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a b s t r a c t

An n-ary query over trees takes an input tree t and returns a set of n-tuples of the nodes
of t . In this paper, a compact data structure is introduced for representing the answer sets
of n-ary queries defined by tree automata. Despite that the number of the elements of the
answer set can be as large as |t|n, our representation allows storing the set using onlyO(|t|)
space. Several basic operations on the sets are shown to be efficiently executable on the
representation.
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1. Introduction

The finite state automaton is a well-known model for representing properties for trees and strings. The class of queries
definable by finite state automata is called regular and is widely used both in theory and in practice. A number of query
formalisms are shown to be equivalent or subsumed by regular queries. Examples of such formalisms include, regular
expression pattern [1],monadic second-order logic [2],µ-calculus [3], Core XPath [4],monadic Datalog [5], Boolean attribute
grammar [6], etc.
In this paper,we are interested in the space complexity of the n-ary queries defined by tree automata. An n-ary query over

trees takes an input tree t and returns a set of n-tuples of the nodes of t . The number of elements in the answer set of an n-ary
query may be as large as |t|n where |t| is the number of the nodes of t . Also, usually, storing a set of |t|n elements requires
at least c|t|n space, where c is the space required to store a single element (in this case, one n-tuple of nodes). The O(|t|n)
space consumption is unavoidable if the elements are chosen in a perfectly randommanner; it is a well-known consequence
from information theory. Note, however, we are interested in more practical, less random queries. Queries defined by tree
automata have much more structure than random ones. By exploiting the structural characteristics of regular queries, we
can represent the answer sets in some compressed form.
Let us explain the idea by an example. Consider the regular query ‘‘select all pair of nodes (x, y) such that x is in the left

subtree of the root node and y is in the right subtree of the root node’’ with the input tree t as in Fig. 1. Then the answer
set consists of nine elements: {(v1, v4), (v2, v4), (v3, v4), (v1, v5), (v2, v5), (v3, v5), (v1, v6), (v2, v6), (v3, v6)}. Obviously,
if an input tree has n nodes both in the left and the right subtrees, the size of the answer set will be n2, which is quadratic
in the number 2n + 1 of the nodes. Our approach for avoiding the quadratic blow-up is to represent the answer set by a
symbolic expression, instead of computing the concrete list of elements. For this example, we can represent the answer set
by the expression {v1, v2, v3} × {v4, v5, v6} where× denotes the product of two sets. Counting the number of variables vi
and the operator, the length of the expression is 7 instead of 9. Analogously, for the general case with n nodes in both the
left and the right subtrees, the answer set can be represented by an expression of length 2n+1, which consumes only linear
space with respect to the size of the input tree.
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Fig. 1. Sample input.

Fig. 2. Query result in expression-based representation.

The contribution of our work is in establishing the expression-based compact representation as illustrated above. In
fact, only two operators – ·∪ (disjoint union) and ∗ (a slight variant of product) – are necessary for achieving the linear-size
representation of the answer sets of regular queries. We show that for any fixed n-ary regular query and an input tree t ,
the answer set can always be represented by an expression on ·∪ and ∗ with every leaf expression being a singleton set of
an input node. By sharing common sub-expressions, such an expression can always be represented by a dag of size at most
4 · 3n|δA||t|, where |δA| is the size of the deterministic automaton representing the query. That is, regardless of the arity n
of the query, the data complexity with respect to the size |t| of the input is always linear! As an instance, Fig. 2 shows the
expression-dag (just a tree in this case) representation of the query result of the previous example. The factor complexity 3n
is sufficiently low for queries with small n, such as binary or ternary queries, which are the most common cases in practice;
after all, it is quite rare to run, say, a 100-ary query.
Our dag-based representation is named SRED (Set Representation by Expression Dags), which enjoys good time complexity

as well as size-efficiency. The SRED representation of the answer set can always be computed from the input tree t in time
O(3n|δA||t|), regardless how large the actual answer set is. Also, evaluation (or we could say, decompression) of a SRED to
yield the concrete list of answer tuples can be done in time O(n2|a|), where |a| is the number of the answers. By combining
these two steps, we obtain an algorithm for regular queries in the optimal data complexity O(|t| + |a|). More than that, on
SRED, we can carry out the following important operations without decompressing it: (1) Selection: for an answer set s, the
SRED representation of the set s

[i:u] = {(v1, . . . , vi−1, vi+1, . . . , vn) | (v1, . . . , vi−1, u, vi+1, . . . , vn) ∈ s} can be computed
in time O(3nh|δA|), where h is the height of the input tree for binary trees and is the height times log |t| for unranked trees,
(2) Projection: the set s@i = {vi | (v1, . . . , vn) ∈ s} can be computed in time O(3

nh|δA||s@i|). Besides the expression-based
representation, another key idea of SRED is to remember for every sub-expression the least common ancestor of the nodes
contained in the set represented by the sub-expression. The information allows locating the leaf expressions containing
each input node in time proportional only to the height of the expression-dag.

Relatedwork. SREDhasmuch similarity to the Complete AnswerAggregate (CAA) introduced byMeuss et al. [7] as a compact
representation of answer sets of queries. The size of a CAA isO(h|t|)which is competitive to ourO(|t|). CAA is also suitable for
applying several operations such asmembership testing. Themain advantage of ourwork is that it supports arbitrary regular
queries, which is strictly more expressive than the query language used in [7]. Though an attempt to represent the answer
sets of regular queries with CAA is given by Filiot and Tison [8] through a decomposition of queries, the space complexity is
O(|t|dφ ) for some constant dφ depending on the query, which grows to n in the worst case. Furthermore, precise complexity
of operations such as selection or projection for CAA was not estimated.
An algorithm (FFG algorithm) for answering regular n-ary queries in the optimal time complexity O(|t|+|a|) is shown by

Flum et al. [9]. Since no compact data structure was used in their work, the FFG algorithm requires O(|a|) space to be carried
out. In fact, our algorithm can be regarded as a space-efficient variant of the FFG algorithm. The expression dag generated
in our algorithm precisely corresponds to the set operations executed in the FFG algorithm. On the other hand, the class of
queries that the FFG algorithm can be applied to is more general than our algorithm. The FFG algorithm can also be used for
querying n-tuples of sets of nodes of graphs that have a tree decomposition, while our algorithm only supports queries for
n-tuples of nodes of trees. It will be future work to determine whether our compact representation of the answer sets can
be extended to more general classes of query.
Another related area of research is becoming hot recently, namely, linear-delay enumeration of MSO query results

[10,11]. In their algorithms, the input tree of a query is first converted to an intermediate data structure that allows linear-
delay enumeration of the query results. Since the intermediate data structure is of linear size with respect to the input tree,
it can also be used as a compact representation of the answer set. Compared to our SRED representation, however, their data
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structures are concentrated only for linear-delay enumeration and other operations such as selection or projection are not
supported.

Outline. The paper is organized as follows. In Section 2, we introduce basic notations on trees and tree languages. Section 3
presents a simple but inefficient algorithm for executing n-ary queries on binary trees, as the basis of our main algorithm.
Then, in Section 4, we give our main results. We introduce the SRED data structure as a compact representation of set of
tuples, and show that just by using SRED, the previous naïve algorithm can be turned into one that efficiently produces a
compact answer-set representation. Section 5 shows an application to XML processing. Section 6 concludes.

