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Protein S-palmitoylation, the covalent lipid modification of the side chain of Cys residues with the 16-carbon
fatty acid palmitate, is the most common acylation of proteins in eukaryotic cells. This post-translational
modification provides an important mechanism for regulating protein subcellular localization, stability,
trafficking, translocation to lipid rafts, aggregation, interaction with effectors and other aspects of protein
function. In addition, N-terminal myristoylation and C-terminal prenylation, two well-studied post-
translational modifications, frequently precede protein S-palmitoylation at a nearby spot of the polypeptide
chain. Whereas N-myristoylation and prenylation are considered essentially irreversible attachments, S-
palmitoylation is a tightly regulated, reversible modification. In addition, the unique reversibility of protein
palmitoylation also allows proteins to rapidly shuttle between intracellular membrane compartments in a
process controlled, in some cases, by the DHHC family of palmitoyl transferases. Recent cotransfection
experiments using the DHHC family of protein palmitoyl transferases as well as RNA interference results have
revealed that these enzymes, frequently localized to the Golgi apparatus, tightly control subcellular trafficking
of acylated proteins. In this article we will give an overview of how protein palmitoylation regulates protein
trafficking and subcellular localization.
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1. Protein modification by lipids

It was 60 years ago when Folch and Lees [1] described the covalent
modification of proteins with lipids for the first time in brain tissue.
The covalent attachment of lipids to proteins plays different and
important roles in their localization and function. It can be easily
understood that lipidic modifications modulate the association of the
modified proteins with cellularmembranes. However, the effect of the
lipid attachment goes further away, since it mediates membrane
association of soluble proteins, protein–protein interactions, protein
trafficking, subcellular targeting, partitioning of proteins into specific
membrane domains, changes on structure and regulation of protein
stability [2–6].

Proteins are covalently modified with a great variety of lipids:
octanoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic
acid, a farnesyl or geranylgeranyl group, cholesterol, etc. (Box 1). Most
of these modifications take place in the cytoplasm or in the
cytoplasmic face of membranes. This review will focus on protein
thioacylation, also called S-acylation (from now on palmitoylation), a
reversible post-translational attachment of a palmitic acid (C16:0)
group onto cysteine residues via a thioester linkage. Protein
palmitoylation is a modification dynamically regulated by enzymes,
that is, the lifetime of the modification is shorter than the lifetime of
the protein it is modifying.
The amount of S-palmitoylated proteins is large and diverse; some
of them are synthesized on soluble ribosomes but others are
transmembrane-spanning proteins. Some of these proteins are
modified sequentially with different lipids, but others are exclusively
S-palmitoylated. In the past few years, the development of non-
radioactive labeling techniques has allowed researchers to analyze the
yeast [7], Drosophila [8], mouse [9], dendritic cell line [9] and Jurkat T-
cell [10] palmitoylome. This large output of novel data regarding
palmitoylated proteins has revealed previously unrecognized protein
palmitoylation sites. In addition, using available databases together
with reported palmitoylation sites in the literature prediction
algorithms for palmitoylated proteins has also been developed
[11,12].

Despite protein palmitoylation first being discovered several
decades ago, the identification of palmitoylating enzymes has been
difficult, mostly due to the fact that the cellular enzymes responsible
for catalyzing the palmitate attachment to other protein substrates
are membrane-bound and difficult to purify. The seminal work of
Linder and Deschenes using the yeast Saccharomyces cerevisiae as
model organism revealed that the Erf2–Erf4 (effect on Ras function)
complex is responsible for yeast Ras2p palmitoylation [13–15].
Further analysis revealed that Erf2, a membrane integral protein,
contains a conserved aspartate–histidine–histidine–cysteine (DHHC)
cysteine-rich domain of approximately 55 amino acids, somehow
resembling a C2H2 zinc finger motif, considered the active site [15].
Whereas there are seven DHHC proteins expressed in yeast,
approximately 24 DHHC genes are present in mammalian cells (25
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Box 1
Protein lipidation in mammalian cells. The attached lipid is shown in green whereas the protein moiety is shown in blue. The covalent bond that
links the lipid to the protein is depicted in black. When known, the enzyme that catalyzes the lipidation process is shown. A representative
lipidated protein example is also shown [35,198–202].
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in humans [16]), all of them multispanning transmembrane enzymes
[17,18]. The palmitoyl-transferase activity of many of these DHHC
motif-containing proteins has been shown in coexpression experi-
ments using a growing number of protein substrates (PSD95, SNAP25,
eNOS, Fyn, GAP43, R-Ras, etc.) [18]. In addition depletion of the
protein levels of a certain DHHC palmitoyl transferase isoform has also
been shown to decrease the amount of palmitate that becomes
incorporated in the substrate protein [19,20]. When the subcellular
localization of GFP-tagged human DHHC isoforms was analyzed in
transfected HEK293 cells multiple staining patterns could be
observed. Certain isoforms, such as DHHC1 and DHHC6 localized to
the ER, DHHC2 and DHHC9 localized to the ER/Golgi and isoforms
DHHC7 and DHHC8 localized to the Golgi. Remarkably, isoforms
DHHC5, DHHC20 and DHHC21 displayed a distinctive plasma
membrane localization [17]. As we will see below, the palmitoyl-
transferases of the DHHC family regulate the subcellular localization
of multiple protein substrates and also affect their proper intracellular
sorting. Certainly, protein palmitoylation has been shown to act as a
highly versatile sorting signal, regulating protein trafficking to many
distinct intracellular compartments. In this regard, palmitoylation is
known to regulate either retention or anterograde trafficking of
proteins at the ER–Golgi as well as protein cycling within the
endosomal/lysosomal system [5,21]. Before focusing on protein
palmitoylation we will comment on other types of protein acylation.
Selected examples of each of them and the proteins that catalyze
these modifications are shown in Box 1.

