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Motivation: Although trauma is the leading cause of death for those below 45 years of age, there is a
dearth of information about the temporal behavior of the underlying biological mechanisms in those
who survive the initial trauma only to later suffer from syndromes such as multiple organ failure. Levels
of serum cytokines potentially affect the clinical outcomes of trauma; understanding how cytokine levels
modulate intra-cellular signaling pathways can yield insights into molecular mechanisms of disease pro-
gression and help to identify targeted therapies. However, developing such analyses is challenging since
it necessitates the integration and interpretation of large amounts of heterogeneous, quantitative and
qualitative data. Here we present the Pathway Semantics Algorithm (PSA), an algebraic process of node
and edge analyses of evoked biological pathways over time for in silico discovery of biomedical hypoth-
eses, using data from a prospective controlled clinical study of the role of cytokines in multiple organ fail-
ure (MOF) at a major US trauma center. A matrix algebra approach was used in both the PSA node and
PSA edge analyses with different matrix configurations and computations based on the biomedical ques-
tions to be examined. In the edge analysis, a percentage measure of crosstalk called XTALK was also
developed to assess cross-pathway interference.

Results: In the node/molecular analysis of the first 24 h from trauma, PSA uncovered seven molecules
evoked computationally that differentiated outcomes of MOF or non-MOF (NMOF), of which three mol-
ecules had not been previously associated with any shock/trauma syndrome. In the edge/molecular inter-
action analysis, PSA examined four categories of functional molecular interaction relationships -
activation, expression, inhibition, and transcription - and found that the interaction patterns and cross-
talk changed over time and outcome. The PSA edge analysis suggests that a diagnosis, prognosis or ther-
apy based on molecular interaction mechanisms may be most effective within a certain time period and
for a specific functional relationship.
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1. Introduction spread over a variety of experimental paradigms such as clinical

outcome, time, cell cycle phase, or molecular localization.

In recent years, advances in technology have made it possible to
measure a wide variety of molecules and molecular interactions in
cell lines, bio-fluids and tissues. The increasing availability of these
data has opened new avenues of biomedical research, and chal-
lenged the scientific community to uncover the meaning of molec-
ular data in contexts ranging from cell signaling pathways to
phenotype/genotype associations to personalized medicine [8].
Plausible and meaningful molecular hypotheses that support clin-
ical diagnosis, prognosis and therapies must be derived from a del-
uge of quantitative and qualitative experimental data that are
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Current approaches to collecting data about molecular patterns
in disease include the use of high throughput measurement tech-
niques such as mass spectrometry and microarray immunoassays.
Mass spectrometry is the most common technique for “unbiased”
discovery where all protein and peptide components of tissues and
biofluids are identified within the capability of the equipment.
Microarray immunoassays are more sensitive and specific; they
measure the concentrations of pre-determined analytes using
immunological reactions. Both assay methods have benefits and
drawbacks for clinical usage [11].

A wide variety of analytical approaches, both qualitative and
quantitative, are being explored to understand these data [18].
Text mining algorithms search published literature for information
about molecular function and disease associations while graphical
analysis uses algorithms from computer science to identify
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sub-graph motifs in canonical pathway networks of molecular
interactions found in diseases. Network-based graphical analysis
using gene expression patterns has been shown to generate novel
hypotheses about the classification of breast cancer metastasis,
including the finding that some gene associations can only be de-
tected using network rather than conventional analysis [20]. Sta-
tistical biomedical informatics methods, such as gene set
enrichment analysis (GSEA), identify gene sets, based on gene
expression data, that are correlated with phenotypic classes, and
generate hypotheses for further exploration [22,23]. Systems biol-
ogy tools model in silico biological pathway systems using compu-
tational methods that parallel in vitro cell-line and in vivo animal
models for hypothesis discovery and instantiation [24].

Although these approaches are useful, there are limitations for
the study of disease progression over time. For example, the most
significant molecular interactions associated with the disease may
appear in a non-canonical pathway [25] that text mining and in sil-
ico modeling may overlook. Time-based models of biological path-
ways can be explored using ordinary differential equations (ODEs);
however, they usually model a small group of canonical pathways
within a single cell and are not easily computable at the organism
level. For example, an ODE model of one NF-kappa B signaling
pathway in one cell activated by one TNF-o signaling molecule
uses 18 non-linear differential equations, with 33 independent
variables and 16 dependent variables in a simplified reaction kinet-
ics model [26].

Studies of scientific discovery have demonstrated that most
new findings arise from data-driven hypotheses generated from
unexpected observations rather than from verification of pre-
determined hypotheses based on theories [27]. In a bedside-to-
bench approach, discovery is driven by patient data collected at
the bedside. Mechanisms or therapies are confirmed later at the
lab bench. Data-driven, evidence-based molecular patterns are a
fundamental component of personalized medicine research. Nota-
ble diagnostic successes based on the molecular patterns found in
patient data include the validation of 14-3-3 proteins found in
cerebrospinal fluid (CSF) as diagnostic of transmissible spongiform
encephalopathies [28] and the validation of a panel of 18 urinary
molecules that discriminate antibody-associated vasculitis from
other renal diseases [29].

Here we present the Pathway Semantics Algorithm (PSA) that
converts the directed graphs of the most likely biological pathways
evoked from patients’ molecular data into transformed matrices of
various formats for algebraic analysis, with the goal of generating
hypotheses addressing specific biomedical questions about the
meaning, or “semantics”, of the pathways. The term hypothesis is
used in its broadest sense as a potential explanation or conclusion
that is to be tested by collecting and presenting evidence [30]. Gen-
erating hypotheses computationally based on scientific and plausi-
ble reasoning extends the domain of search beyond that which was
originally observed or “known”, while reducing the size of the
solution space. In the sample disease progression analysis given
in Section 4, the pathway generation algorithm gave a potential
solution space of more than 1000 molecule/time points. Using
PSA algebraic node analysis, the solution space was reduced to se-
ven molecules that differentiated outcomes at different times. The
pathway graphs contain two major types of entities: nodes that
correspond to specific bio-molecules and edges that correspond
to the interactions between the molecules. PSA constructs the
matrices to represent biomedical queries for comparative analyses
of the pathways over stratifications such as time and/or outcome.
Matrix construction is specific to the query because scientific dis-
covery is strongly influenced by data representation [31]. The
transformation of graphs to matrices enables the application of
powerful computationally tractable techniques that scale well
from matrix algebra to develop mathematical comparison meth-

ods, analyses, and metrics leading to useful insights into disease
progression across time and clinical outcomes.

PSA was applied to patient data from a shock/trauma study of
multiple organ failure, first analyzing the nodes of the likely bio-
logical pathways and then examining the edges. A matrix format
called a Temporal Dependency Matrix (TDM) was instrumental in
revealing novel patterns of molecules evoked from patient data
over time in shock/trauma, where disease progression is rapid
yet not clinically visible. The computational results predicted seven
molecules, based on input from the original assays, associated with
the biological mechanisms underlying multiple organ failure; only
three had been recognized as associated with any shock/trauma
syndrome. Next PSA examined the edges of the pathway graphs,
corresponding to interactions between molecules including genes,
RNAs, proteins, or chemicals. We applied matrix methods to inves-
tigate patterns of molecular interactions across time and across
clinical outcomes in terms of four functional relationship catego-
ries: activation, expression, transcription and inhibition. Applying
graph theory and linear algebra, we found that the interaction pat-
terns of relationship sub-graphs changed rapidly within the first
24 h of insult, and that these patterns differed across clinical out-
comes of multiple organ failure (MOF) and non-multiple organ fail-
ure (non-MOF). In addition, we developed a numerical metric of
crosstalk in molecular pathways called XTALK. In contrast to cur-
rent practice that merely classifies a network in strictly binary
fashion as having crosstalk or not, XTALK quantifies crosstalk
among molecular interactions from 0% to 100%, thereby leading
to a deeper, fine-grained understanding of crosstalk and its varia-
tion due to disease progression. Results obtained suggest that a
diagnosis, prognosis or therapy based on molecular interaction
mechanisms may be most effective within a certain time period
and for a certain functional interaction relationship.