2. Preliminaries

In this paper, we mainly consider binary trees, in which every node has either zero or two children. Generalization to
the trees with other arity is briefly mentioned in the end of Section 4. Let Σ be a finite alphabet that is a disjoint union of
two alphabetsΣ (0) andΣ (2). A binary tree (or simply, a tree) overΣ is a tuple t = (Vt , labelt , lt t , rt t , root t), where Vt is the
disjoint union V (0)t ·∪ V

(2)
t of finite sets of nodes, labelt : V

(0)
t → Σ (0) ·∪ V (2)t → Σ (2) is the label function, lt t , rt t : V

(2)
t → Vt

is the left- and right-child function respectively, and root t ∈ Vt is the root node. We call the nodes in V
(0)
t leaf nodes, and the

nodes in V (2)t branching nodes. We require a tree to satisfy the following conditions: (1) rooted: there is no node v ∈ Vt such
that lt t(v) = root t or rt t(v) = root t , (2) acyclic: there is no node v ∈ Vt that is reachable from itself by finite applications
of lt t and rt t , and (3) tree-formed: for any non-root node v ∈ Vt \ {root t}, there exists a unique node u called the parent of
v such that lt t(u) = v ∨ rt t(u) = v. A structure only satisfying (1) and (2) is called a dag. For v1, v2 ∈ Vt , the binary order
relation v1 ≤t v2 is defined to hold if and only if v2 is reachable from v1 by zero or finitely many applications of lt t and rt t .
We usually omit the subscript t if clear from the context. By |t|we denote the number |Vt | of the nodes. We use the notation
a〈v1, v2〉 to denote a node v such that labelt(v) = a, lt t(v) = v1, and rt t(v) = v2.
For a tree t , we assume that eachnode v ∈ Vt can be stored onmemory in constant space independent from |t|. In practice,

this implies the assumption that the tree t fits in the address space of the computer and each node can be represented by a
single pointer. We also assume that the operations label, lt , rt , and≤ can be executed in constant time. In particular, we can
test the relation≤ in constant time by, e.g., the preorder/postorder numbering [12]. Again by the assumption that |t| fits in
the address space, preorder and postorder numbers can be stored in constant space.
A tree language over Σ is a set of trees over Σ . By TΣ , we denote the set of all trees over Σ . An important class

of tree languages is defined in terms of tree automata. A (bottom-up deterministic) tree automaton over Σ is a tuple
A = (QA, δA, FA), where QA is the set of states, δA : (Σ (0)

∪ (Σ (2)
× QA × QA)) → QA is the transition function, and

FA ⊆ QA is the set of accepting states. The subscript A is omitted if clear from the context. A run of a tree automaton
A on the input tree t is the unique function ρ : Vt → QA such that ρ(v) = δA(labelt(v)) if labelt(v) ∈ Σ (0) and
ρ(v) = δA

(
labelt(v), ρ(lt t(v)), ρ(rt t(v))

)
if labelt(v) ∈ Σ (2). The automaton accepts t if and only if ρ(root t) ∈ FA. By

L(A), we denote the set of trees accepted by A. A tree language is said to be regular if it is equal to L(A) for some tree
automatonA.

3. N-ary regular tree queries

As a basis of our algorithm for computing the compact representation of answer sets, we first explain a basic bottom-
up algorithm for regular queries with O(|t|n+1) time complexity, which has already been known in the literature. Our new
algorithm is obtained by changing the data structure used in the algorithm, as explained later in Section 4.
An n-ary query for trees overΣ is a functionψ that maps each tree t ∈ TΣ to a set of n-tuples of its nodes. Let B = {0, 1},

Σ
(0)
n = Σ

(0)
× Bn,Σ (2)

n = Σ
(2)
× Bn, andΣn = Σ

(0)
n ·∪Σ

(2)
n . For a tree language L ⊆ Σn, an n-ary query defined by L is the

functionψL(t) = {(v1, . . . , vn) | mark(t, v1, . . . , vn) ∈ L}wheremark(t, v1, . . . , vn) is a treem = (Vt , labelm, lt t , rt t , root t)
with labelm(v) = (labelt(v), b1 · · · bn), where bi = 1 if v = vi and 0 otherwise. Intuitively, a query defined by a language L
selects a tuple (v1, . . . , vn) if and only if L contains a tree obtained bymarking each selected node vi with 1.1 A query defined
by a regular language L is called a regular query. In the rest of the paper, we assume the regular language L to be given as a
tree automatonA such that L = L(A). Nevertheless, our algorithm can be applied, without changing the data complexity,
to many other query formalisms as long as they define regular languages by first compiling them into tree automata and
then running the algorithm.
The most naïve algorithm for a regular n-ary query is, to try all possible markings. Given an automatonA overΣn and a

tree t , for all (v1, . . . , vn) ∈ V nt we generate the marked tree mark(t, v1, . . . , vn) and test whether it is accepted byA. If it
is, (v1, . . . , vn) is an answer and hence we output it. This algorithm takes O(|t|n+1) time, because computing each run ofA
takes O(|t|) time and we try |t|n runs in total.
Another approach is to try all marking parallelly by a single bottom-up run. The following recursive procedure

QUERY-RUNA takes a node v of t and computes a table containing the result of the parallel marking run.

1 In general, Lmay contain ‘‘ill-marked’’ trees that have two or more nodes marked as bi = 1 for the same i and hence can never be in the range ofmark.
Such trees, however, are simply ignored and have no effect on the definition of ψL .
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QUERY-RUNA(v)
1: r ← new 2-dimensional array of size |QA| × 2n with each element initialized to ∅
2: if label(v) ∈ Σ (0) then
3: for each ((label(v), b0) 7→ q0) ∈ δA do
4: r[q0, b0] ← singleton(v, b0)
5: else if label(v) ∈ Σ (2) then
6: r1 ← QUERY-RUNA(lt(v))
7: r2 ← QUERY-RUNA(rt(v))
8: for each ((label(v), b0), q1, q2 7→ q0) ∈ δA do
9: for each disjoint b0, b1, b2 in 00 . . . 00 to 11 . . . 11 do
10: r[q0, b0|b1|b2] ← r[q0, b0|b1|b2] ·∪ singleton(v, b0) ∗ r1[q1, b1] ∗ r2[q2, b2]
11: return r