Remarkably, not only protein acylation is an enzymatic process,
but also cellular protein deacylation, a process catalyzed by enzymes
that remove the acyl moiety. Although some deacylases might remain
to be discovered, the catalytic activity of protein thioesterases APT1
(Acyl Protein Thioesterase 1) and also PPT1 (Protein-Palmitoyl
Thioesterase) are well characterized [22]. For instance, APT1 over-
expression is responsible for SNAP-23, GαQ and eNOS depalmitoyla-
tion [23–25]. On the other hand, PPT1 is very likely involved in the
degradation of S-acylated proteins [26].

Ghrelin, a circulating peptide hormone that stimulates food intake
and adiposity in humans, is synthesized as a precursor protein that
renders the 28-amino acid mature octanoylated ghrelin after



Box 2
Selected examples of human proteins that become N-terminally
myristoylated and palmitoylated. The myristoylated Gly residue is
shaded in green whereas the palmitoylated Cys residues are shaded in
yellow. Positively and negatively charged residues are shaded blue and
red respectively. 25 amino acids are shown in every case.

Yes (Yamaguchi sarcoma homolog, p61)

Fyn (p59)

Lyn (Lymphocytes)

Lck (T-cell specific kinase, p56)

Hck (Hematopoietic cells kinase, p59)

Fgr (Gardner-Rasheed feline sarcoma viral)

Gα O1

Gα Z

Gα i1

Gα olfactory

Alpha subunits of G proteins

Endothelial Nitric Oxide Synthase (eNOS)

A-kinase anchor protein 7

Tyrosine kinases of the Src family

Protein N-terminal sequence
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intracellular processing [27]. Ghrelin, like many other peptide
hormones, is generated from a precursor protein. Prepro-ghrelin
contains 117 amino acids [28]. After removing the signal sequence by
cleavage after amino acid-23, the pro-ghrelin peptide sequence (94
amino acids) becomes the substrate of a prohormone convertase
PC1/3 which then cleaves pro-ghrelin after Arg28, generating the
mature 28-amino acid ghrelin peptide. During these post-translation-
al modifications ghrelin becomes octanoylated, thus forming an ester
bond with the side chain of Ser3. The nonacylated form of ghrelin also
exists at significant levels in both stomach and blood, although it does
not replace radiolabeled acylated ghrelin at its binding sites in
hypothalamus and pituitary and shows no growth hormone-releasing
and other endocrine activities in rats [28]. This covalent attachment of
octanoic acid to Ser3 of ghrelin is catalyzed by a Membrane Bound O-
Acyl Transferase (MBOAT) [29,30]. Members of this MBOAT family are
also multispanning transmembrane enzymes that usually catalyze the
addition of a fatty acid to a hydroxy group. Two additional members of
this family are Hedgehog acyltransferase (Hhat) which facilitates the
N-terminal palmitoylation of Hedgehog and Porcupine (Porc) which
catalyzes the acylation of Ser209 of Wnt with palmitoleic acid [31]
(Box 1). In fact, all members of the Hedgehog family of morphogens
undergo a unique series of post-translational processing reactions
involving palmitoylation and cholesterol attachment. [32]. Palmitoy-
lation of Hedgehog is essential for proper signaling and mutation of
the N-terminal Cys to Ser diminishes Sonic hedgehog patterning
activity in the mouse limb and neural tube [33,34]. In Drosophila, the
absence of palmitoylation of Hedgehog essentially eliminates signal-
ing activity [33].

Interestingly, there can be certain heterogeneity in the fatty acids
that are naturally attached to a specific protein in vivo. Using mass
spectrometry to identify the acyl groups attached to the N-terminus of
GAP43 (neuromodulin) purified from transfected mammalian cells,
Resh and coworkers found not only palmitate (C16:0), but also
stearate (C18:0) [35]. The finding that GAP43 can be heterogeneously
fatty acylated might indicate that either palmitoyl transferases use
several acyl-CoA species as substrates or that other, yet unrecognized,
cellular palmitoyl transferases exist that can transfer longer fatty acids
such as stearate to protein substrates.