In the following sections, we first present background informa-
tion and definitions relating to molecular interactions and mathe-
matical notation, followed by a description of the Pathway
Semantics Algorithm, its application to analysis of patterns of mol-
ecules and molecular interactions in the first 24 h of trauma pro-
gression, the results and a discussion of their meaning,
concluding with our plans for future work.

2. Background

At a sub-cellular level, molecular interactions can be analyzed
using the rules of biochemistry when they are represented as sets
of differential equations. However, due to computational complex-
ity and lack of interaction parameter rate data, this approach is not
suitable for larger comparative analyses. Instead, molecular inter-
actions, such as protein-protein or gene-protein interactions, are
commonly combined into biological pathway networks repre-
sented as graphs, where the node, or vertex, is the molecule and
the edge is the interaction. This representation facilitates the use
of qualitative and quantitative methods derived from graph theory
and algebra because the same biological pathway network graph
can be mapped to a matrix in different ways, allowing for a choice
of mathematical methods appropriate to the biomedical question
under study.

Biological pathway networks can be generated manually
through direct observation of patient data, such as performed in
morphoproteomic tissue analysis [32], and computationally
through software, such as Ingenuity® Knowledge Base (IPA)
(http://www.ingenuity.com) [33] that uses a proprietary algorithm
to evoke likely pathways generated from the measurements of
molecular data in bio-fluids and tissues.

Comparative analyses of nodes in pathways can reveal key mol-
ecules that likely play significant roles in disease progression over
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all time, or only at certain times. Comparative analyses of edges, or
links between the nodes, in pathways parallels research into “link
communities” in social networks, where one person may be con-
nected to several overlapping communities of home, work, and
interests [34,35]. In both social and biological networks, the edges
are directional, showing the influence from one node (a person or
molecule) upon another in a multi-directional cascade. Biological
link communities also overlap; a molecule may participate in
several different interaction categories simultaneously with the
same target molecule, or inversely, several interactions may occur
simultaneously with different molecules to achieve the same
target function. This latter property has been defined as degeneracy
- the ability of structurally different elements to perform the same
function or yield the same output; in contrast, redundancy requires
identical elements to perform the same function [36,37].
Degeneracy is a key property underlying the robustness of
complex adaptive biological systems, such as the immune system
[38-40].

We define crosstalk in biological pathways to consist of the
redundant signaling messages sent over degenerate edges to
achieve the same biological function. This is consistent with Bruni’s
definition that crosstalk exists when edges are functionally com-
patible to, or dependent, on other edges [41]. Crosstalk relates to
how pathways determine functional specificity, how ubiquitous
messengers transmit specific information, and how similar mes-
sages crosslink within the system while undesired signals are min-
imized. Quantifying crosstalk in patient data-driven biological
pathways can give insights into the relative robustness of different
biological functions and suggest timing and approaches for thera-
pies directed at pathway modulation. For simplicity, this study
measured crosstalk in one molecular interaction function at a time
in each pathway; cascades of “mixed-function” molecular interac-
tions that overall would result in execution of the same target
function were not considered.

2.1. Additional definitions

Notation and definitions used correspond to those used by IPA®
[42], the pathway generation software used in this study. The term
node is used rather than vertex, and the term edge rather than arc.

A molecule is any gene, RNA, protein or chemical. A molecule is
represented by a node on the directed graph of a biological
pathway.

A relationship is a functional interaction from one molecule to
another. The relationships used in this study are defined by Inge-
nuity Systems (Ingenuity® Systems, personal communication) as
follows:

e Activation: includes activation events such as activation, activ-
ity, stimulation, reactivation, and specific activity.

e Inhibition: includes inhibition events such as inhibition, desen-
sitization, inactivation, repression and autoinhibition.

e Expression: includes expression events such as expression, up-
regulation, downregulation, translation, production, microRNA
targeting, and induction.

e Transcription: includes transcription events such as transcription,
germline transcription, transactivation, and transrepression.

A relationship is represented by an edge on the directed graph
of a biological pathway.

A directed graph, in mathematical terminology, has specific
properties that can be exploited computationally. IPA® designates
relationships as direct or indirect, in a different sense of the word
“direct”. A direct relationship is a direct physical contact interaction
between the two molecules; it includes chemical modifications,
such as phosphorylations, if there is evidence that the two factors

involved interact directly rather than through an intermediary. It is
represented by a solid line edge. An indirect relationship is an inter-
action that does not require physical contact but is explicitly doc-
umented in the literature [42]. It is represented by a dotted line
edge. A relationship graph is a directed graph whose edges are in
the same relationship category. Molecules or edges are called
invariant when they are the same in different stratifications. For
example, edges are invariant over all time in one outcome if they
do not change over all time periods for that outcome; alternatively,
edges are invariant over outcome if they are the same in both out-
comes in one time period or more as specified.

Let B(E,N) be a directed graph with E edges and N nodes
that represents a biological pathway with relationship interactions
as edges and molecules as nodes. Then A is a relationship sub-
graph of B with AC B when VE in A are in the same relationship
category.

The incidence matrix M = [m;] of a directed graph B =B(E,N) is a
E x N’ matrix, M(E,N') where E = number of edges and N' = number
of nodes (with duplicate nodes for self-loops) such that m;; = -1 if
edge i leaves node j, +1 if edge i enters node j, 0 otherwise [43].

3. Pathway Semantics Algorithm

The Pathway Semantics Algorithm augments pathway genera-
tion and core analyses, such as those in IPA®, through customized
pre-processing of the measured molecular data and post-process-
ing of the evoked pathways so that both input data and output
matrices are tailored to the biological and clinical questions under
study. The goal is to narrow down potential answers to those most
likely and useful as clinical hypotheses (see Fig. 1).

PSA first processes the input data to generate biological path-
ways (Steps 1-2) and then maps the results to matrices con-
structed to answer the biomedical questions under study (Steps
3-4). If biological pathways are already available, for example,
from morphoproteomic tissue analysis [44], only Steps 3 and 4
need be performed. See Fig. 2.

e Step 1. Dimensionality reduction: This process selects character-
istic subsets of the measured molecules. The assayed molecules
are assembled into significance sets of those molecules that sta-
tistically differentiate the disease states over the stratifications
under study, such as outcome, time period of measurement, cell
cycle phase observed, or a combination of stratifications. The
statistical analysis is utilized as a feature extraction tool to iden-
tify significant molecules.

Hypotheses

PSA
Hypotheses

Fig. 1. The overarching goal of the Pathway Semantics Algorithm (PSA) is to
efficiently generate clinically useful hypotheses about disease progression using
matrix algebra to integrate quantitative and qualitative data.
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Fig. 2. Pathway Semantics Algorithm (PSA) flow diagram.

e Step 2. Pathway generation: The Significance Set for each strati- work diagram is then created of the biological pathways show-
fication group plus the statistically observed average values ing the interactions among the molecules for each stratification
(means or medians as appropriate) for each molecule in the group.
group are input to a pathway generation algorithm that e Step 3. Convert network diagrams to matrices: Matrix representa-
expands each set to include its likely neighboring molecules, tions, suitable for the biomedical questions under study, are

based on published literature and pathway databases. A net- created from the network diagrams. For example, the
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molecules, or nodes, in the network diagrams can be mapped to
node matrices (or vectors) of molecules over stratifications such
as disease state and time. In a similar manner, molecular inter-
actions, or edges, can be converted to edge matrices (or vectors)
of molecular interactions over stratifications such as functional
interaction types. In the simplest form, the resulting matrices
have a 1 in a row/column cell if the row molecule (or molecular
interaction) is present in the column stratification; 0 otherwise.

e Step 4. Matrix analysis: Algebra is used to compare the matrices
to identify differential patterns of molecules and molecular
interactions of biomedical significance over outcome, time
and other stratifications. The specific calculations used depend
on the biomedical questions represented by the matrices. For
example, in PSA node analysis, matrices of node molecules over
time and outcome can be added, subtracted, or logically com-
pared through “ands” and “ors”. Similar calculations can be
done with matrices of edge molecular interactions over time,
outcome and functional relationship. In addition, when molec-
ular interactions are represented as edges in an incidence
matrix, matrix properties such as rank can be used to infer bio-
logical processes such as crosstalk.

Definition: The rank R of a matrix M is the maximal number of
its linearly independent columns or rows [45]. Rank can be calcu-
lated using Gaussian elimination or singular value decomposition.