By singleton(v, β1 · · ·βn)we denote the singleton set {(u1, . . . , un)}, where ui = v if βi = 1 and ui = ⊥ if βi = 0. Here,⊥ is
a special symbol not contained in Vt . In line 9, for each disjoint iterates over pairs of the form (b1 = β11 · · ·β1n, b2 =
β21 · · ·β2n) ∈ (Bn)2 such that for all 1 ≤ i ≤ n, at most one of {β0i, β1i, β2i} is 1, with β01 · · ·β0n = b0. Note that
b0 is determined by the outer δA loop and fixed during each single inner loop. The operator | is for bitwise-or and ·∪ is
disjoint union of sets (the operands are indeed disjoint, as explained later). The operator ∗ is a kind of ‘‘product’’ operation
that combines two sets of tuples, defined as follows: S ∗ T = {(u1, . . . , un) | (s1, . . . , sn) ∈ S, (t1, . . . , tn) ∈ T ,∀i :
(ui = si ∧ ⊥ = ti) ∨ (⊥ = si ∧ ui = ti)}. For example, {(v1,⊥,⊥), (v2,⊥,⊥)} ∗ {(⊥,⊥, v3), (⊥,⊥, v4)} is equal to
{(v1,⊥, v3), (v1,⊥, v4), (v2,⊥, v3), (v2,⊥, v4)}. Let us remark that we never take ∗-product of sets that have tuples with
non-⊥ nodes on the same position, as will be shown in Lemma 1.
Let us explain how the algorithm works. Let r = QUERY-RUNA(v) for a node v ∈ Vt . For each q ∈ QA and

b = β1 · · ·βn ∈ Bn, r[q, b] is a set of n-tuples over the set Vt ∪ {⊥}. A tuple in (Vt ∪ {⊥})n is called a partial answer to
the query. For example, (v1,⊥) is a partial answer that selects the node v1 as the first coordinate and leaves the second
coordinate to be selected later. Intuitively, r[q, b] is the set of partial answers α such that, if a tree is marked according to
α, then at the node v, the run of the automaton A reaches the state q. For example, if (v1,⊥) ∈ r[q, b], it means that ‘‘if
the node v1 is marked as the first component of the answer and no node in the subtree under v is marked as the second
component, A reaches the state q at node v’’. As an example, let us assume v to be a leaf node labeled σ ∈ Σ (0) and A to
define a binary query. Suppose δA has the following four rules: δA((σ , 00)) = q1, δA((σ , 01)) = q2, δA((σ , 10)) = q1, and
δA((σ , 11)) = q2. Then, the table r = QUERY-RUNA(v) is:

r[q1, 00] = {(⊥,⊥)} r[q1, 01] = ∅ r[q1, 10] = {(v,⊥)} r[q1, 11] = ∅
r[q2, 00] = ∅ r[q2, 01] = {(⊥, v)} r[q2, 10] = ∅ r[q2, 11] = {(v, v)}.

The set r[q1, 00] contains (⊥,⊥) because if we do not select any node below v, the automaton reaches the state q1. On the
other hand, the set r[q2, 00] is empty, because we cannot reach the state q2 at node v if we do not select any node. Similarly,
r[q1, 01] is empty, because we cannot reach the state q1 if we select the second coordinate of the answer. On the other hand,
we have r[q2, 01] = {(⊥, v)}, because if we choose v as the second coordinate, the automaton reaches the state q2.
The index b of r called flag denotes the already selected coordinates; the i-th coordinate of the elements of r[q, b] is

non-⊥ if and only if the i-th bit of b is 1. Thus we have the following lemma.

Lemma 1. Let r = QUERY-RUNA(v) for some v and (u1, . . . , un) ∈ r[q, β1 · · ·βn]. For all 1 ≤ i ≤ n, we have (ui ∈ Vt and
v ≤t ui) if βi = 1, and ui = ⊥ if βi = 0.

Proof. The proof is by induction on the structure of the tree rooted at v. If v is a leaf node, r[q, b] is either empty (the case
((label(v), b) 7→ q) /∈ δA) or a singleton set singleton(v, b). The lemma obviously holds for the empty case, and the latter
case is also immediate from the definition of singleton(v, b).
If v is a branching node, by the construction of the set r[q, b], the condition (u1, . . . , un) ∈ r[q, b] implies that we have

(u1, . . . , un) ∈ singleton(v, b0) ∗ r1[q1, b1] ∗ r1[q2, b2] for some q1, q2 ∈ QA and disjoint b0, b1, b2 ∈ Bn with b0|b1|b2 = b.
Now, assume that the i-th bit (βi) of b is 0,which at the same timemeans that the i-th bits of b0, b1, and b2 is 0. By thedefinition
of singleton and the induction hypothesis, the i-th coordinate of each element of singleton(v, b0), r1[q1, b1], and r2[q1, b2] is
⊥. Hence, from the definition of ∗, ui also has to be⊥ in this case. Contrarily assume βi = 1, which means that exactly one
of the i-th bits of b0, b1, and b2 is 1. Then, if we take any three tuples (s1, . . . , sn) ∈ singleton(v, b0), (t1, . . . , tn) ∈ r1[q1, b1],
and (w1, . . . , wn) ∈ r2[q2, b2], exactly one of si, ti, andwi is non-⊥ due to the induction hypothesis. Let us call x the non-⊥
node. We have v ≤t x, because si = v, and by induction hypothesis lt(v) ≤t ti and rt(v) ≤t wi if they are not ⊥. The
definition of ∗ tells us that ui is one of such-chosen x, which is non-⊥, and v ≤t x as desired. �

The lemma ensures two disjointness properties in the procedure QUERY-RUNA. First, the ∗-product is always taken
between the sets with disjoint selected-coordinates. That is, we need to compute S ∗ T only for the sets S, T such that
(. . . , vi, . . .) ∈ S and (. . . , ui, . . .) ∈ T implies either vi or ui is ⊥. This holds because in line 10 (∗ occurs only here) of
the QUERY-RUNA algorithm, the flags b0, b1, and b2 are disjoint. Note that, for such a case, we have |S ∗ T | = |S| · |T |.
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Second, ·∪ is indeed taken between disjoint sets. This is because the operands of ·∪ (whose only one occurrence is in
line 10) are constructed by ∗-product either over different flags or over different states, i.e., the union is of the form
singleton(v, b0) ∗ r1[q1, b1] ∗ r2[q2, b2] ·∪ singleton(v, b′0) ∗ r1[q

′

1, b
′

1] ∗ r2[q
′

2, b
′

2] where either (b0, b1, b2) 6= (b′0, b
′

1, b
′

2)
or (q1, q2) 6= (q′1, q

′

2). Disjointness in the former case follows from Lemma 1, and in the latter case it follows from the
determinism of the automatonA.
The answer set of the query can be calculated from the result of QUERY-RUNA applied to the root node, namely,

r = QUERY-RUNA(root t). For each q ∈ FA, recall that the set r[q, 1 · · · 1] is the set of tuples such that ‘‘if the tree is marked
according to the tuple,A reaches the state q at the root node’’, which is by definition the answer set.

Theorem 2. ψL(A)(t) =
⋃
q∈FA QUERY-RUNA(root t)[q, 11 · · · 11].

Proof. Let v1, . . . , vn ∈ Vt be fixed and ρ be the unique run on the tree mark(t, v1, . . . , vn) by A. Let v ∈ Vt . Let
partial(v) = (u1, . . . , un) with ui = vi if v ≤t vi and otherwise ui = ⊥. Let flags(v) = β1 · · ·βn with βi = 1 if v ≤t vi and
otherwise βi = 0. We can prove for all v in Vt the following claim:

for all q ∈ QA, partial(v) ∈ QUERY-RUNA(v)[q, flags(v)] if and only if q = ρ(v).