In addition, covalent post-translational protein adduction by
electrophilic fatty acid derivatives is known to alter the structure,
trafficking and catalytic activity of many unrelated proteins such as
insulin, cathepsin B, glyceraldehyde-3-phosphate dehydrogenase and
Keap1 [36,37]. For instance, alkylation of Keap1 cysteines with
nitrated derivatives of linoleic acid (such as 10-nitro-9,12-cis-
octadecadienoic acid) (Box 1) when part of the Keap1/Nrf2 hetero-
dimer induces a conformational change in Keap1 hence liberating
Nrf2 to translocate to the nucleus, bind to the cis-acting DNA
regulatory antioxidant response element and thereby transactivating
Nrf2-dependent gene transcription [37].

Perhaps the best understood protein acylation process is N-
myristoylation, a cotranslational modification which involves the
covalent addition of the C14:0 saturated fatty acid myristate via an
amide bond to the N-terminal glycine residue after the initiating
methionine is cleaved by an aminopeptidase [38]. This protein
modification is catalyzed by a well-characterized enzyme called N-
Myristoyl Transferase (NMT) that uses myristoyl-CoA and the peptide
N-terminus as cosubstrates after recognition of a GXXX(S/T/C) N-
terminal consensus sequence [39,40]. It has been estimated that
approximately 0.5% of eukaryotic proteins are myristoylated [41]. In
many cases, protein N-myristoylation is required but not sufficient for
stable and permanent membrane anchoring [42–44] and often occurs
together with S-acylation of proximal cysteine residues or a polybasic
amino acid domain next to the protein N-terminus. N-myristoylation
can also occur post-translationally when an internal glycine becomes
exposed by caspase-mediated proteolytic cleavage and the resulting
proteolytic product becomes a NMT substrate [45]. When N-
myristoylation and palmitoylation concur at the N-terminal end of a
protein the former covalent modification is considered irreversible
whereas the latter is reversible and modulated hence regulating
protein localization and function. Remarkably, palmitoylation of a
previously myristoylated de novo-designed protein that lacked
hydrophobic or basic amino acids required the palmitoylatable Cys
residue to be positioned no further away than position 15 [44]. A few
selected examples of myristoylated plus palmitoylated human pro-
teins are shown in Box 2. Several palmitoyl transferases of the DHHC
family are known to increase palmitate transfer to previously
myristoylated protein substrates [19]: that is the case for eNOS [46],
Giα2 [47], Fyn [48] and Lck kinase [49].

Recent reports seem to suggest that the Golgi apparatus might
function as a hub for palmitoylation of peripheral proteins [50], and in
fact, this might be well the case for certain protein substrates of the
DHHC family of palmitoyl transferases. Dispersal of the cis and medial
Golgi using brefeldin A treatment, which inactivates Arf1, is known to
lead to the dissociation of COP I and other peripheral proteins from
Golgi membranes, resulting in Golgi enzymes redistributing to the
endoplasmic reticulum as the Golgi structure disassembles [51].
Although brefeldin A may display non-specific effects in addition to
these aforementioned effects on Golgi traffic, sensitivity to brefeldin A
has involved the Golgi apparatus in the palmitoylation of tetraspanin
proteins CD151 and CD9 [52] as well iNOS [53]. Conversely,
palmitoylation of other proteins, such as Lck kinase or H-Ras is
unaffected by brefeldin A treatment, even if their transport toward the
plasma membrane is partially inhibited [54–56]. In addition, p63 an
ER resident protein that is normally palmitoylated in low levels was
found to increase palmitoylation significantly in cells treated with
brefeldin A, which suggests that a Golgi-associated palmitoyl
transferase might redistribute toward the ER [57]. Subsequent studies
have identified the p63 palmitoyl transferase as DHHC2 [58].

Prenylation, a post-translational modification which is thought to
take place in the cytoplasm, involves the formation of a covalent
thioether bond between a cysteine residue of the target protein and
the 15 or 20-carbon isoprenoids farnesylpyrophosphate (FPP) or
geranylgeranylpyrophosphate (GGPP), respectively [59] (Box 1). The
isoprenylated cysteine is part of a C-terminal CaaX box (where “C” is
cysteine, “a” is usually an aliphatic residue and “X” is usually Ser, Met,

Unlabelled image


Box 4
Selected examples of human small GTPases of the RhoB family with
palmitoylatable Cys residues in their carboxy-terminus. The CaaX box
is shaded in green whereas the palmitoylated Cys residues are shaded
in yellow. Positively and negatively charged residues are shaded blue
and red respectively. Please note that TCL has two Cys residues
upstream the CaaX box in which incorporation of palmitate has not yet
been described. The CaaX box of Wrch-1 is non-functional (see text
for details) whereas Wrch-2 lacks a CaaX box. 25 amino acids are
shown in every case.

2984 C. Aicart-Ramos et al. / Biochimica et Biophysica Acta 1808 (2011) 2981–2994
Cys, Ala, Gln or Leu, and the identity of this final amino acid
determines if the protein becomes farnesylated or geranylgerany-
lated) [60]. After prenylation, processing of the CaaX box involves the
proteolytic cleavage of the final three amino acids followed by the
methylation of the free carboxyl group of the isoprenylated cysteine
[61]. In the case of isoprenylated proteins, this acylation is assumed to
promote the interaction of the modified protein with cellular
membranes so that a subsequent palmitoylation can occur in cysteine
residues adjacent to the farnesylated or geranylgeranylated cysteine
of the CaaX box. In all cases tested, site-directed mutagenesis of the
Cys residue from the CaaX box, hence abrogating farnesylation or
geranylgeranylation results in the absence of palmitoylation [62,63].
Eight members of the Ras family of small GTPases (Box 3) and seven
members of the RhoB family of small GTPases (Box 4) display
palmitoylatable cysteine residues.