If rank R is greater than or equal to E, the number of edges
(rows), then all the edges act independently. The percentage, or ra-
tio, of independent edges = R/E, and the ratio of dependent edges is
1-RJE.

We propose the biological interpretation that the maximum
number of independent molecular interactions (edges) required
for a molecular function is the same as the rank of the incidence
matrix constructed from the functional relationship sub-graph,
and that a measure of crosstalk for that function can be based on
the percentage of dependent edges.

Definition: The XTALK ratio of a directed graph B = B(E,N) with
incidence matrix M(E,N’) is defined as 1 — (rank (M(E,N"))/E).

If XTALK = 0%, then all edges act independently for a particular
function. The XTALK measure includes normalization by the total
number of edges in a graph to allow comparisons of crosstalk over
time and outcome.

In Fig. 3, rank R=2, number of edges=3. XTALK=1 —(2/
3) =33%, suggesting there exists one-third crosstalk in the biolog-
ical functional relationship represented by the graph.

A B c

AtoB | -1 1 0

L) BtoC| 0 -1 1
AtoC | -1 0 1

Directed Graph IZ:> Incidence Matrix

Fig. 3. The directed graph on the left with three nodes and three edges is a
simplified representation of a common sub-graph found in a biological pathway
network. To enable algebraic computation, the graph is mapped to the incidence
matrix on the right. The column headers name the nodes of the graph (representing
molecules in a pathway) and the rows represent the interaction pairs between two
molecules, with the “from” node represented by a “—1” and the “to” node
represented by a “1”. The calculated rank of this incidence matrix is 2, meaning that
two edges are independent and 1 edge is dependent. It can be seen that the edge
from A to C is a combination of edge A-B followed by edge B-C. The graph shows
the property of degeneracy: the molecular interaction function - for example
activation - can be achieved solely by molecule A acting on C or, instead, by the
cascade of the molecule A acting on B followed by the molecule B acting upon C.

4. PSA gives novel hypotheses for shock/trauma progression

Trauma refers to serious bodily injury such as penetrating inju-
ries from gunshots and stab wounds, blunt injuries such as those
sustained during automotive accidents, and burns; trauma is the
cause of 74% of all deaths for people ages 15-24 [46].The term
shock/trauma is used in this manuscript to refer to trauma that is
associated with the clinical signs of shock, defined physiologically
as oxygen consumption (VO,) inadequate to meet the oxygen de-
mands of peripheral tissue. Disease progression in shock/trauma
is rapid and deadly; patients who survive the initial trauma may
suffer morbidity from potentially preventable syndromes such as
multiple organ failure (MOF) [47,48]. MOF is unique in that the or-
gans that fail are not necessarily injured from the trauma and that
late MOF may arise days to weeks after the initial incident. The
pathophysiology underlying MOF is still not well understood
[49,50]. Patterns of signaling molecules called cytokines [51] have
been associated with patient outcomes in trauma and critical care
for some time [52-56], and analysis of the biological pathways
evoked from cytokines may offer insights into disease progression.
Cytokines are small proteins released by stimulated macrophages,
monocytes, T cells, and other cells; they bind to specific receptors
to induce a wide variety of local and systemic responses particu-
larly within the innate and adaptive immune systems [51].

4.1. Data

PSA was applied to data from the Jastrow MOF study [54] that
associated certain cytokine patterns within the first 24 h from
trauma with the outcome of multiple organ failure before other
symptoms were visible [54]. In contrast, traditional predictors of
MOF were not significantly different between MOF and non-MOF
outcomes. The PSA goal was uncover patterns of evoked molecules
and molecular interactions associated with shock/trauma progres-
sion that would lead to clinical hypotheses.

De-identified patient data from the Jastrow study [54] were ex-
tracted from the UTHSC-H Trauma Research Database with the ap-
proval of the Committee for the Protection of Human Subjects
(Institutional Review Board/IRB) of the UTHSC-H (HSC-SHIS-09-
0237). The data included serum cytokine measurements, collection
times, and MOF outcomes for 48 patients from an IRB approved
prospective observational trauma study conducted in the shock/
trauma Intensive Care Unit (STICU) at Memorial Hermann Hospital,
a Level I trauma center in Houston, Texas from January through
December 2005. The 48 patients had a mean age of 39 + 3 years,
67% were male, 88% of the insult was blunt mechanism, and the
mean Injury Severity Score was 25+2. MOF developed in 11
(23%) of the patients. Twenty-seven cytokines were measured
every 4 h from the start of the resuscitation protocol and were later
assayed by the Bio-Plex Human Cytokine 27-Plex Panel. The mea-
surement times were adjusted to time from insult, and grouped
into 4 h time periods starting at hour 2 from insult and ending at
the study limit of hour 24. Twenty-seven cytokines were measured
by Bio-Plex immunoassay. All were used for the PSA-Node analy-
sis; eleven were used for the PSA-Edge analysis (see Table 1).

4.2. Data pre-processing

The cytokine data were partitioned for analysis purposes into
six groups by time periods: hours 2-6, 6-10, 10-14, 14-18, 18-
22 and 22-24. The four-hour time period was chosen because that
was the scheduled time between clinical measurements. The clin-
ical data were pre-processed before Step 1 (see Fig. 2) as follows:

o In order to preserve biological relationships over time, the mea-
surement times were adjusted to biologically relevant start
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Table 1
Cytokines were assayed using the Bio-Plex human cytokine 27-plex panel.

Cytokine Gene name UNIPROT ID PSA (node, edge)
Eotaxin CCL11 P51671 N, E
FGF basic FGF2 P09038 N
G-CSF CSF3 P09919 N, E
GM-CSF CSF2 P04141 N, E
IFN-y IFNG P01579 N E
IL-18 IL1B P01584 N, E
IL-1ra IL1RN P18510 N, E
IL-2 1.2 P60568 N E
IL-4 L4 P05112 N
IL-5 IL5 P05113 N
IL-6 IL6 P05231 N, E
IL-7 IL7 P13232 N
IL-8 IL8 P10145 N, E
IL-9 L9 P15248 N
IL-10 IL10 P22301 N, E
IL12 (p70) IL12A/B P29459/P29460 N
IL-13 IL13 P35225 N
IL-15 IL15 P40933 N
IL-17 IL17A Q16552 N
IP-10 CXCL10 P02778 N
MCP-1 CCL2 P13500 N
MIP-1a CCL3 P10147 N
MIP-18 CCL4 P13236 N
PDGF-BB PDGFB P01127 N
RANTES CCL5 P13501 N
TNF-o TNF P01375 N, E
VEGF VEGFA P15692 N

times, so that the biological activities “lined up” for analysis.

Here, measurement times were adjusted to time from insult,

since it was hypothesized that cytokine pattern activities would

start changing at that time.

In order to preserve rankings among data, “low” and “high”

nominal measurement data were replaced with calculated ordi-

nal data instead of treating that data as missing values. Only
true missing values were retained. Low measurements were
replaced by 50% of the minimum value of the data over all strat-
ifications and “high” by 150% of the maximum value of the data
over all stratifications. These quantitative values were used only
for ranked analysis. For example, [5,2,7,low,9] - [5,2,7,1,9].

All five data points would be retained and the rank order would

be the same.

e Because the measured molecules were signaling molecules, the
number of molecules available to trigger biological pathways
was considered more important than their total mass. The cyto-
kine data were converted from pg/mL units to SI units before
input to the software that generated the most likely biological
pathways based on relative concentrations of molecules.

o The data were grouped over stratifications to facilitate discrete

analysis. This preserved the original data without making the

continuity assumption that the concentrations of the cytokine
molecules varied smoothly between measurement times.

For clarity and simplicity, the mathematical representation

used was limited to vectors over time in the form of two-

dimensional matrices.

Additional details on data preparation can be found in Section 1
of Supplement 1.

4.3. PSA-node and PSA-edge: steps 1 and 2

In Steps 1 and 2, the Pathway Semantics Algorithm (PSA) re-
duces the dimensionality of the pre-processed input data to gener-
ate targeted biological pathways. The description that follows is for
the PSA-node analysis based on 27 cytokines.

4.3.1. Step 1: dimensionality reduction

Notation: I = number of time periods; A = number of significant
molecules in a time period.