We have (v1, . . . , vn) ∈ QUERY-RUNA(root t)[q, 11 · · · 11] if and only if q = ρ(root t), by applying the claim to the root node
v = root t . It, together with the definition of ψL(A), proves the desired result.
Proof of the claim is done by induction on the structure of the tree rooted at v. Consider the casewhen v is a leaf. From the

leaf-node case of theQUERY-RUNA procedure,we haveQUERY-RUNA(v)[q, flags(v)] = singleton(v, flags(v)) = {partial(v)}
when ((label(v), flags(v)) 7→ q) is in δA, and otherwise it is empty. This already shows the claim for the leaf case, because
the discriminating condition is equivalent to q = ρ(v).
Consider the case when v is a branch node. Let r1 = QUERY-RUNA(lt(v)) and r2 be that of rt(v). We first show

the ‘‘if’’ direction; assume q = ρ(v). Let q1 = ρ(lt(v)), q2 = ρ(rt(v)), b0 = β1 · · ·βn where βi = 1 iff v = vi,
b1 = flags(lt(v)), and b2 = flags(rt(v)). Note that flags(v) = b0|b1|b2, and by the assumption q = ρ(v), it must be the
case q = δA((label(v), b0), q1, q2); the line 10 of the procedure QUERY-RUNA is executed in this variable binding. That is,
the set QUERY-RUNA(v)[q, flags(v)] is a superset of singleton(v, b0)∗ r1[q1, b1] ∗ r2[q2, b2]. By the induction hypothesis, the
latter set contains the unique element of the product singleton(v, b0) ∗ {partial(lt(v))} ∗ {partial(rt(v))}, which is partial(v)
as desired. For the ‘‘only if’’ direction, assume partial(v) ∈ QUERY-RUNA(v)[q, flags(v)]. From the construction of this set in
QUERY-RUNA, it implies that for some disjoint b0|b1|b2 = flags(v) and q1, q2 ∈ QA with δA((label(v), b0), q1, q2) = q,
it must be the case partial(v) ∈ singleton(v, b0) ∗ r1[q1, b1] ∗ r2[q2, b2]. But by Lemma 1, it can only happen when
b1 = flags(lt(v)), b2 = flags(rt(v)), partial(lt(v)) ∈ r1[q1, b1], and partial(rt(v)) ∈ r2[q2, b2]; other entries of r1 and r2
cannot generate partial(v) by ∗-product. Now, from the induction hypothesis we obtain q1 = ρ(lt(v)) and q2 = ρ(rt(v)),
and therefore, ρ(v) = q. �

What is the time complexity of this algorithm? For each node v ∈ Vt , the procedure QUERY-RUNA is applied exactly once.
In other words, the procedure is called |t| times. In the body of the procedure, the case for Σ (2) labels is computationally
harder; the outer loop requires |δA| iterations, the inner loop for b1, b2 requires at most 3n iterations (for each of n bits we
have 3 choices–the bit belongs to either b1, b2, or none of the two), and inside the loop, one ·∪ operation and two ∗ operations
are required. Note that the result of those set operations can be as large as O(|t|n) in the worst case. As long as we represent
such sets as a concrete collection of tuples, the operation ∗ need to enumerate all its output elements. Hence it takes at least
O(|t|n) time. Altogether, the total time complexity is still high: O(3n|δA||t|n+1).
One approach for reducing the complexity is to do some preprocessing before running the algorithm, as proposed by

Flum et al. [9]. Their algorithm consists of 3-passes over the input tree; the first two passes detect, for each node, whether
or not each entry r[q, b] really needs to be computed. The last pass is essentially the same as QUERY-RUNA, but skipping the
computation for ‘‘unneeded’’ entries r[q, b]. This optimization leads to the complexity O(3n|δA|(|t| + |a|)), where |a| is the
size of the answer set. The complexity of this strategy with respect to the data size seems optimal in some sense; if the size
of the input is |t| and the size of the output is |a|, even just reading and writing those data already takes O(|t| + |a|) time,
doesn’t it?
Yes, it is optimal—as long as you write down all the elements of the answer set as the output. In the next section, to avoid

the issue, we propose here to use a compressed representation of the answer set, whose size can be bounded by O(|t|).

4. SRED: set representation by expression dags

In this section, we propose a novel data structure named SRED for representing the answer sets of n-ary regular queries.
The size of SRED is always bounded by the input size O(|t|), regardless how large the actual set it represents is. Just by using
the data structure instead of normal sets in the QUERY-RUNA procedure, we obtain linear running time with respect to |t|,
as well as a compact representation of the answer set. We first give the formal definition of SRED, then show how easily
and efficiently it can be adapted to the QUERY-RUNA algorithm, and finally, show several important set-operations can be
directly applied to SRED.
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EVAL (r)
1: if r ≡ emp〈〉 then
2: return ∅
3: else if r ≡ unit〈〉 then
4: return {(⊥, . . . ,⊥)}
5: else if r ≡ ne〈r ′〉 then
6: return EVAL-NE(r ′)

UNION-AT (v, r1, r2)
1: if r1 ≡ emp〈〉 then
2: return r2
3: else if r2 ≡ emp〈〉 then
4: return r1
5: else if r1 ≡ ne〈r ′1〉 and r2 ≡ ne〈r ′2〉 then
6: return ne〈cup〈v, r ′1, r

′

2〉〉

SINGLETON-AT (v, β1 · · ·βn)
1: if β1 · · ·βn = 0 · · · 0 then
2: return unit〈〉
3: else
4: return ne〈sing〈v, β1 · · ·βn〉〉

EVAL-NE (r)
1: if r ≡ cup〈v, r1, r2〉 then
2: return EVAL-NE(r1) ·∪ EVAL-NE(r2)
3: else if r ≡ star〈v, r1, r2〉 then
4: return EVAL-NE(r1) ∗ EVAL-NE(r2)
5: else if r ≡ sing〈v, b〉 then
6: return singleton(v, b)
PRODUCT-AT (v, r1, r2)
1: if r1 ≡ emp〈〉 or r2 ≡ emp〈〉 then
2: return emp〈〉
3: else if r1 ≡ unit〈〉 then
4: return r2
5: else if r2 ≡ unit〈〉 then
6: return r1
7: else if r1 ≡ ne〈r ′1〉 and r2 ≡ ne〈r ′2〉 then
8: return ne〈star〈v, r ′1, r

′

2〉〉

Fig. 3. Basic operations on SRED.

4.1. Definition

The idea of our compact representation is quite simple. To represent a set s, we use a syntax tree r of an expression
that evaluates to s. For example, let r1 and r2 be the root nodes of the syntax-tree representations of sets s1 and s2 (we
write s1 = Jr1K and s2 = Jr2K, respectively). Then we denote the set s1 ·∪ s2 by the tree r = cup〈r1, r2〉. To denote the set
Jr1K ·∪ (Jr2K ∗ Jr3K), we use cup〈r1, star〈r2, r3〉〉. Note that, by allowing sharing of subtrees (i.e., using syntax-dags instead
of syntax-trees, which allows a node like cup〈r1, r1〉), each operation can be executed in constant time, because it is just a
creation of one new node. Since the algorithmQUERY-RUNA carries out set operations atmostO(3n|δA||t|) times, under this
representation of sets, the running time of QUERY-RUNA is in O(3n|δA||t|), and so is the size of the output dag representing
the answer set.
Let us formally explain the syntax-dag-based representation, which we call SRED (Set Representation by Expression Dags).

