10 2–20 2–50 2–100

46–46.0 1.00E+00 9.45E+00 5.37E+01 7.63E+02 1.53E+04

46–47.5 1.06E+01 6.97E+01 4.64E+02 9.80E+03 8.78E+04

46–49.0 7.21E+01 3.21E+03 1.85E+04 1.40E+05 8.42E+05

46–50.5 1.39E+04 1.24E+05 6.74E+05 2.53E+06 6.00E+06

46–52.0 9.81E+04 7.67E+05 2.89E+06 1.14E+07 1.75E+07

Figure 8 Variation overtopping risks by increasing return periods and water level (MCS).

Table 11 Ratio of overtopping risks in different H0 and T to risk in H0 = 46 and T = 2 (MCS).

H0 nT,H

T 2fi2 2fi10 2fi20 2fi50 2fi100

46–46.0 1.00E+00 1.73E+01 1.49E+02 3.22E+03 5.03E+04

46–47.5 3.19E+01 3.03E+02 1.71E+03 2.34E+04 2.41E+05

46–49.0 3.09E+02 8.27E+03 5.79E+04 2.84E+05 2.86E+06

46–50.5 2.64E+04 3.02E+05 2.05E+06 5.94E+06 1.08E+07

46–52.0 1.98E+05 1.48E+06 8.32E+06 2.37E+07 4.69E+07

Dam overtopping risk using probabilistic concepts – Case study: The Meijaran Dam, Iran 195
6.6. Overtopping probability due to flood and wind

The wind set-up and wave run-up were calculated using the
equations provided by USBR [19]. It should be noted that
there is no strong correlation between wind speed and in-

flows (Corr = 0.178), and, thus, the wind speeds and flood
values were generated separately. In other words, the highest
water level in the reservoir and total wave height were calcu-

lated individually, after that the total water elevation which
is the sum of these two factors, was considered in the risk
analysis. However, many combinations of inflows, wind

speeds, and water elevation were considered to cover the
most likely conditions that will probably happen in the res-
ervoir. The overtopping probabilities due to different floods
and wind speeds in five return periods and five initial water
levels were evaluated by MCS and LHS uncertainty ap-

proaches (Tables 9 and 10). According to the results, the
overtopping probabilities increases by increasing the flood
return period for both the Monte-Carlo and Latin hypercube

techniques. The risk of overtopping, based on the MCS
method versus different return periods with and without
considering wind speeds at the initial water level

H0 = 49.0 m, is shown in Fig. 7.
To show how the risks of overtopping changed with

increasing water levels and return periods, and also to compare
the achieved results, ratio nT,H was defined as:

nT;H ¼
RiskT;H

RiskT¼2;H0¼46
ð18Þ



Figure 9 Variation overtopping risks by increasing return periods and water level (LHS).
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where RiskT,H is the overtopping probability in a particular re-
turn period and water level, and RiskT¼2;H0¼46 is the overtop-

ping probability in T = 2 and H0 = 46.
The results demonstrated that rising water levels greatly im-

pact the probability of overtopping compared with the return

periods in both MCS and LHS methods (Table 11 and 12).
Furthermore, the ratio of overtopping probabilities in
H0 = 46–52 and T = 2–10 for both MCS and LHS methods

are presented in Figs. 8 and 9.
It should be noted that LHS stratifies the cumulative den-

sity function (CDF) into several sub-regions while the gener-
ated random variates from the Monte Carlo (MC) technique

are randomly distributed. Hence, the achieved outcomes from
adopted uncertainty approaches are not similar in this study.

7. Conclusions

Risk and uncertainty analysis can be employed to evaluate the
probability of dam failure regarding overtopping, internal ero-

sion, geological instability, and earthquakes. This paper demon-
strated the process of estimating overtopping probability due to
various inflows and wind speeds for Meijaran Dam in the north

of Iran. The procedure included flood andwind speed frequency
analysis, reservoir routing, and integration of wind set-up and
run-up to calculate the final reservoir water level. The probabil-

ity of overtopping was assessed by applying two uncertainty
analysis methods (MCS and LHS) and considering the quantile
of flood peak discharge, initial depth of water in the reservoir,
and spillway discharge coefficient as uncertain variables.

From these results it can be concluded that rising water levels
in the reservoir would result in the increasing overtopping prob-
ability based on both the MCS and LHS techniques. For in-

stance, the probability of overtopping in T = 20-year from
H0 = 46 to H0 = 49 increased from 5.28E�10 to 1.82E�07
based on theMCS and LHSmethods, respectively. On the other

hand, the results revealed that wind speed could have a great im-
pact on reservoirs situated in windy areas. Dam overtopping
probabilities at T = 20-year, T = 2-year and H0 = 49 were

found to be 56.14% and 55.49% greater than the risk in the
same condition without considering the wind effect.
All in all, risk analysis provides an expanded range of risk
values in different return periods such that the dam adminis-
trator can identify the events that indicate a developing failure

mode, understand the critical parameters needed to effectively
monitor, and determine how to use a warning system for evac-
uating the downstream community. Meanwhile, deterministic
methods use only the best estimate inputs and provide a single

point as output.
8. Future studies

In this study, only three variables were considered as uncer-
tain factors, while other variables, such as precipitation, reser-
voir geometry, dam height, and time to peak of inflow

hydrographs, can be assumed to be uncertain variables. In
addition, all factors contributing to overtopping probability
are assumed as independent variables, which can be a

problem in real situations where these factors are dependent.
Under these circumstances, bivariate or multivariate fre-
quency analysis would be useful and could convey the depen-

dence between variables.
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