Significance sets S;_;, of molecules c;_;.q-14 that statistically
differentiated the K outcomes qy-1x over time periods x;—;,; were
created based on the non-parametric Mann-Whitney-Wilcoxon
(MWW) test (p <.05) executed in each of six time periods within
the first 24 h from insult. Outcomes were ¢q; = MOF (multiple organ
failure) or g, = NMOF (non-multiple organ failure). Time periods
from insult were x;_; 6 = 2-6, 6-10, 10-14, 14-18, 18-22 and 22-
24. The significance sets Sy, S, and Sg contained the names of 10
of the 27 measured cytokines; S; and Ss contained 14 cytokines;
and Sg had 15 cytokines. The names of the cytokines differed in
each S, For example, S; contained: c;, = Eotaxin; c;, = G-CSF;
c13=GM-CSF; c14=IFN-y; ci5=IL-1ra; c16=IL-6; c17=IL-8;
¢18=1P-10; c19=MCP-1 and c;,10 = MIP-1B (See Table 2).

4.3.2. Step 2: pathway generation

IPA® was used to find the likely biological pathway networks
associated with the levels of the measured molecules. IPA® pro-
vides a literature and pathway database search along with a path-
way generation algorithm that utilizes weighted lists of molecules
(Ingenuity® Systems, http://www.ingenuity.com). The algorithm
breaks “ties” about which neighbors to add to an evoked network
based on the relative weightings of the input molecules [33]. Be-
cause the analytes were signaling molecules, the relative numbers
of molecular signals, rather than the relative weights of the mole-
cules, generate more representative biological pathways [57].
Therefore, two additional data modifications were performed.
First, the units for the median values ;4 were converted from
concentrations in pg/mL to vj,,, the number of molecules per liter
(pmol/L) based on the mass of the cytokine in kDa as reported in
UniProt. Second, certain cytokines must be present in multiples
or have multiple receptors to send signals. Therefore the v, , were
further adjusted to ¢}, , by how many molecules were required for
one signal. The adjusted calculation details are given in Section 2 of
Supplement 1.

An IPA® data template was prepared for each S; with the as-
sayed molecule weightings v} , (intensities) for both outcomes
g in time period x; and the molecule’s “Gene/Protein ID”. The mol-
ecule was identified by its UniProt Knowledgebase (UniProtKB)
Accession Number, based on the best match for human (subunit

Table 2

Dimensionality reduction was achieved by selecting for further analysis only the
group of cytokine molecules identified as statistically significant outcome differen-
tiators in each time period. S; contains the names of the molecules in the Significance
Set in time period x;. X represents the median values v, x for each outcome. Note that
the significant molecules in S; differ by time period, reflecting the dynamic nature of
the cytokine signaling patterns in shock/trauma progression.

Cytokine S Sy S3 S4 Ss Se
Eotaxin X X X X X X
G-CSF X X X X X X
GM-CSF X X X X X X
IFN-y X X X X X
IL-1ra X X X X X X
IL-5 X X

IL-6 X X X X X
IL-7 X X X

IL-8 X X X X X X
IL-9 X

IL-10 X X X X

IL-13 X X

IP-10 X X X X X X
MCP-1 X X X X X X
MIP-18 X X X X X

RANTES X

TNF-o X X X
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Aor chain A). Each },, was entered as an “Observation/Expression
k”, with k = 1 for MOF and k = 2 for non-MOF. The six datasets gen-
erated 12 time-stamped network groups with one to three 35-mol-
ecule networks in each group (the default 35-molecule limit is
adjustable.) Each group was exported as a text list of molecules
(network nodes) and as a graphic image of molecular interactions
(network edges) (See Fig. 4).

4.4. PSA-node Steps 3 and 4

For the PSA-Node analysis, two biomedical questions were ad-
dressed: first, were there molecular patterns in the evoked path-
ways that were time-shifted differently in outcomes of MOF vs.
non-MOF, and secondly, were there molecules that were primarily
associated with only one outcome over time?

4.4.1. Step 3: convert network diagrams to matrices

Given the analysis focus on time, the questions were embedded
in a matrix format called a Temporal Dependency Matrix (TDM),
using the 12 pathway network graphs (six for MOF and six for
non-MOF) generated in Step 2. A general example of the TDM for-
mat is shown in Fig. 5.

In Fig. 5, TDMq,(above) and TDMq,(below) show six molecules
M, -1.. ¢ OVer 3 time periods X;;-1.. 3 in 2 outcomes g -1 . T0 iden-
tify molecular patterns by outcome and over time, a summary list
m, was compiled of the names of the molecules present in any of
the biological networks evoked from the assayed molecules. Then
a Temporal Dependency Matrix (TDM) matrix was constructed
for each outcome gy, with the molecule names m, as the first col-
umn and the time periods x; as the headers across the remaining
columns. If the molecule was present in the time period in the out-
come, a 1 was placed in the row r, column i cell z,; of the TDM for
outcome k; otherwise 0. The rationale behind this process was to
facilitate computational comparisons over time and outcome using
matrix algebra and logic.

a1 X1 2 X3
M1 1 0 1
mo 1 1 0
mg 1 0 1
my 1 1 0
M5 0 1 1
Mg 0 0 0

92 X1 *2 X3
my 1 0 1
mo 1 1 0
mg 1 0 1
my 0 1 0
mg 1 0 0
Mg 1 1 1

Fig. 5. Temporal dependency matrices (TDM) example.
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Fig. 4. It is very difficult to discern differences between graphs by visual inspection (above); when converted to matrices, the graphs can be compared computationally.
Shown are the networks for multiple organ failure (left) and non-multiple organ failure (right) based on patient cytokine data at hours 10-14 from trauma. Both networks
were evoked from the same set of molecules, S3, with different median concentrations ¢}, for each outcome gy- . See Section 3 of Supplement 1 for all 12 graphs that

generated the 193 unique subject molecules (best viewed online).
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For the trauma application, a summary list T, of the 193 mole-
cule names m, that were evoked in any outcome at any time were
entered into both columns 1 of two Temporal Dependency Matri-
ces TDMyor(my,X;) and TDMywmor(m,X;). The subscript r ranged
from 1 to 193 (number of molecules) and the subscript i ranged
from 1 to 6 (number of time periods). For clarity of notation, the
TDMs were subscripted by “MOF” for k=1 and “NMOF” for k = 2.
The headers for the six columns 2-7 were set as the time periods
x;and a 1 or 0 was placed in matrix/row/column cells z,; denoting
the presence or absence of the molecule as depicted in the example
matrices in Fig. 5. Matrix algebra was then used to compare the
TDMs over disease state stratifications to elucidate disease pro-
gression and explore the given biomedical questions.

4.4.2. Step 4: matrix analysis

4.4.2.1. Node analysis 1. Identify molecules m, that appear at least
once in both outcomes in the same time period x; and at least once
in either outcome in a different time period.

Background: Danger-associated molecular patterns (DAMP) in
the systemic inflammatory response syndrome (SIRS) and sepsis
induce the production of pro and anti-inflammatory mediators
by pattern-recognition receptors (PRR). A dysfunctional acute
inflammatory response may lead to MOF [58,59].

Biomedical questions: In this study, are there molecules that are
“time-shifted” in different outcomes? Is a molecular interaction
continuing past its “normal” innate response?

Hypothesis: If the identified molecules appear in both outcomes
at different times, then additional research may show how to mod-
ulate those molecules to minimize negative outcomes.

Notation: To simplify notation in the following TDMs, the k sub-
script is deleted. It is assumed = 1 in the row/column cells in ZyoF;
k =2 is indicated by *” in Zypor. Z” is the summation of both TDMs,
and k = 0 is indicated by “”” in its row/column cells.

[Z11 Z12 -+ Zu]
Zn 2 o Zy
Let Zyor =
LZrR1 Zr2 - ZRi
r - / !
Zn %12 2y
Zy, 24, -0 Z
Let 7 — |“21 “2 21
MOF
4 / 4
LZr1 2Rz ' ZRid

Let Z" = Zvior + Z;\IMOF'

The cells zj; of the resulting matrix Z” had a 2 if the molecule m,
was present in both outcomes in time period x;, a 1 if it was present
in one outcome or the other, and 0 if it was not present in either. A
molecule m, was selected if there was at least one 2 and one 1 in its
row. Using these criteria, four molecules were identified that ap-
peared at least once in both outcomes in the same time period
and at least once in either outcome in a different time period: CIIT-
A, HIRA, 1G9, and KSR2.