An answer set of an n-ary query over a tree t is represented by a dag of the following BNF, for β1 · · ·βn ∈ Bn \ {0 · · · 0}:

STβ1···βn ::= emp〈〉 | ne〈NSTβ1···βn〉
ST 0···0 ::= emp〈〉 | unit〈〉

NSTβ1···βn ::= cup〈v,NSTβ1···βn ,NSTβ1···βn〉with v ∈ Vt
| star〈v,NSTα1···αn ,NST γ1···γn〉with v ∈ Vt and αi ⊕ γi = βi
| sing〈v, β1 · · ·βn〉with v ∈ Vt

where a ⊕ c = b if and only if a 6= c and b = 1 or a = b = c = 0. Note that, for enabling fast navigation, as
will be explained later, we record the node v ∈ Vt at each operator. Also for efficiency, we specially treat the empty
set (represented by emp〈〉) and the unit set ({(⊥, . . . ,⊥)}, represented by unit〈〉), so that they do not occur at operand
positions. For example, cup〈v, emp〈〉, emp〈〉〉 is ill-formed because emp〈〉 occurs as operands of cup. We call a node labeled
emp, unit, or ne a set-node, and a node labeled cup, star, or sing a neset-node (ne stands for non-empty). For a neset-
node r ∈ NSTβ1···βn , we denote by dim(r) the number of 1s in β1 · · ·βn. Note that we have dim(sing〈v, β1 · · ·βn〉) ≥ 1,
dim(cup〈v, r1, r2〉) = dim(r1) = dim(r2), and dim(star〈v, r1, r2〉) = dim(r1)+ dim(r2).
By avoiding emp〈〉 and unit〈〉 to occur at non-root position,we can evaluate the syntax-dag by a straightforward recursion

shown in Fig. 3, in a time complexity proportional to the size of the answer set.

Lemma 3. Assume the disjoint union s1 ·∪ s2 can be computed in constant time and the product s1 ∗ s2 can be computed in time
O(n|s1 ∗ s2|) for s1, s2 6= ∅. Then for a neset-node r, EVAL-NE(r) runs in time O

(
(k+ 1)n|EVAL-NE(r)|

)
where k = dim(r)− 1.

Proof. Without loss of generality, we assume the disjoint union s1 ·∪ s2 to take one unit computation step, product s1 ∗ s2 to
take n|s1 ∗ s2| steps, and singleton(v, b) to take n steps. Under the assumption, we prove by induction that the computation
of EVAL-NE(r) takes at most T (k, r) = 2((2k+ 1)n|EVAL-NE(r)|)− 1 steps.
If r is a node labeled sing, we have k ≥ 0 and thus T (k, r) ≥ 2n− 1 ≥ n.
If r ≡ cup〈v, r1, r2〉, by induction hypothesis, s1 = EVAL-NE(r1) and s2 = EVAL-NE(r2) can be computed in time

T (k, r1) + T (k, r2) = 2((2k + 1)n|EVAL-NE(r)|) − 2 steps (note that |EVAL-NE(r)| = |EVAL-NE(r1)| + |EVAL-NE(r2)|,
because it is disjoint union). Adding one unit computation step for the ·∪, the obtained computation steps is equal to T (k, r)
as desired.
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EVAL-NE-1BY1 (r, callback)
1: if r ≡ cup〈v, r1, r2〉 then
2: EVAL-NE-1BY1(r1, callback)
3: EVAL-NE-1BY1(r2, callback)
4: else if r ≡ star〈v, r1, r2〉 then
5: EVAL-NE-1BY1(r1, λp.EVAL-NE-1BY1(r2, λq.callback(p ∗ q)))
6: else if r ≡ sing〈v, b〉 then
7: callback(singleton(v, b))

Fig. 4. One-by-one generation of the element tuples of a SRED.

If r ≡ star〈v, r1, r2〉, by induction hypothesis, s1 = EVAL-NE(r1) and s2 = EVAL-NE(r2) can be computed in
T (k1, r1)+T (k2, r2) steps for some k1+k2+1 = k. Note that neither s1 nor s2 is empty, because return values of EVAL-NE are
built up only from singleton, ∗, and ·∪. Thus, their sizes |s1|, |s2| are less than or equal to |s1| · |s2| = |s1 ∗ s2| = |EVAL-NE(r)|.
The total number of steps can be estimated as follows:

T (k1, r1)+ T (k2, r2)+ n|s1 ∗ s2| = 2((2k1 + 1)n|s1|)− 1+ 2((2k2 + 1)n|s2|)− 1+ n|s1 ∗ s2|
≤ 2((2k1 + 2k2 + 2)n|s1 ∗ s2|)− 2+ n|s1 ∗ s2|
= 2(2kn|s1 ∗ s2|)− 2+ n|s1 ∗ s2|
≤ 2((2k+ 1)n|EVAL-NE(r)|)− 1 = T (k, r). �

Theorem 4 (Evaluation). Under the same complexity assumption on ·∪ and ∗ as in Lemma 3, for a set-node r, the set EVAL(r)
can be computed in time O(n2|EVAL(r)|).

Proof. Immediately follows from Lemma 3, because by definition of dim, the number k is at most n− 1. �

The complexity assumption is satisfied by, for instance, representing the concrete sets by a doubly-linked list of tuples.
Disjoint union can be implemented by the list concatenation, and the ∗-product is implemented by a double-loop over two
operand sets. Purely functional catenable lists [13] might be an option, in particular when it is desirable to avoid destructive
updates. Another interesting implementation is shown in Fig. 4. Instead of constructing the whole set of tuples, it generates
each element tuple one-by-one; it takes a procedure callback and calls it back for each element tuple. It also has the same
time complexity as the normal EVAL-NE.
The reader may notice that the evaluation EVAL(r) visits every node below r at least once. Hence, from Theorem 4, we

can conclude that the number of nodes below r is O(n2|EVAL(r)|). In fact, we are able to give a tighter upper-bound.

Theorem 5 (Out-Size-Bound). For a set-node r, the number of nodes of a dag rooted at r is at most 2n|EVAL(r)|.
Proof. Proof is by induction on structure of a neset-node r , showing that the procedure EVAL-NE is called at most S(k, r) =
2(k+ 1)|s|− 1 times during the computation of s = EVAL-NE(r), where k = dim(r)− 1. If this is proved, the desired bound
2n|EVAL(r)| immediately follows from the fact k ≤ n− 1.
If r is a node labeled sing, the number of procedure calls is 1, which is bounded by S(k, r) ≥ S(0, r) = 1. If

r ≡ cup〈v, r1, r2〉, the number of procedure calls is S(k, r1) + S(k, r2) + 1 = 2(k + 1)|EVAL-NE(r)| − 2 + 1 = S(k, r).
If r ≡ star〈v, r1, r2〉, the number of procedure calls is S(k1, r1)+ S(k2, r2)+ 1 for some k1 + k2 + 1 = k. Using the fact that
|EVAL-NE(r1)| and |EVAL-NE(r2)| is no more than |EVAL-NE(r)|, this is bounded by S(k, r). �

Note that this is the worst case estimation. In many cases, particularly when |EVAL(r)| is large compared to the original
input tree of the query, the number of nodes is much smaller than the bound, as will be shown in the next subsection. What
we can tell from Theorem 5 is that, even in the worst case, we are not losingmuch. Since it is a set of n-tuples, Representation
of the same set in an uncompressed form at least requires n|EVAL(r)| space, which only differs by a constant-factor from
ours.