Among the Ras family of small GTPases, palmitoylation of H-Ras at
Cys181 and Cys184 and N-Ras at Cys181 was described as early as
1989 [63]. Subsequently, other members of this family displaying Cys
residues proximal to the prenylation site were also analyzed in terms
of palmitate incorporation, and soon K-Ras4A [64], all three Rap2A,
Rap2B and Rap2C [9,10,65] and R-Ras [66,67] were found to
incorporate this fatty acid.

Among the RhoB family of small GTPases, palmitoylation has also
been shown to occur in cysteine residues that are adjacent to the
isoprenylated Cys of the CaaX box. Using radiolabeled palmitate both
cysteine residues at 189 and 192 upstream of the CaaX box in RhoB
have been shown to be sites for palmitoylation [68]. Likewise, TC10
palmitoylation has been shown using 2Br-palmitate as a palmitoyla-
tion inhibitor, since this compound induced significant localization
changes on a GFP-tagged chimera transfected in mammalian cells
[69]. The possibility of Rac1 becoming palmitoylated in vivo is
currently under debate with results from various groups being
contradictory (see below).

There are excellent recent reviews dealing with palmitoylation and
sorting of H-Ras, N-Ras, SNAP25, G-Protein Coupled Receptors aswell as
transmembrane proteins such as the co-receptors CD4 and CD8 and the
adaptor LAT [70–75]. In addition to all these proteins, we will also
describe herein other selected examples of proteins in which palmi-
toylation regulate intracellular sorting, localization and function aswell.
2. Subcellular trafficking of myristoylated plus palmitoylated
proteins

Although protein myristoylation increases the total hydrophobicity
of the modified protein, this modification, by itself, is not sufficient to
Box 3
Selected examples of human small GTPases of the Ras family with
palmitoylatable Cys residues in their carboxy-terminus. The CaaX box
is shaded in green whereas the palmitoylated Cys residues are shaded
in yellow. Positively and negatively charged residues are shaded blue
and red respectively. 25 amino acids are shown in every case.

GTPase

H-Ras Farnesyl

Farnesyl

Farnesyl

Farnesyl

Farnesyl

Geranylgeranyl

Geranylgeranyl

Geranylgeranyl

N-Ras

K-Ras4A

Rap2A

Rap2B

Rap2C

R-Ras

R-Ras2/TC21

Carboxy-terminal sequence Farnesylated or
Geranylgeranylated
promotemembrane association [44,76,77]. In fact, certainmyristoylated
proteins, such as someGuanylate CyclaseActivating Proteins are soluble
proteins that hide themyristoyl moietywithin the hydrophobic protein
core [78]. In contrast, two closely positioned lipidmodifications, such as
myristoylation and palmitoylation, promote stable membrane attach-
ment [43]. The N-terminal palmitoylation of previously myristoylated
proteins promotes membrane association and, very frequently, protein
translocation to rafts/caveolae or intracellular liquid-ordered domains
[76,77,79,80]. In dually acylated proteins, myristoylation is always a
prerequisite for palmitoylation to occur, since mutation of the N-
myristoylation site through theeliminationofGly2prevents subsequent
palmitoylation and typically results in protein translocation to the
cytoplasm and a complete absence of membrane association
[44,76,77,81,82].

Most of the members of the Src family of protein tyrosine kinases
(although not Src itself) and the Giα subfamily of alpha subunits of G
proteins are cotranslationally N-myristoylated and subsequently
post-translationally palmitoylated. This dual acylation is responsible
for the correct subcellular trafficking and the precise coupling of
extracellular stimuli and intracellular signaling [4,83,84]. A few
selected examples of dually acylated proteins will be described in
more detail below.

2.1. Tyrosine kinases of the Src family

With the exception of Src and Blk, all members of the Src family of
tyrosine kinases are cotranslationally myristoylated at Gly2 and then
post-translationally palmitoylated at Cys3 (Box 2). In addition, Lck can
also become palmitoylated at Cys5 and Fyn and Fgr at Cys6 [85,86]. In
all cases, these acylations occur in the N-terminal SH4 domain, and
influence the interaction of the acylated proteins with cellular
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membranes [76,77]. It is generally accepted that Src family kinases are
predominantly located at the cytoplasmic face of the plasma
membrane through myristoylation and subsequent palmitoylation,
although appreciable fractions are also found in the Golgi complex,
phagosomes, endosomes and secretory granules [76,87]. Site directed
mutagenesis studies have revealed that myristoylation is always a
prerequisite for subsequent palmitoylation and by itself mediates
nuclear exclusion. In addition, the non-palmitoylated myristoylated
kinases are unable to associate productively with the plasma
membrane and cannot mediate signaling [76,88–91].