Table 3

4.4.2.2. Node analysis 2. Identify molecules that appeared only in
one outcome or the other in more than one time period.

Background: Cytokine patterns are associated with different
trauma outcomes [50,54].

Biomedical question: Are there molecules in the pathways trig-
gered by the measured cytokines that are associated only with one
outcome in at least 2 of the six time periods under study?

Hypothesis: Molecules that meet these criteria may reveal
underlying mechanisms that have not yet been associated with
specific clinical outcomes.

Notation: To simplify notation, the k subscript is deleted. It is
assumed =1 in the row/column cells z; (MOF) and k=2 in the
row/column cells z;; (NMOF). I = 6, the number of time periods.

Let MOF_SELECT(m,) =1, if L >1 A =0]; else0
(m;) <Zi;‘, ) (me )
(1)

NMOF_SELECT(m,) was also calculated using Eq. (1) exchanging z,;
and z;;. Based on these criteria, four molecules were identified as
appearing only in MOF: Egfr-Erbb2, IFI6, MRAS and NOD1; no mol-
ecules appeared solely in non-MOF.

4.5. PSA-node results

The matrix analysis in Step 4 identified eight molecules from
the 193 molecules evoked by the assayed cytokines whose patterns
at different times differentiate outcomes. Literature searches were
performed on each molecule to ascertain associations with multi-
ple organ failure or other shock/trauma syndromes. Although 1G9
[60] was generated by IPA®, no other published references to the
named molecule were found. The investigator confirmed that re-
search on IG9 had ceased and requested that it be deleted from
the findings (Calderon, personal communication). See Table 3.

Based on a PubMed search for the molecule name and the MeSH
term “shock,” which includes syndromes other than MOF, only
three of the seven molecules listed in Table 3 have been previously
been associated with shock/trauma: CIITA, EGFR and NOD1 (see
Section 4 of Supplement 1). All three maintain intestinal epithelial
cell homeostasis during immune and inflammatory responses and
appear in MOF pathways in this study. This is consistent with pre-
vious findings that pathophysiology of the gut (epithelium, muco-
sal immune system, and the commensal bacteria) contributes to
critical illness [61]and to multiple organ failure [62].

Although four molecules - HIRA, IFI6, KSR2, and MRAS - have
not yet been associated with shock/trauma, their biological func-
tions seem to be consistent with trauma progression. MRAS ap-
pears in hours 2-10 solely in MOF; it is implicated in the
regulation of integrin-mediated leukocyte adhesion in inflamma-
tory and immune responses [15]. IFI6 appears in hours 14-22 so-
lely in MOF; it regulates apoptosis, suggesting that programmed
cell death is essential to MOF [9]. HIRA is observed in non-MOF
in the first hours, and later in MOF. It promotes nucleosome assem-

Evoked differential molecular patterns of multiple organ failure based on algebraic comparisons. M: appears in MOF, N: appears in non-MOF, M*: appears only in MOF. The header
row shows the time in hours from trauma. Bold Italics: not previously associated with trauma.

Molecule/time EntrezGene, UNIPROT 2-6h 6-10h 10-14h 14-18 h 18-22h 22-24h
CIITA EG 4261, P33076 M, N M M

EGFR EG 1956, P00533 M M

HIRA EG 7290, P54198 N M, N M

IFI6 EG 2537, P09912 M M*

KSR2 EG 283455, Q6VAB6 M, N M M
MRAS EG 22808, 014807 M* M*

NOD1 EG 10392, Q9Y239 M* M*
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bly [7]. This may indicate either the activation of gene transcrip-
tion or silencing, with different timings associated with different
outcomes. Likewise, KSR2 is associated with both outcomes early
on, but appears solely in MOF in hours 22-24. It regulates insulin
sensitivity [10] and, through inhibition of MAP3K8, decreases
pro-inflammatory mediators [13,14]. Hence, the presence of KSR2
may reflect the up-regulation of pathways in an attempt to modu-
late the inflammatory response after injury. This may be an under-
lying mechanism related to the fact that insulin resistance and
hyperglycemia are common in non-diabetic critically ill patients
[12]. See Table 4 for a summary list of the seven molecules that dif-
ferentiated outcomes over time.

4.6. PSA-edge Steps 3 and 4

The PSA edge analysis addressed two biomedical questions in
the trauma study: did the types of molecular interactions change
over time, and did the crosstalk within the interaction categories
also change over time? As a demonstration of edge analysis, PSA
Steps 1 and 2 were re-run using eleven of the 27 cytokines chosen
by the clinicians as those most likely related to multiple organ fail-
ure (see Table 1). The number of cytokines was limited due to edge
export restrictions of the pathway generation software (IPA®) and
the fact that, as a result, all edges had to be manually transcribed
visually from the generated pathway graphs. IPA® generated 12
combined network graphs of the most likely biological pathways
evoked from the assay results of the 11 cytokines during six time
periods and two outcomes. There were a total of 132 different mol-
ecules evoked in silico across all 24 h.

The PSA edge analysis evaluated three of the six time periods in
the study: hours 6-10, 10-14, and 22-24 h from trauma; two out-
comes: multiple organ failure (MOF) and non-multiple organ fail-
ure (non-MOF); and four relationship categories of molecular
interactions: activation, expression (including metabolism and
synthesis for chemicals), inhibition and transcription, for a total
of 24 relationship sub-graphs. Both direct and indirect interactions
were used in the edge analysis. See Fig. 6 for the highlighted
expression relationship sub-graph for MOF at hours 6-10; all are
shown in Supplement 2.

4.6.1. Step 3: Convert Network Diagrams to Matrices
Four relationship sub-graphs were extracted from each of the
six evoked network pathway graphs for both outcomes over the

three chosen time periods. The 24 sub-graphs were identified by
interactively highlighting the edges for each of the four interaction
categories of activation, expression, inhibition and transcription.
The sub-graphs were represented as cyclic digraphs (directed
graphs with cycles). Each directed edge, or arc, of a sub-graph
was a one-way interaction relationship from one molecule to an-
other. The sub-graphs could also contain loops, or cycles because
feedback, feed forward, and self-loops occurred in molecular inter-
actions. This necessitated the use of incidence matrices for compu-
tation and limited graph metrics to those for cyclic digraphs. 1264
graph edges were manually logged by visual inspection into a File-
Maker database (http://www.filemaker.com). Each edge record
was identified by its outcome, time period, “FROM” molecule,
“TO” molecule, and molecular interaction relationship category.

Using custom software, the edge records for each relationship
sub-graph for each time and outcome were converted to an inci-
dence matrix, called an Edge-Molecule (EM) matrix, where each
row represented a from-to edge, and each column represented a
molecule, with doubles for self-loops. A “—1"” was placed in the
from molecule column, a + “1” in the to column and “0” otherwise.
All 132 unique molecules evoked in Steps 1 and 2 were placed in
the column header row. 12 molecules had self-loop feedback and
required duplicate columns: CCL11, CCNA1, Cyclin A, Cyclin E,
IL6, TNF, IFNG, IL1, IL10, Hsp70, RARB, and MYBL2. The final num-
ber of molecule name columns in each EM matrix was 144, with
the number of row edges (molecule-molecule interactions) chang-
ing according to the interaction type and the time period. Fig. 7
shows a portion of the EM matrix for the Fig. 6 graph.

4.6.2. Step 4: matrix analysis
The 24 EM matrices were exported for mathematical analysis
into MATLAB (http://www.mathworks.com).

4.6.2.1. Edge analysis 1. A descriptive analysis was performed to
count the number of edges in each relationship in each outcome
over time and to identify edges that were unchanged over time
and outcome.