4.2. N-ary query algorithm using SRED

The basic three operations used in the algorithmQUERY-RUNA are defined on SRED as in Fig. 3. Note that, to avoid emp〈〉
and unit〈〉 to occurring in operand positions, we deal with the nodes specially. For example, since ∅ ∪ s = s for any set
s, when either one of the operands of the UNION-AT operation is an emp〈〉 node, it returns the other operand rather than
constructing a new cup node. The correctness of those short-cuts are based on easy set-theoretic equations, and summarized
in the following two lemmas.

Lemma 6. The following four properties hold.
1. EVAL(emp〈〉) = ∅,
2. EVAL(SINGLETON-AT(v, b)) = singleton(v, b),
3. EVAL(UNION-AT(v, r1, r2)) = EVAL(r1) ·∪ EVAL(r2), and
4. EVAL(PRODUCT-AT(v, r1, r2)) = EVAL(r1) ∗ EVAL(r2).
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Proof. The property 1 and 2 hold by the definition of EVAL. The property 3 follows from ∅ ·∪ s = s ·∪ ∅ = s. Note that in
the implementation of UNION-AT we have not explicitly considered the case when r1 or r2 is unit〈〉, because it is covered
by the emp〈〉 cases; disjointness implies that unit〈〉 can be added only to emp〈〉. The property 4 is from the equations
∅ ∗ s = s ∗ ∅ = ∅ and {(⊥, . . . ,⊥)} ∗ s = s ∗ {(⊥, . . . ,⊥)} = s. �

Lemma 7. Let S-QUERY-RUNA be a procedure obtained by replacing (1) ∅ in the procedure QUERY-RUNA with emp〈〉,
(2) x ·∪ y with UNION-AT(v, x, y), (3) x ∗ y with PRODUCT-AT(v, x, y), and (4) singleton(v, b) with SINGLETON-AT(v, b).
Then, EVAL(S-QUERY-RUNA(t)[q, b]) = QUERY-RUNA(t)[q, b] for any t ∈ TΣA , q ∈ QA, and b ∈ Bn.

Proof. Clear from Lemma 6, by induction on the structure of r . �

Now, we have the following two main theorems of this paper: the answer set of an n-ary regular query can efficiently be
computed as a SRED in linear time with respect to the size of the input, and it is also compact; its size is linear, no matter
how large the actual answer set is.

Theorem 8 (Querying). For any n-ary regular queryψL(A) and a tree t, we can compute a SRED r that represents the answer set
(i.e., EVAL(r) = ψL(A)(t)) in time O(3

n
|δA||t|).

Proof. Let r ′ = S-QUERY-RUNA(t). We can compute the desired SRED r by combining all r ′[q, 1 · · · 1]’s with q ∈ FA by
UNION-AT. From Theorems 2 and 7, this satisfies the equation EVAL(r) = ψL(A)(t) (here, representing the ∪ operation in
Theorem 2 by UNION-AT is justified because it is indeed a disjoint union, due to the premise that A is deterministic). The
complexity analysis goes similar to the case of QUERY-RUNA. The procedure S-QUERY-RUNA is applied once for each node
in t (that is, the procedure is invoked at most |t| times), and at each node, the innermost loop body (line 10) is executed
at most 3n|δA| times. Different from the case of QUERY-RUNA, this time, set operations UNION-AT and PRODUCT-AT in the
loop body run in constant time. Hence, the total time complexity of S-QUERY-RUNA is O(3n|δA||t|). The last union-phase
requires at most |FA| − 1 execution of UNION-AT, whose time consumption can asymptotically be ignored. �

Theorem 9 (In-Size-Bound). The number of nodes of the SRED r in Theorem 8 is at most 4 · 3n|δA||t| + |FA| − 1.

Proof. Clear from the proof of Theorem 8 (note that in each loop body, up to 4 nodes are created). �

Before developing further algorithms on SRED, it is worth remarking here that Theorem 8 combined with Theorem 4 can
be used to derive the ‘‘optimal’’ data complexity for regular queries.

Corollary 10 (It follows also from Corollary 4.5 of [9]). The time complexity of n-ary regular query with respect to the data size
is O(|t| + |a|), where |t| is the size of the input node, and |a| is the size of the output answer set.

This way of using SRED just as an intermediate structure can be regarded as a different presentation of essentially the same
algorithm as that of [9]. As mentioned before, in [9], the complexity was achieved by running two pre-processing phases
that determine whether each entry r[q, b] (in their notation, Sat t,q) at each node contributes to the final query answer, and
skipping the computation of the unneeded part. Two cases are considered to be unneeded: the case that we can never reach
states in FA at the root node starting from the state q, and the case that the set r[q, b] is taken a product with the empty
set afterward in the computation. In our algorithm, the former case is dealt with by splitting the construction of a SRED
structure and the evaluation of it; the construction has low complexity, and the evaluation is only done on the states that
reach FA states. The latter case is detected by the special treatment of emp〈〉 node in the PRODUCT-AT procedure; a SRED
that is taken product with an emp〈〉 set is discarded and thus is never evaluated. Despite the similarity, we believe that our
presentation ismuch simpler and easier to understand. In our algorithm, structure of the first naïve algorithmQUERY-RUNA

is kept unchanged, and only just a few set-operations are replaced with (almost trivially correct) SRED-based operations in
Fig. 3.

4.3. Direct manipulation of SRED

SRED is not only useful as an intermediate data structure for generating the concrete result of answer tuples. In fact, it
allows manipulation of the represented set directly on SRED, without evaluation. Here, we give an implementation of two
important operations on SRED, namely, projection and selection. For a set s of n-tuples and 1 ≤ i ≤ n, projection s@i =
{vi | (v1, . . . , vn) ∈ s} is the set of i-th coordinates of s. Given an element u, selection s[i:u] = {(v1, . . . , vi−1, vi+1, . . . , vn) |
(v1, . . . , vi−1, u, vi+1, . . . , vn)} is the set of tuples in s such that the i-th coordinate is u. As an example of a use-case of
the two operations, consider the following scenario: first we apply projection @1 to an answer set, sort the result in some
preferable order, and with each element u of the projected set, apply selection [1:u] to get the remaining coordinates. In this
way, we can enumerate the answers of queries in a user-specified order on the first coordinate, rather than in the default
order of evaluation procedure.
On SRED representation of the answer sets, those two operations can be carried out in time proportional to the height

of the input tree. That is, we do not need to traverse the whole structure of SRED, nor to re-traverse the original input tree.
Fig. 5 is the implementation, which is straightforwardly obtained from the distributivity of projection and selection over
disjoint union, etc.
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PROJ (i, r)
1: if r ≡ emp〈〉 then
2: return ∅
3: else if r ≡ ne〈r ′〉 then
4: return PROJ-NE(i, r ′)