It has been proposed that newly synthesizedmyristoylated kinases
such as Lyn and Yes initially enter the Golgi system where they
become singly palmitoylated at Cys3 hence providing access to the
membrane secretory transport pathway en route to the plasma
membrane [85,87]. In addition, Rab11 might be involved in the
exocytic transport of Lyn and Yes. However, a non-vesicular traffic has
been proposed in the case of the direct plasma membrane-targeting
pathway for myristoylated and dually palmitoylated Fyn [89].

Cotransfection experiments have shown that Lck palmitoylation is
considerably augmented in the presence of DHHC3, DHHC17, DHHC18
and DHHC21 [19,47,49] whereas Fyn palmitoylation increases when
cotransfected with DHHC2, DHHC3, DHHC7, DHHC10, DHHC15,
DHHC20 and DHHC21 [19,48] .

2.2. eNOS

The endothelial isoform of Nitric Oxide Synthases (eNOS) is
responsible for nitric oxide synthesis in the cardiovascular system.
Nitric oxide serves as an endogenous vasodilator, antioxidant, and
platelet inhibitor and regulates the vascular endothelium by sustain-
ing its anti-thrombogenic and anti-coagulant properties. In quiescent
endothelial cells, eNOS is specifically targeted to the Golgi apparatus
and also toward small invaginations of the plasma membrane called
caveolae. These invaginated membrane microdomains are defined by
the presence of the tripalmitoylated scaffolding protein caveolin
[92,93]. Caveolae not only sequester eNOS, but also diverse receptors
and signaling proteins from a variety of signal transduction pathways,
including G-protein coupled receptors, G-proteins, growth factor
receptors and calcium channels. In endothelial cells, eNOS is activated
in response to a variety of stimuli, including acetylcholine, thrombin,
histamine, bradykinin, substance P, ATP, endothelin-1, angiotensin II
and vascular endothelial growth factor. In fact, eNOS interacts directly
with bradykinin B2 receptor, angiotensin II AT1 receptor and
endothelin-1 receptor [94]. On the other hand, caveolin-1 is an
eNOS negative effector since it binds directly to eNOS and inhibits its
activity [95–97].

eNOS is N-terminally myristoylated and subsequently palmitoy-
lated on cysteines 15 and 26 [98,99]. The presence of multiple
hydrophobic amino acids in the proximity of those Cys residues (a
(Gly-Leu)5 repeat) is probably responsible for the linkage of the
palmitate moiety in such distant positions (Box 2). In fact, mutagenesis
of the five Leu residues which flank the palmitoylated cysteines
prevents palmitoylation [82]. Both the myristoylation and palmitoyla-
tion sites of eNOS lie outside the catalytic core of the enzyme, and
purified recombinant eNOS lacking the N-terminal 52 amino acids
shows identical activity as its wild-type counterpart [100]. When
transfected HEK293 cells express identical amounts of wild-type eNOS
or the palmitoylation-defective Cys15/26Ser mutant, their catalytic
activity is undistinguishable [101]. However, cell treatment with
ionomycin results in a three-fold increase in nitric oxide synthesis in
cells expressing wild-type eNOS when compared with its palmitoyla-
tion-defective counterpart. Hence, palmitoylation is responsible for the
appropriate subcellular localization of eNOS and the stimulation-
dependent release of nitric oxide [101]. In fact, the Cys15/26Ser mutant
of eNOS, although membrane associated to similar extent as its wild-
type counterpart [82,101], fails to selectively target eNOS toward the
plasma membrane caveolae [102,103]. Consequently, the role of
palmitoylation is to target eNOS into caveolae, hence restricting nitric
oxide signaling to specific targetswithin a limitedmicroenvironment at
the cell surface and modulating signal transduction through caveolae
[103]. Likewise, studies performedwith synthetic peptides correspond-
ing to the N-terminus of eNOS have revealed that the myristoylated
plus doubly palmitoylated peptide associated preferentially with
membranes enriched in cholesterol and sphingomyelin, two lipid
species highly enriched in caveolae/rafts [104].

Elegant studies performed in endothelial cells with GFP-tagged
eNOS mutant proteins have shown that the Cys15/26Ser palmitoyla-
tion-defective mutant of eNOS is excluded from the plasmamembrane
and was concentrated in a diffuse perinuclear pattern [92]. In addition,
fluorescence recovery after photobleaching of the palmitoylation
mutant is two times faster than that of wild-type eNOS-GFP, indicating
that palmitoylation can influence the rate of trafficking. In fact,
palmitoylation of eNOS renders the protein less mobile in lipid
bilayers, thus supporting the idea that this post-translational modifi-
cation is a “kinetic trapping mechanism” that mediates eNOS in-
teractions in Golgi and plasmalemmal microdomains [92]. Finally,
overexpression of Acyl-Protein Thioesterase-1 (APT-1) accelerates the
depalmitoylation of eNOS in COS7 cells cotransfected with eNOS and
APT1, and remarkably, the APT1-catalyzed depalmitoylation of eNOS is
potentiated by Ca2+-calmodulin, a key allosteric activator of eNOS [23].