4.6.2.2. Edge analysis 2. The crosstalk for each relationship, time
period, and outcome was calculated as the measure XTALK using
linear algebra as shown in Section 3. Relationship sub-graphs were
then analyzed using XTALK to uncover which functional relation-

Table 4
Summary list of molecules that differentiated outcomes over time. Italics: not previously associated with trauma.
Molecule Known functions Citations
CIITA CIITA is up-regulated by PPARY in vascular smooth muscle cells, which enhances IFNy-mediated transcription and rescues the TGFf antagonism  [1]
CIITA directly inhibits viral replication and spreading. CIITA triggers antigen presentation to CD4 + T cells leading to an adaptive immune [2]

response

Enteral glutamine decreases infectious complications in trauma by protecting the gut. Glutamine administered to the post-ischemic gut has [3,4]
been correlated with transcriptional activation of PPARY. There is also smooth muscle in the gut; therefore CIITA may be up-regulated due to the
PPARY activated by the administration of enteral glutamine, which has been shown to be safe during active shock resuscitation

EGFR Transactivation of EGFR and ErbB2 protects intestinal epithelial cells from TNF-induced apoptosis [5]
EGF is a potential therapeutic agent for the treatment of sepsis [6]

HIRA HIRA promotes replication-independent nucleosome assembly [7]

IFI6 IFI6 is believed to play a critical role in the regulation of apoptosis, or programmed cell death and is a marker for interferon beta (IFNB) activity [9]

KSR2 KSR2 regulates insulin sensitivity and glucose. Hyperglycemia associated with insulin resistance is common in critically ill patients [10,12]
KSR2 inhibits MAP3K8 (Cot, Tpl2) kinase activity and signaling. Inhibition of MAP3K8 in primary human cell types can decrease the production [13,14]
of TNF alpha and other pro-inflammatory mediators such as MAP3K3-mediated IL-8 (EG 283455) during inflammatory events

MRAS MRAS is involved with adhesion signaling, inducing lymphocyte function-associated antigen 1 (LFA-1)-mediated cell aggregation [15]

NOD1 Activation of NOD1 has been shown to induce septic shock and multiple organ injury [16]
NOD1 protects the intestine from inflammation-induced tumorigenesis [17]
NOD1 is involved in the direct killing of Helicobacter pylori bacteria in the stomach and duodenum by epithelial cells [19]

Commensal bacteria promote immune homeostasis via the innate immune receptor NOD1 [21]
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Fig. 6. Biological pathways graph: hours 6 — 10, MOF. The “expression” interactions are highlighted.

MOF 6_10 expression

FROM_TO (SF2 CSF3 I L6 I8 IL10

GBI o | 0 0 1 0

CSF3_IL6 0 1 0 1 0 0

CSF3_IL10 0 1 0 0 0 1
IL1_CSF3 0 1 1 0 0 0
CSF2_CSF3 1 1 0 0 0 0

Fig. 7. Portion of EM matrix for hours 6-10, MOF (full graph in Fig. 6). In this
incidence matrix representation, the “from” molecule is mapped to —1, the “to”
molecule to 1, and 0 otherwise.

ships had the most or the least crosstalk in different outcomes and
how crosstalk changed over stratifications such as time.

4.7. PSA - edge results

4.7.1. Dominant functions

Based on the edge count, the most interactions per time period
were in the activation function category, except in hours 22-24 for
non-MOF when activation interactions were fewer than expression
interactions. Inhibition and transcription interactions were most
active in hours 10-14. See Fig. 8.

4.7.2. Invariant interactions across all time

Only two molecular interactions were present in both MOF and
non-MOF over all time periods; both affected transcription: PDGF
BB — CSF2 (GM-CSF) and IL1 (IL-1p) — IL8. PDGF BB is a platelet-
derived growth factor homodimer that causes mitosis in cells of
mesenchymal origin; here it affects the transcription of CSF2,
which encodes a cytokine that controls the production, differenti-
ation, and function of granulocytes and macrophages. IL1 is a cyto-
kine produced by activated macrophages that mediates the
inflammatory response, in this case by increasing transcription of
IL8, a chemokine that functions as a neutrophil polymorphonuclear
cell (PMN) chemoattractant. It is also a potent angiogenic factor.
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Fig. 8. Counting edge interactions over time, outcome, and functional relationship
category show the most activity in hours 10-14 from trauma.

4.7.3. Unique interactions in each time period

Although the majority of molecular interactions were similar in
each time period over both outcomes, distinct differences were re-
vealed by a count of the edges unique to MOF or non-MOF. See
Fig. 9. In hours 6-10 from trauma, there were twice as many un-
ique activation interactions in non-MOF than MOF; whereas by
hours 10-14, MOF surpassed non-MOF with a greater number of
unique interactions in all categories. In hours 22-24, MOF had
twice as many unique activation edges than non-MOF, although
both had the same number of unique expression edges. There were
few unique inhibition or transcription interactions. Overall, there
were more interactions that appeared solely in MOF than in non-
MOF. Another point of interest is that IL6 was involved in ~50%
of the unique expression interactions in both outcomes in the first
6-10 h, while IFNG became dominant in hours 10-14.

4.7.4. Crosstalk

XTALK, a measure of crosstalk based on the dependency be-
tween the functional edges as calculated by matrix rank, ranged
from 0% to a high of 71%, and changed over time. (See Fig. 10). Acti-
vation crosstalk was calculated at ~69% in hours 6-10, staying
steady to 71% at hours 10-14, and decreasing in hours 22-24 to
45% in MOF and 32% in non-MOF. In hours 6-10, expression edge
crosstalk was 51% in MOF and 46% in non-MOF. This increased in
hours 10-14 with MOF rising to 62% and non-MOF to 54%. Cross-
talk then decreased in hours 22-24 to 27% in MOF and 31% in
non-MOF. There was no crosstalk in inhibition interactions in hours
6-10 and 22-24; however, crosstalk increased to 17% in MOF and
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Fig. 9. Counting unique edge interactions by outcome, over time and functional
relationship category. These are in addition to the invariant interactions in each
time period that are in both outcomes.
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Fig. 10. Percentages of crosstalk in functional relationships across time and
outcome based on the XTALK measure.

20% in non-MOF in hours 10-14. A 9% transcription crosstalk was
calculated in both outcomes in hours 6-10, rising to ~21% in hours
10-14, then decreasing to 0% by hours 22-24.

4.7.5. Activation

In hours 6-10, there were twice as many unique activation
edges in non-MOF compared to MOF; however the reverse was
the case in the later time periods. This may imply that in non-
MOF, a large number of favorable molecular interactions were
underway early on, so fewer unique activations were needed as
the pathways approached a favorable outcome of non-MOF. The
percentage of activation crosstalk was about the same in hours
6-10 and 10-14 in both outcomes, decreasing only in hours 22-24.

4.7.6. Expression

By hours 10-14, MOF had more than three times the number of
unique expression edges than non-MOF, implying a higher energy
consumption in MOF metabolism than in non-MOF at this time.
The percentage of expression crosstalk was slightly lower in non-
MOF than MOF in the first two time periods, changing to slightly
higher by the end.

4.7.7. Inhibition

Unique inhibition interactions appeared solely in MOF in the
last two time periods. Crosstalk appeared in both outcomes only
during hours 10-14; it was slightly higher in non-MOF. Again, this
suggests an attempt to damp down molecular interactions in both
outcomes starting in hours 10-14 that was continued in hours 22—
24 by additional unique inhibitory interactions in MOF.

4.7.8. Transcription

Unique transcription interactions appeared in both outcomes in
hours 10-14, with the majority in MOF. Crosstalk in transcription
interactions increased initially, and disappeared in both outcomes
by hours 22-24 when only two transcription interactions occurred
in each outcome.

5. Discussion

Today it is generally accepted that there is a need to develop
computational, data-driven algorithms to exploit the vast quantity
of molecular information available in knowledge bases in order to
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advance systems biology and to improve patient care [63-67]. Due
to several successes [68-70], in silico hypotheses generators are no
longer denigrated as “fishing expeditions” [71].