SEL (i, u, r)
1: if r ≡ emp〈〉 then
2: return emp〈〉
3: else if r ≡ ne〈r ′〉 then
4: return SEL-NE(i, u, r ′)

PROJ-NE (i, r)
1: if r ≡ cup〈v, r1, r2〉 then
2: return PROJ-NE(i, r1) ∪ PROJ-NE(i, r2)
3: else if r ≡ star〈v, r1, r2〉 (with r1 ∈ NSTβ1···βn ) then
4: if βi = 1 then return PROJ-NE(i, r1) else return PROJ-NE(i, r2)
5: else if r ≡ sing〈v, β1 · · ·βn〉 then
6: return {v}
SEL-NE (i, u, r)
1: if r ≡ cup〈v, r1, r2〉 and v ≤ u then
2: return UNION-AT(v, SEL-NE(i, u, r1), SEL-NE(i, u, r2))
3: else if r ≡ star〈v, r1, r2〉 (with r1 ∈ NSTβ1···βn ) and v ≤ u then
4: if βi = 1 then return PRODUCT-AT(v, SEL-NE(i, u, r1), r2)
5: else return PRODUCT-AT(v, r1, SEL-NE(i, u, r2))
6: else if r ≡ sing〈v, β1 · · ·βn〉 and v = u then
7: return SINGLETON-AT(v, β1 · · ·βi−1βi+1 · · ·βn)
8: else return emp〈〉

Fig. 5. Projection and selection on SRED.

Theorem 11 (Projection). Byusingmemoization, the procedurePROJ(i, r) computes the setEVAL(r)@i in timeO(min(m, 3nh|δA|
|EVAL(r)@i|)) where h is the height of the original input tree t, and m is the number of nodes of r.

Proof. Correctness immediately follows from the following set-theoretic properties of projection: φ@i = φ, (s1 ·∪ s2)@i =
(s1)@i ∪ (s2)@i, (s1 ∗ s2)@i = (s1)@i if the i-th coordinates of s1 is non-⊥ and (s1 ∗ s2)@i = (s2)@i otherwise, and
{(u1, . . . , un)}@i = {ui} for ui 6= ⊥.
For the complexity, we assume the procedure PROJ-NE to bememoized, i.e., if it is applied to the same arguments second

time, it immediately returns the previous result in constant time. We can implement such memoization by using a hash
table. Then the body of the procedure PROJ-NE is executed at most once per each node of r . Actually, the procedure PROJ-NE
is applied only to the nodes in NSTβ1···βn with βi = 1. The number of such nodes is at most 4 · 3

n
|δA|h|EVAL(r)@i|, because

to have βi = 1, it must have a descendant node of the form sing〈v, . . .〉 with v ∈ EVAL(r)@i. Since such a SRED node is
created only at the ancestor nodes of v in the original input tree (whose number is at most h|EVAL(r)@i|) and at each of
such ancestors at most 4 · 3n|δA| SRED nodes are created, we obtain the bound on the number of the nodes. By using list-
concatenation for representing set-union,2 the body of PROJ-NE can be executed in constant time. Hence, we obtain the
desired complexity. �

Theorem 12 (Selection). By using memoization, the procedure SEL(i, u, r) computes the SRED representation of the set
EVAL(r)[i:u] in time O(min(m, 3nh|δA|)), where m is the number of nodes of r.

Proof. Correctness immediately follows from the following set-theoretic properties of selection: φ[i:u] = φ, (s1 ·∪ s2)[i:u] =
(s1)[i:u] ·∪ (s2)[i:u], (s1 ∗ s2)[i:u] = (s1)[i:u] ∗ s2 if the i-th coordinates of s1 is non-⊥ and (s1 ∗ s2)[i:u] = s1 ∗ (s2)[i:u] otherwise,
and {(u1, . . . , un)}[i:u] = {(u1, . . . , ui−1, ui+1, . . . , un)} for ui = u. The side condition v ≤ u in lines 1 and 3 is justified by
Lemma 1; if the comparison does not hold, EVAL-NE(r) cannot contain u.
For the complexity, memoization ensures that the procedure SEL-NE is called at most once per each node of r . Since the

test v ≤ u succeeds only at the node constructed at an ancestor (in the tree t) of u, the procedure SEL-NE is executed only
on the nodes constructed at an ancestor of u, or their direct child. Note that the number of the ancestor nodes in the input
tree is at most h, and on each of such nodes at most 4 · 3n|δA| SRED-node is created. By, multiplying them, we obtain the
desired complexity. �

Corollary 13 (Membership). Given a SRED r and a tuple (u1, . . . , un) of nodes, we can test whether (u1, . . . , un) is in EVAL(r)
or not in time O(nmin(m, 3nh|δA|)).

Proof. Repeat selection n times. �

Another interesting operation that can easily be executed on SRED without evaluation is, counting of the size of the
represented set.

Theorem 14 (Size). By using memoization, given a SRED r, the size of the represented set |EVAL(r)| can be computed in time
O(m) where m is the number of nodes of r.

Proof. Fig. 6 shows the implementation. By memoization, the procedure SIZE-NE is called m times, and the body of the
procedure runs in constant time. Correctness follows from the following facts: |s1 ·∪ s2| = |s1| + |s2|, |s1 ∗ s2| = |s1| × |s2|,
and |{(u1, . . . , un)}| = 1. �

2 Precisely speaking, since it is not a disjointunion this time, list-concatenation based implementationmay cause duplication. It, however, can be removed
by a linear time ‘uniq’ algorithm.
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SIZE (r)
1: if r ≡ emp〈〉 then
2: return 0
3: else if r ≡ ne〈r ′〉 then
4: return SIZE-NE(r ′)

SIZE-NE (r)
1: if r ≡ cup〈v, r1, r2〉 then
2: return SIZE-NE(r1)+ SIZE-NE(r2)
3: else if r ≡ star〈v, r1, r2〉 then
4: return SIZE-NE(r1)× SIZE-NE(r2)
5: else if r ≡ sing〈v, β1 · · ·βn〉 then
6: return 1

Fig. 6. Computing the size of the set represented by a SRED.

Note that, the procedure SIZE-NE is computing the size of the represented set for all nodes in r . By using the size
information, the one-by-one enumeration procedure shown in Fig. 4 is improved to a log-delay enumerator.

Corollary 15 (Log-Delay-Enum). For a SRED r, we can enumerate the elements of EVAL(r) in log-delay after O(m) time
preprocessing. That is, in the enumeration process, the time required to output adjacent two elements are O(log2 |EVAL(r)|) for
any adjacent pairs, and also the first element is generated in O(log2 |EVAL(r)|) time.