3. Subcellular trafficking of isoprenylated plus palmitoylated
proteins

For small GTPases of both the Ras (Box 3) and RhoB (Box 4)
families palmitoylation occurs in the hypervariable domain, which is
located close to the C-terminal end of the protein. The hypervariable
region of Ras and Rho GTPases contains all of the targeting
information necessary to regulate localization on cellular membranes
[69] and the precise subcellular localization of these GTPases
contributes to their functions [105]. Palmitoylation frequently occurs
on Cys residues that are in the proximity of the isoprenylated Cys
residue of the CaaX box, independently of this being farnesylated or
geranylgeranylated. Exceptions to this rule are Wrch-1 and Wrch-2
that are not isoprenylated but palmitoylated at Cys residues
positioned at the carboxy terminus.

3.1. Small GTPases of the Ras family

After farnesylation of the cysteine in the CaaX-box, the various Ras
isoforms are targeted to the cytosolic surface of the endoplasmic
reticulum where the CaaX processing occurs [106,107]. Whereas the
prenyltransferases are soluble heterodimers [108], the activities of the
enzymes that act subsequent to prenyltransferase, including the
prenyl-CaaX protease [109], prenylcysteine-directed carboxyl-
methyltransferase [110] and palmitoyl transferases [19,20] are
associated with membranes. Whereas the first 185 amino acids of all
Ras proteins exhibit a high degree of homology between isoforms and
contain the nucleotide and effector interacting domains required for
signaling, acylation occurs within the hypervariable domain posi-
tioned at the carboxy-terminus (Box 3). Mammalian H-Ras isoforms
become isoprenylated at Cys186 and doubly palmitoylated at Cys
residues 181 and 184. It is generally accepted that palmitoylation takes
place in the ER/Golgi region, with this acylation being required for
intracellular trafficking. The prenylated, carboxyl-methylated, but
unpalmitoylated form of H-Ras can undergo rapid, non-vesicular
exchange with other cellular membranes or can undergo palmitoyla-
tion and vesicle-mediated trafficking to the plasmamembrane (Fig. 1).
When modified by both farnesyl and palmitate, H-Ras is ~95%
membrane bound and fully active whereas with farnesyl as the only
lipid ~10% of H-Ras is attached to membranes and biological activity is
severely compromised [111]. Indeed, the extended conformation of
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the palmitoyl moieties for membrane-bound H-Ras-GDP results in
deeper insertion into the bilayer than in the GTP-loaded conformation
[112].

The regulation of H-Ras through acylation–deacylation cycles has
been recently summarized in numerous excellent review articles
[74,75,113,114], so only a summary of the current knowledge will be
included below. The abundant experimental evidence (detergent
resistance experiments, antibody patching, FRAP, electron microsco-
py, etc.) suggests that doubly palmitoylated H-Ras is raft-associated
[115,116] (Fig. 1). Ras isoform sublocalization on the plasma
membrane depended heavily on electron microscopic analysis
performed by the Hancock and Parton groups. Remarkably, only the
inactive, GDP-loaded H-Ras is found raft-resident, whereas activation
through GTP binding leads to its translocation to non-raft domains
where it activates its downstream kinase Raf [74,114]. Insolubility in
Triton X-100, a widely used assay for lipid raft association, was used to
determine that approximately 13% of H-RasGly12Val (activated GTP-
bound) was insoluble in low concentrations of this detergent,
compared with 34% of its wild-type counterpart [115]. Thus, H-Ras
palmitoylation enables access to cholesterol-sensitive nanodomains
or clusters. Interestingly, the positioning of the palmitate moiety
relative to the farnesylated C-terminal cysteine is important for both
Fig. 1. Intracellular palmitoylation–depalmitoylation cycle of H-Ras and N-Ras. Both H-R
transmembrane Palmitoyl-Acyl-Transferase (PAT). Palmitoylated H-Ras and N-Ras then tra
translocate to lipid rafts whereas palmitoylated N-Ras typically becomes enriched in lipid r
and N-Ras which can traffic in a retrograde manner toward endomembranes and the Golgi
trafficking and eventual subdomain translocation within the plasma
membrane. H-Ras palmitoylated on Cys181, a position shared by N-
Ras and H-Ras, traffics to cell surface cholesterol-dependent
nanoclusters, whereas mutant H-Ras monopalmitoylated on Cys184
remains confined in the Golgi area [117]. It has been known for a
while that palmitoylation is labile, and that H- and N-Ras activation
radically decreases the half-life of the attachment of their palmitoyl
groups from hours to minutes [118,119].

