baseline costs, while switchers to an SNRI had a $24 reduction. However, switchers to a generic SSRI had a $99 increase in medical costs. Controlling for baseline character-
istics, escitalopram switchers had the highest total health care cost reduction of the three groups, with $383 ($P = 0.016) in savings relative to SSRI switchers and $172 ($P = 0.276) in savings relative to switchers to a generic SSRI. CONCLUSION: MDD patients requiring second line therapy who switched to eslicitalopram had sig-
nificantly lower urgent care utilization than patients switching to an SNRI or another generic SSRI. Using eslicitalopram as second-line therapy appears to be a cost saving strategy compared to using SNRIs or generic SSRIs.

Abstracts

ECONOMIC EVALUATION OF AMOLOTINE FOR MAJOR DEPRESSIVE DISORDER IN SWEDEN Clapham E, Berg F, Eklund M, Jonsson L1
1 Uppsala University, Uppsala, Sweden, Stockholm, Sweden, Stockholm, Sweden
OBJECTIVES: Amoletine is the first melanotropin antagonist approved by the European Medicine Agency for the treatment of major depressive disorder (MDD) in adults. The objective of our study was to perform a cost-effectiveness analysis for amolotine based on clinical trials against placebo and venlafaxine from a Swedish societal perspective. METHODS: We developed a Markov model with health states for well, depressive episode, remission and death. The model also incorporated sleep disorders, discontinuation rates, discontinuation symptoms and adverse drug reactions incl. constipation, diarrhea, dizziness, headache, nausea, vomiting, weight gain and weight loss (disfunction). The time horizon was set to two years. Relapse and discontinuation rates were estimated using Weibull regressions, while remission rates were estimated directly. Costs and utilities for different health states were taken from a Swedish observational study. Frequencies of adverse events, sleep disorders and discontinuation symptoms were taken from three relevant trials, while costs and disutilities were esti-
mated from the literature. Costs (reported in EUR 2008) and effects were discounted at 3% per year. RESULTS: In the base case, amoletine is cost-saving and more effective than venlafaxine and placebo. One-way sensitivity analyses showed that the results were robust to most parameter changes. At a willingness-to-pay threshold of €50,000 per quality-adjusted life year gained, amoletine was cost-effective compared to venlafaxine in 96% of the cases in the probabilistic sensitivity analysis. CONCLU-
SIONS: Based on data from clinical trials and the literature, our results indicate that amoletine is cost-saving and more effective than venlafaxine in treating MDD in Sweden. These results are robust, confirmed by sensitivity analysis.

PREGABALIN FOR THE TREATMENT OF GENERALIZED ANXIETY DISORDERS (GAD) – A COST-EFFECTIVENESS CASE STUDY OF MEXICO Arredondo-Ornelas H1, Rosado-Buzzo AA2, García-Hollinado M1, Dorantes-Aguilera J1, Mulsow J1, Llaves-G L3
1 Fundación Mexicana para la Salud, Mexico City, Mexico, 2 Links & Links S.A. de C.V, Mexico City, Mexico, H8ter Mexico, Mexico City, Mexico City, Mexico
OBJECTIVES: Of the various subtypes of anxiety disorders, generalized anxiety dis-
order (GAD) is the most frequent long-term prevalence 6.2%, and it is consistently con-
nect to social and occupational problems. The aim of this study was to assess the cost-
effectiveness of pregabalin in the treatment of GAD from an institutional perspec-
tive. METHODS: We developed a three-state Markov model to simulate health and cost outcomes during a time horizon of one year (12 months). The model includes several stages related to disability (complete response, partial response and relapse). Effectiveness was assumed as the percentage of patients with complete response at the end of the follow-up period using the Hamilton Anxiety Rating Scale (HAM-A) (50% reduction related to baseline score) and a Clinical Global Impression of Improvement (CGI-I) score of 1 or 2. Transition probabilities were obtained from a meta-analysis involving international published trials. Comparators used in the assessment were paroxetine (10-40 mg/day), venlafaxine (75-225 mg/day) and pregabalin (300-450 mg/day). Resource use and costs were obtained from 4,000 randomized hospital records from the Social Security Mexican Institute (ISSST). Costs included outpatient and inpatient services, drug, procedure, etc. The model was calibrated. Probabilistic sensitivity analyses were performed employing boot-
strapping techniques and acceptability curves were constructed. RESULTS: The highest percentage of complete patients with response to the HAM-A scale during the follow-up period was obtained by pregabalin (39.8%; CI95% 38.5%–41.1%), followed by venlafaxine (22.6%; CI95% 21.9%-23.4%) and paroxetine (16.5%; CI95% 16.0%-17.0%). Regarding the CGI-I the highest percentage for complete response was for pregabalin (35.3%; CI95% 34.2%-36.5%), followed by venla-
exafine (28.8%; CI95% 27.3%-29.7%) and paroxetine (16.6%; CI95% 16.1%-17.2%). The annual expected mean costs per patient were US$1,893.1 (US$1,830.7-US$1,955.4; US$2,002.1-US$1,915.3-US$2,067.2 and US$1,955.1-US$2,923.6-US$5,866.5). The ICER for pregabalin vs. paroxetine (baseline) was US$4019.7 (US$3887.3-US$4133.7) for HAM-A and US$5183.5-US$5,183.2 for CGI-I. Second-order Monte Carlo sensitivity analyses showed that pregabalin was a cost-effective therapy (p < 0.05). CONCLUSIONS: Pregabalin showed to be a cost-
effectiveness therapy due to its higher efficacy response in the management of GAD.