Proof. By using the size information obtained by SIZE-NE, without loss of generality we can assume |EVAL-NE(r1)| ≤
|EVAL-NE(r2)| in line 1 to 3 of the EVAL-NE-1BY1 procedure, (otherwise swap r1 and r2, which only changes the order but
not the enumerated set). Note that this implies 2 · |EVAL-NE(r1)| ≤ |EVAL-NE(r)|.
Then, we can show that during the computation of EVAL-NE-1BY1(r, f ), we enter the procedure EVAL-NE-1BY1 at most

log2(|EVAL-NE(r)|)+k+1 times between any two successive calls for f (and between the beginning of the computation and
the first call to f ), where k = dim(r)−1. The same estimation log2(|EVAL-NE(r)|)+k+1 applies also to the number of times
we leave the procedure between two successive calls for f (and between the last call to f and the end of the computation,
under the assumption that tail-calls are optimized away). This proves the corollary.
The proof of the above statement is by induction on structure of r . When r ≡ sing〈v, β1, . . . , βn〉, only one call to f is

made and between the call and the start of the computation of EVAL-NE-1BY1(r, f ), exactly one call to EVAL-NE-1BY1 is
made. Since log2(|EVAL-NE(r)|)+k+1 ≥ 1, we have proved the inductive statement for this case. When r ≡ cup〈v, r1, r2〉,
interval of two successive calls to f is at most max(log2(|EVAL-NE(r1)|) + k + 1, log2(|EVAL-NE(r2)|) + k + 1) ≤
log2(|EVAL-NE(r)|) + k + 1 by induction hypothesis. The delay to the first call to f is 1 + log2(|EVAL-NE(r1)|) + k + 1,
which is less than or equal to log2(|EVAL-NE(r)|)+ k+ 1, because of our assumption on the size of r1. Between the last call
to f and the end of the computation, the number of timeswe leave the procedure can bemade atmost log2(|EVAL-NE(r2)|)+
k + 1 ≤ log2(|EVAL-NE(r)|) + k + 1; since the second call to EVAL-NE-1BY1 is a tail-call, return from the call can directly
leave the whole computation.3 When r ≡ star〈v, r1, r2〉, the delay is at most 1 + (log2(|EVAL-NE(r1)|) + k1 + 1) +
(log2(|EVAL-NE(r2)|) + k2 + 1) for some 1 + k1 + k2 = k. Since we have (log2(|EVAL-NE(r1)|) + log2(|EVAL-NE(r2)|)) =
log2(|EVAL-NE(r)|), the induction statement is now proved. �

4.4. Generalizations to unranked trees

So far, we have considered only binary trees. In many applications, however, we are interested in unranked trees with
varying number of child nodes. For example, in XML trees [14] such as XHTML documents, the number of children may not
be two, or even, may differ even between two nodes with the same label (e.g., an <ol> (ordered list) node can have an
arbitrary number of <li> (list item) child nodes).
To deal with unranked trees, we encode such trees to binary trees. A widely used encoding is fc-ns encoding. In a binary

tree obtained as the fc-ns encoding of an unranked tree, the first child of each node is mapped to the first child of the
corresponding node in the original unranked tree, and the second child of each node is mapped to the next sibling in the
unranked tree. It is a folklore result that the encoding preserves the regularity of queries, i.e., any regular query for unranked
trees can be converted to a regular query on the encoded trees. Hence, by first encoding the unranked input trees and the
queries to the binary-tree form and then running S-QUERY-RUNA, we can compute the linear-size representation of the
answer sets of regular queries. One problem of fc-ns encoding is the time complexity of operations on SRED that depends
on the factor h, the height of the tree. Suppose an original unranked tree has small height h0 and nodes with large number
w0('|t|) of children (which is often the case for most XML documents). The problem is that the height of the fc-ns encoded
tree is O(h0w0). To deal with such trees, we recommend using another encoding, namely, the bb encoding, to reduce the
complexity to O(h0 logw0). In bb encoding, the list of children of each node is encoded to a balanced binary tree whose
left-to-right sequence of leaf nodes corresponds to the child sequence in the original tree. Such an encoding also preserves
regularity, because the ‘first-child’ and the ‘next-sibling’ relations remain regular. Moreover, since the height of a balanced
binary tree is in the logarithmic order of the number of the leaves, the height of the bb-encoded tree reduces to O(h0 log |t|).

3 Such tail-call optimization is performed in almost all practical compilers for popular programming languages. Even if it does not, the tail-recursion can
easily be rewritten to an iteration by while-loop manually.
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5. Application

SRED is developed for the XML transformation languageMTran [15]. Let us illustrate the benefits of SRED by the following
pseudo code for XML translation:

{gather x where x:<person> do
<row>

<col>{gather y where x//<name>/y do y}</col>
{gather z where z:<person> & document-order(z,x) do

<col>· · ·</col>}
</row>}

The program takes a document containing a list of <person> elements and generates some triangular matrix table. The
first query ‘‘x:<person>’’ lists up all the <person> elements, and for each of them, the second query ‘‘x//<name>/y’’
selects a descendant y of x labeled <name> (for simplicity, we assume that such y uniquely exists). If we really run for each
x the second query, which takes in general O(|t|) time where |t| is the size of the tree, total running time of the query
becomes quadratic, because there may be linearly many <person> nodes. Rather, as pointed out in [16], it is better to
regard the second query as a binary query for selecting pairs (x, y). By using SRED, the answer set of such a binary query
can be computed in linear time. Furthermore, by the selection operation followed by the evaluation operation, for each
x we can obtain the corresponding y in time O(h0 log |t|). Total running time reduces to O(h0|t| log |t|). So far, we could
have used the FFG algorithm [9] (or equivalently, query with SRED directly followed by evaluation) for the same purpose,
because its running time is linear under the assumption that y uniquely exists for each x. Consider, then, the third query that
selects all <person> elements z preceding x in the document order (preorder). Similarly, we run the query as a binary query
for selecting pairs (x, z). In this case, the size of the answer set is quadratic. If we use the FFG algorithm, we need O(|t|2)
working space for carrying out the binary-query based approach. While, with SRED, it requires only O(|t|) working space.
This makes it feasible to run the transformation over larger inputs, which could not be done without SRED due to memory
shortage.

6. Conclusion and future work

The paper introduced a data structure named SRED (Set Representation by Expression Dags), which allows representing
answer sets of regular tree queries compactly. Here is the summary of its performance for the n-ary query defined by an
automaton with transition function δA, with an input tree t and an output set a:

Querying Evaluation Size (number of nodes) of SRED (= m)
O(3n|δA||t|) O(n2|a|) at most min(2n|a|, 4·3n|δA||t|)

Regardless how large the output answer set is, the time for computing its SRED representation is independent of it; it is
always linear with the size of the input. Evaluation (or decompression) of SRED only depends on the size of the answer set
and is independent from the input size. The size of the SRED representation stays at the minimum of them. Thus, for a large
answer set (e.g., |a| ' |t|n), SRED works as a concise representation of the set, and even for a small (|a| � |t|) answer set
that could not benefit from the compression, it works no worse than non-compressed representations. Furthermore, SRED
allow several kinds of direct manipulations on the represented sets, without decompression:

Projection Selection Size
O(min(m, 3nh|δA||p|)) O(min(m, 3nh|δA|)) O(m)

(|p| is the size of the projected set)

In the paper, we have used the total deterministic tree automaton as a representative of regular queries. One possible
direction for future work is to extend the SRED representation to support other query formalisms directly, rather than
through a conversion to a deterministic automaton. In fact, the algorithms given in this paper works without any change for
partial deterministic automata, and, as long as it is unambiguous, for non-deterministic ones. It seems an interesting question
whether there is a possibility to support arbitrary non-deterministic tree automata.
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