As in the case of H-Ras, N-Ras palmitoylation is indispensable for its
cellular activity. For instance, Cys181 palmitoylation is essential for
leukemogenesis by oncogenic N-Ras [120]. Intriguingly, a dependence
of the balance between cholesterol-dependent and independent
nanoclusters on the GDP/GTP loading state has also been observed for
N-Ras, although in this case active GTP-bound N-Ras preferentially
localizes to cholesterol-sensitive clusters [117]. Alternatively, other
researchers using time-lapse tapping-mode atomic force microscopy,
have concluded that partitioning of N-Ras occurs preferentially into the
liquid-disordered/liquid-ordered phase boundary region and neither
theGDP-bound nor the activatedGTP-boundN-Ras could bedetected in
the bulk raft-like lo domains [121]. The most likely scenario suggests
that when N-Ras is farnesylated and palmitoylated at Cys181 strong
intermolecular interactions foster N-Ras self-association and formation
as (red) and N-Ras (purple) can become palmitoylated in the Golgi apparatus by a
ffic toward the plasma membrane using vesicular transport. Palmitoylated H-Ras can
aft boundaries. The action of an Acyl Protein Thioesterase (APT) depalmitoylates H-Ras
apparatus where they become repalmitoylated (please see text for details).
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of nanoclusters at the domain boundaries, which might serve as a
reaction platform for GTP activation and for recruitment of further
membranous and cytosolic regulators as well as downstream effectors,
such as Gap and Raf [121]. On the other hand, inactive GDP-loaded
farnesylated N-Ras is proposed to partition into the fluid-like phase of
the membrane and subsequently diffuses to the ld/lo phase boundaries
[74,121].

The general model for H-Ras and N-Ras trafficking en route for the
plasma membrane and recycling toward perinuclear locations has
been elegantly analyzed by Bastiaens and coworkers [16,114,122].
Farnesylated non-palmitoylated H-Ras and N-Ras are distributed
homogenously among membrane compartments in the cell. The
palmitoyl transferase activity, located to the Golgi apparatus [122]
then enables this membrane compartment to trap newly palmitoy-
lated H-Ras and N-Ras. This Golgi trapping occurs because palmitoy-
lation enhances the stability of the interaction of H-Ras and N-Ras
with the bilayer, thereby slowing its diffusion [123]. However, H- and
N-Ras do not accumulate at the Golgi, but start their transit toward the
plasma membrane via the secretory vesicular pathway [16,124]. Once
H- and N-Ras are away from the palmitoyl transferase activity of the
Golgi, the palmitoyl moiety is removed by the ubiquitous thioesterase
activity (Fig. 1). This depalmitoylated, farnesylated H-Ras (or N-Ras)
redistributes over all endomembranes, and this retrograde transport
enhances the chance of re-encounter with a DHHC palmitoyl
transferase and becoming trapped in the Golgi [114]. The repeated
cycles of de/repalmitoylation together with the Golgi trapping by
palmitoylation and directionality of the vesicular secretory pathway
thus comprise a spatially organizing system that counters the
entropy-driven re-equilibration of lipidated Ras within cellular
membranes. Truly, Ras depalmitoylation is important for correct
localization, because when non-hydrolysable acyl groups are attached
to H-Ras, it partitions non-specifically into the entire endomembrane
system [16,122]. However, the plasma membrane cannot be evoked
as the exclusive platform from which H-Ras regulates signaling. In
fact, oncogenic H-Ras and N-Ras can engage Raf-1 on the Golgi
membrane and, furthermore, Golgi-resident H-Ras and ER-resident
unpalmitoylated H-Ras are activated in response to mitogens [125].

Finally, although both purified recombinant H-Ras and N-Ras are
substrates for purified recombinant DHHC9 in vitro [126] short hairpin
RNA-mediated knockdown of DHHC9 showed no detectable effect on
Ras palmitoylation [16]. In fact, both H-Ras and N-Ras are ubiquitously
expressed, whereas DHHC9 is not expressed in the thymus, skeletal
muscle, spleen and leukocytes [17]. In addition, H-Ras palmitoylation is
significantly increased when cotransfected with DHHC18 [49], a
palmitoyl transferase that clearly exhibited a perinuclear staining
pattern, most likely corresponding to the Golgi apparatus [17].

K-Ras occurs in two alternatively spliced forms: Ki(A)-Ras (or K-
Ras4A) and Ki(B)-Ras (or K-Ras4B), deriving from Kras-2 gene
expression [127]. Using, radiolabeled palmitic acid, the palmitoylation
of K-Ras4A was unambiguously shown [64]. The trafficking of
alternatively spliced K-Ras4A has not been studied in detail, although
as it is palmitoylated on Cys180 and has no polybasic domain (Box 3)
it would be expected to follow a vesicular transport analogous to that
of H-Ras and N-Ras.

The Ras superfamily of GTPases also includes Rap2A, Rap2B and
Rap2C (Box 3), all three with two palmitoylatable Cys residues in
tandem (Cys176 and Cys177) and in the proximity to the CaaX box. As
expected, during its maturation, the Rap2 proteins becomemodified by
the attachment of both palmitate and polyisoprenoid groups [65]. In
human platelets palmitoylation of Rap2b, but not of Rap1b (which lacks
palmitoylatable Cys residues), results in its translocation to lipid rafts.
Furthermore, raft disruption by cholesterol depletion with methyl-β-
cyclodextrin strongly impaired Rap2b activation [62]. Since Rap2
activity can be monitored through the activation of the Traf2- and
Nck-interacting kinase (TNIK) the role of Cys176/Cys177 palmitoylation
in activity was compared among Rap2A (farnesylated), Rap2B (ger-
anylgeranylated) and Rap2C (farnesylated). In all three cases, palmi-
toylation enabled endosome localization and subsequent TNIK
activation. Interestingly, non-palmitoylated Rap2A and Rap2C failed to
activate TNIK whereas non-palmitoylated Rap2B, whose interaction
with cellularmembraneswas stronger, activated TNIK effectively [128].
Taken together with the different subcellular fractionation data
displayed by non-palmitoylated Ras2A, Ras2B and Ras2C isoforms,
these results imply that endosome targeting andmembrane-association
are necessary and sufficient for TNIK activation.