The Pathway Semantics Algorithm (PSA) presented in this man-
uscript is an initial in silico data integration and analysis step to-
wards formulating hypotheses about disease progression for
personalized diagnosis, prognosis, and therapies that can be vali-
dated in the laboratory and in the clinic. PSA is based on a novel,
flexible approach that uses graph theory and numerical algebra
to computationally compare non-canonical biological pathways
evoked from patient data over time. The use of matrix representa-
tion and algebra, as used in the Pathway Semantics Algorithm
(PSA), offers a way to computationally integrate qualitative and
quantitative approaches for improved hypothesis generation about
disease progression. PSA identifies molecular patterns in biological
pathways derived from patient data, an important benefit that sup-
ports personalized medicine. PSA preprocesses the molecular con-
centration data, tailoring it to the biological and clinical questions
under study, before submitting it to a network generation algo-
rithm (in this case, IPA®). PSA then algebraically post-processes
the evoked pathway networks to reveal changing molecular pat-
terns not easily observed in the static text and graphical formats
output by IPA®. This algebraic post-processing changes the data
representation. It is important because the data representation
space is one of the four inter-related problem spaces in scientific
discovery, along with the hypothesis space, the experiment space,
and the experimental paradigm. Changes in data representation
uncover regularities and invariants, facilitate categorization, and
suggest alternative search strategies key to scientific discovery
[31]. PSA differs from graphical analysis since it does not start with
pre-determined graphs of canonical pathways. Instead, PSA is data-
driven; the algorithm is initialized with clinical data from patients
upon which biological pathway networks are constructed based on
most likely interactions even if they are not part of canonical path-
ways. As a result, PSA supports personalized medicine. Although
both gene set enrichment analysis (GSEA) [22,23] and PSA generate
hypotheses correlated with phenotype, their inputs, methods and
goals are substantially different. The goal of GSEA is to provide a
more robust way to compare independently derived gene expres-
sion data sets (possibly obtained with different platforms) and ob-
tain more consistent results than single gene analysis. In contrast,
the goal of PSA is to efficiently generate clinically useful hypothe-
ses about disease progression over time using matrix algebra. PSA
frames quantitative and qualitative data in matrix representation
to answer biomedical questions and the PSA matrix node analysis
can be applied to the gene sets evoked from GSEA for further
hypothesis generation. Insights can be gained, not only into
expression of genes as in GSEA, but also to changes in activation,
inhibition, transcription and other activities of molecular interac-
tions over time. Finally, PSA uses mathematical algorithms for ma-
trix representation and computation that are readily available and
can be implemented in a wide variety of software.

PSA was applied to a prospective observational study of shock/
trauma, a research area where patient data is sparse and difficult to
obtain even at a Level I trauma center; randomized controlled trials
are not an option. By using patients’ molecular cytokine data to
evoke non-canonical biological pathways from the Ingenuity®
Knowledge Base, PSA expanded the existing information to include
the most likely molecules and molecular interactions evoked by
the patients’ cytokines. With the expanded information set, and
its representation as pathway graphs, PSA was able to use compu-
tational tools and algorithms from graph theory and numerical
algebra to compare patterns of molecules and molecular interac-
tions over different stratifications. In particular, PSA was able to
analyze patterns over time — an absolute necessity for clinicians
who treat disease as it unfolds [72]. This feature shows the poten-

tial of PSA to support temporal reasoning in medical decision-mak-
ing and support systems.

5.1. Overall response to insult

Applied to the trauma study, PSA node analysis identified and
qualified seven molecules in patterns across time of the progres-
sion of multiple organ failure; of these, only three had been previ-
ously associated with any shock/trauma syndrome. A literature
search confirmed that the molecules’ biological functions were
consistent with the current understanding of MOF. PSA also high-
lighted the dynamic nature of trauma response, indicating that
molecular patterns are specific to certain time periods from insult.
PSA uncovered novel molecular patterns in shock/trauma using an
unbiased data-driven approach that integrated what was known
about the patient and what was known about molecular interac-
tions. The appearance of these patterns made sense within the dis-
ease context, and suggested hypothetical answers to the
biomedical questions about which molecules differentiated patient
outcomes. All seven of these molecules were in the evoked biolog-
ical pathways over time and were not measured directly. Instead,
they were inferred from published literature documenting molec-
ular interactions.

The results from the PSA edge analysis suggest that molecular
interaction activity — and the nature of that activity - changed dra-
matically within the first 24 h of trauma. In both outcomes, the
number of interactions peaked during hours 10-14 from insult,
lessening to about half of the initial activity by hours 22-24; this
may be due to the effects of interventions during the first 24 h
combined with the innate systemic response. There were core sets
of molecular interactions that were invariant over outcomes in
each time period plus unique interactions only in one outcome
or the other. This suggests a primary molecular response to the in-
jury that was modulated by the unique interactions edges towards
favorable or unfavorable outcomes. MOF had fewer unique interac-
tions early in response, but by hours 10-14, MOF had almost three
times as many unique edges as non-MOF - perhaps an excessive
number.

5.2. Changes in the gene regulation process

Multiple organ failure has been characterized as an adaptive,
multilevel time-based stress response with marked changes in
gene expression [73-75]. We believe that ours is the first study
to quantify the changing aspects of gene expression in MOF over
time. By examining edge interactions in silico, changes in functional
relationships and their crosstalk over time and outcome were
revealed.

Molecules must be activated before they can be transcribed and
then expressed, and inhibition can halt any step in the gene regu-
lation process. It is known that cells respond quickly to stress by
altering their metabolism; they can induce apoptosis or cell-cycle
arrest and alter nuclear pathways for DNA repair [76]. Activation
interactions dominated the initial response in both outcomes
through hours 10-14, showing the immediate cellular response
to stress. Expression was higher in MOF, suggesting a higher met-
abolic load on the system. Inhibition and transcription interactions
were a small proportion of the overall count.

5.3. Variations in crosstalk over time and outcome

For demonstration purposes, we performed a simple analysis
that did not include interaction cascades of different functions in
order to focus on a “black box” of four dominant functions. Even
with this limitation, differences were observed across time and
outcome. This is important because it suggests that a diagnosis,
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prognosis or therapy based on molecular data might only be valid
within a certain time period and for a certain functional relation-
ship, due to the degeneracy in the biological network. For example,
because there appear to be few inhibition relationships and little or
no inhibition crosstalk in initial trauma, it may be worth exploring
increasing inhibition interactions early on in order to limit the
excessive unique expression interactions in MOF in hours 10-14.
Crosstalk decreased over time in the first 24 h from trauma, sug-
gesting that therapies should consider time from insult as well as
which interaction functions they are targeting in order to be effec-
tive. This also suggests that trauma therapies may have to be
administered in a particular sequence, similar to certain cancer
therapies.

5.4. PSA considerations and limitations

The quality of the PSA analysis results depends on the quality of
the patient data, the clinical study protocol, the assay method, the
choice of statistical analysis, and the accuracy of the biological
pathway networks generated by the Ingenuity Pathway Algorithm
from its knowledge base.

5.4.1. Validation

The Pathway Semantics Algorithm uses generally accepted
methods of statistics and matrix algebra, along with a widely used
commercial algorithm and knowledge base for pathway genera-
tion. Therefore, the overall Pathway Semantics Algorithm and its
resulting hypotheses have at least face validity. This has been con-
firmed in the previous sections though correlation of the results
with published literature and expert opinion as is the usual prac-
tice [77].

Because PSA was illustrated based on cytokine time series data
from a completed trauma patient study, it was not possible to re-
test the patients for empirical validation of the hypotheses gener-
ated. Subsequent to the trauma research, PSA was applied to a
study of cytokine time series data of a mouse model of inflamma-
tory immune response in hemophilia. Molecular patterns predicted
by PSA to occur at specific times were later validated in the mouse
model, as documented in the author’s dissertation [78].

5.4.2. Evaluation

PSA’s extensive use of matrix algebra for analysis minimizes
computational complexity while allowing computationally tracta-
ble scaling over large numbers of molecules, molecular interac-
tions, outcomes, time periods and other stratifications. In
addition, the matrix algebra reduces the size of the solution space,
that is, the set of hypotheses generated from the evoked pathways
in response to specific biomedical questions. For example, in the
trauma PSA node analysis, the 193 molecules in the pathways
evoked by the assayed cytokines over six time periods resulted
in a potential solution space of 1158 molecules/times. Algebra re-
duced that to seven molecules that differentiated outcomes at dif-
ferent times. Finally, the XTALK measure derived from PSA can be
shown to be robust under small changes. Expanding the Fig. 3
three-node graph to four nodes only modifies XTALK from 33% to
25% as shown in Fig. 11.

5.4.3. General applicability

It is well understood that intracellular signaling processes play
an important role in disease progression [79-81]. The Pathway
Semantics Algorithm is designed to be generally applicable to the
development of hypotheses regarding the roles of signaling mole-
cules, such as cytokines, in disease progression, independent of
data set, disease, disease state, or specific method of pathway gen-
eration. In addition, as mentioned previously, PSA has been empir-
ically validated in a mouse model of immune response in
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Fig. 11. The directed graph on the left with four nodes and four edges is the same as
Fig. 3 with one added node D and one edge D-B. The calculated rank of the
incidence matrix is three. XTALK for this variation is 1 — (rank/edges)=1 —(3/
4)=25%. This compares to Fig. 3, where XTALK was 33%.

hemophilia also based on cytokine time series data and published
in the author’s dissertation. The authors believe that validation
with independent data for a different species and a different dis-
ease over a different time progression shows that PSA is a general
method; it was not “optimized” for a specific data set, domain, or
context.

Following are some key application considerations:

e Quality of the patient data and the assay method: In the MOF
application, 8.5% of the data were missing. Only one assay
method was used, and its working ranges and limits of detec-
tion (LOD) varied depending on the cytokine being assayed.
(See Section 1 of Supplement 1).

Quantity of the patient data: Only 11 of the 48 patients had out-
comes of multiple organ failure; however, there were several
thousand cytokine measurements taken on a regular time basis.
Because the time periods were based on time from trauma, the
number of measurements differed in each time period, with the
fewest being in the first time period 2-6 due to patient travel
time and the time of protocol entry. In comparison, this sample
contained more cytokine data than found in the Trauma Related
Database (TRDB) of the multi-center, multi-year Inflammation
and the Host Response to Injury Large Scale Collaborative Program.
As of 2008, the TRDB contained only 80 trauma subjects with
cytokine data sampled irregularly (http://www.gluegrant.org).
Dimensionality reduction through significance sets: Dimensional-
ity reduction, or limiting the number of variables under consid-
eration, was performed to reduce false positives, noise and
redundancy in the input data and to reduce the computational
burden in subsequent steps. The trade-off was loss of pattern
information.

Choice of statistical analysis used to identify significance sets: In
this exploratory analysis, we identified six time-based signifi-
cance sets using the Mann-Whitney-Wilcoxon (MWW) test
on two independent samples (MOF or non-MOF) over 27
observed molecules in each time period. MWW was selected
because more sophisticated techniques rely on normality, a
condition not satisfied in these data sets. In this exploratory
analysis, we chose to identify six Significance Sets rather than
one Significance Sets from a repeated measures test in order
to yield more a detailed understanding of disease progression.
With our focus on inclusiveness for hypothesis generation, we
tolerated the 5% false positive rate in the Significance Sets and
the assumption of independence of the observed molecules.
However, if enough data are available, multivariate methods
such as MANOVA could be applied to account for correlations
among the observations. Note that the statistical analysis is
being used to judge the significance of a variable (e.g. a cytokine
in a time period), not the significance of a value (e.g. an obser-
vation of a patient’s cytokine in a time period.) Given a larger
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sample size with a normal distribution, exploratory factor anal-
ysis methods could be used to identify the significance sets.
Linearity assumption: Using matrix rank as a basis for the XTALK
measure implies that the edges are related in a linear manner -
that is, each edge can be represented as a combination of nodes
with coefficients of —1, 0, or 1. This can be considered to be a
linear approximation to a non-linear function, computed by
taking the first term in the representative Taylor series.
Quality of the biological pathway knowledge base and the algo-
rithm used to evoke biological pathways based on assay mea-
surements. PSA used the commercial product IPA®. IPA® is
well accepted in the biological sciences community as seen in
several hundred references in PubMed. We chose to use IPA®
because it is capable of using concentration data to generate
pathway networks, and has the flexibility to generate biological
networks of any size incorporating the closest interaction
neighbors to the input data. To minimize the effects of noise
in the data, median values were used as input to IPA®. The
default size of 35 nodes per network was used in this study,
with 1-3 networks generated for each outcome in each time
period. Each network group was combined before matrix anal-
ysis, resulting in up to 105 nodes connected by direct and indi-
rect molecular interaction edges per time period per outcome.
Incomplete pathway data: Some functional relationships may be
more highly represented in the Ingenuity Pathways Knowledge
Base than others due to the type of experiments performed in
the published research, rather than the reality of the true pro-
portion of those relationships in nature. This was addressed in
the crosstalk calculation by normalizing XTALK by the number
of edges in each relationship sub-graph, to facilitate comparison
across stratifications.

Changing nature of the biological pathway knowledge base: IPA®
generated the biological networks evoked in this study during
2008-2009. Since that time, there have been extensive, contin-
uous updates to the IPA® knowledge base. It is not possible to
access older versions of the knowledge base (Ingenuity Systems,
personal communication) nor is it possible to export interaction
data in other than graphical formats, resulting in extensive
manual transcription before computation can be done. There-
fore, this manuscript is intended as a demonstration of the algo-
rithm, and the actual biomedical results may differ somewhat
based on current research. Our assumption is that the evoked
biological networks will primarily be the same, with the differ-
ence that new discoveries may bring new “closest neighbors”
into the graph, pushing out existing molecules past the default
35 node limit per graph. This can be addressed by generating
new graphs with larger node limits. In addition, the relation-
ships between molecules may be augmented with new relation-
ships or reclassified to related relationships. However, as with
published research, older information about relationships is
rarely deleted.

Biological scope of the generated network: If the biological scope
is limited to certain species or disease states, the generated net-
work will reflect only current knowledge with the result that
potential molecular interactions in other species and disease
states may be overlooked. Since the goal of applying PSA to
MOF was to uncover hypotheses about potential molecular pat-
terns underlying trauma, it was preferable to run the IPA® net-
work generation algorithm without constraints, with the
understanding that some of the molecular patterns identified
may need to be verified in human shock/trauma progression.
Categories of interaction relationships: IPA® broadly defines the
categories of functional interaction relationships. Each edge
on an IPA® generated graph is annotated with a single letter,
such as E for expression, followed by a number in parentheses,
which gives the number of references for that interaction. An

385

“E” annotated edge means that the “from” molecule affects
the expression of the “to” molecule. As noted in IPA®’s defini-
tions in Section 2.1, the result may be up or down-regulation
or another modifier; that information is available in IPA® by
examining each listed reference online. A more detailed analysis
could be performed by changing the categories to include the
most common modifiers identified in the references for each
interaction category on each edge. At the time of this study, that
information was not readily exportable from IPA®.
Utility of the molecular patterns: The identified molecules may be
difficult to assay clinically due to their primary presence in tis-
sue rather than biofluids, low concentrations, or lack of existing
assays. However, the molecular patterns may be useful for
in vitro and in vivo verification of the underlying biological
mechanisms that may present more clinically useful
information.

e Resource requirements to implement PSA: Published data for
time-based analysis of biofluids and tissues in disease progres-
sion may not be readily available although access to biological
pathway algorithms and data ranges from free open source to
commercial products. This presents opportunities for research
studies to collect more data in areas such as trauma and critical
care where rapid changes are seen and rapid response to chang-
ing patient condition is required.

6. Conclusions

The Pathway Semantics Algorithm identified different patterns
of molecules and molecular interactions over time, outcomes,
and functional relationships in biological networks that would
not be easily found through direct assays, literature or database
searches. By framing biomedical questions within a variety of ma-
trix representations, PSA had the flexibility to analyze combined
quantitative and qualitative data over a wide range of stratifica-
tions and generate hypotheses addressing those specific biomedi-
cal questions.

The algorithm was illustrated with an application to disease
progression in trauma; the results show promise for further clinical
investigation. The seven evoked molecules that differentiated out-
comes of MOF and non-MOF in specific time periods suggest novel
hypotheses for underlying mechanisms of shock/trauma progres-
sion. The differences in the number of edges, the number of unique
edges, and XTALK showed the utility of evaluating a molecular
interaction not just as a connection between two molecules, but
as a directed interaction from one molecule to another that may
carry out one or many specific functions [82]. The crosstalk mea-
sure XTALK provided a novel perspective on the changing func-
tional interaction relationships in disease progression; the results
supported the existence of the property of degeneracy in biological
networks. Next steps in this work include exploring the biological
significance of other matrix-based numerical algebra methods,
analysis of other diseases of clinical interest, and laboratory valida-
tion of results. Substantial progress has been made in this regard.
PSA was applied and empirically validated in a mouse model of
hemophilia; the results are being prepared for separate publication
at the request of the co-authors.
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