R-Ras, which shows 55% identity with H-Ras, regulates cell
adhesion, spreading and phagocytosis by activating integrins, and
also incorporates radiolabeled palmitic acid [66]. As shown by site
directed mutagenesis studies, the site of palmitoylation in R-Ras is
Cys213 (Box 3) in the proximity of the geranylgeranylated Cys residue
[67], hence indicating that, as expected, the hypervariable region of R-
Ras is crucial for membrane targeting and transport. Moreover, the
Cys213Ala mutant of R-Ras showed an increased accumulation in
perinuclear Golgi areas and consequently a decreased appearance on
the plasma membrane when compared with its wild-type counter-
part. Remarkably, although intracellular trafficking of the palmitoylation-
defective mutant of R-Ras is clearly altered, it can still reach focal
adhesions [67]. The palmitoyl transferase DHHC19 can use R-Ras as a
substrate, but not H-Ras, N-Ras, KRas4A, RhoB or Rap2 [129]. Cotransfec-
tion of DHHC19 with R-Ras increased the amount of palmitate that
became incorporated in the small GTPase resulting in a stronger general
membrane association and an increase in the association of R-Ras with
lipid raft/caveolae. Interestingly, the carboxy-terminus of mammalian
DHHC19 possesses a CaaX that can be farnesylated in vitro with purified
farnesyltransferase heterodimer [129].

3.2. Small GTPases of the Rho family

Rho proteins are Ras-related GTPases that regulate a variety of
cellular processes. Cellular RhoB localized in a pattern similar to that of
H-Ras, with prominent fluorescence in the plasma membrane and in a
discrete perinuclear structure, essentially the Golgi apparatus [69,130].
In addition, RhoB is also associated with early endosomes and a pre-
lysosomal compartment [69,131]. Isoprenylation alone is not sufficient
to determine the subcellular location of Rho GTPases and, as in the case
of the Ras protein family, a second C-terminal signal is required.
Inspection of the amino acid sequence of RhoB reveals the presence of
two palmitoylatable Cys residues (Cys189 and Cys192) in the proximity
of the isoprenylated Cys residue (Cys193) of the CaaX box (Box 4).
Radiolabel incorporation studies soon revealed that cellular RhoB is
palmitoylated [69] and site directed mutagenesis experiments subse-
quently uncovered that both Cys189 and Cys192 incorporated a
palmitate acyl chain [69,132]. As expected, a Cys193Ser mutant of
RhoB failed not only to incorporate the geranylgeranyl moiety, but also
palmitic acid in the neighboring Cys residues [132]. Remarkably,
palmitoylation of Cys192, rather than Cys189, together with Cys193
geranylgeranylation are required for RhoB tumor-suppressive and pro-
apoptotic activities [132]. In fact, the carboxy-terminal eight-amino acid
motif present in RhoB (CINCCKVL) contains a targeting sequence for
sorting into multivesicular bodies and rapid lysosomal degradation
[133]. Moreover, this RhoB sequence, containing the isoprenylation and
palmitoylation sites (CINCCKVL) is sufficient to promote a RhoB-like
localization and degradation rate when fused to the C-terminal end of
several unrelated proteins. Similarly to the case of H-Ras previously
discussed, both palmitoylation sites contribute to the localization and
degradation of RhoB, although to different extents. Mutation of the first
palmitoylation site (Cys189Ser) induced a diffuse cytosolic distribution
with a perinuclear accumulation and partially impaired lysosomal
degradation, whereas mutation of the second palmitoylation site
(Cys192Ser) completely stabilized RhoB, to the same extent as the
double Cys189,192Ser mutation [133]. This endolysosomal sorting
governed by the RhoB carboxy-terminus is exquisitely determined not
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only by the three lipid moieties, but also by its amino acid sequence,
since other isoprenylated and bipalmitoylated small GTPases, such asH-
Ras, Rap2A, Rap2B and TC10 were not accumulated into multivesicular
bodies and were stable [134]. Finally, coimmunoprecipitation studies
have also shown that RhoB palmitoylation interferes with its binding to
RhoGDIα [69].

Intriguingly, the carboxy-terminus of TC10 is very similar to that of
RhoB (Box 4), and, although the position of a Thr residue at the final
position of the CaaX box of TC10 governs its farnesylation, in the
presence of farnesyl-transferase inhibitors it can be partially ger-
anylgeranylated as well [135]. This is reminiscent of the behavior
shown by RhoB, which can be farnesylated or geranylgeranylated
[135,136]. In transfected cells, TC10 can be observed mostly in plasma
membrane and internal membranes [69]. Palmitoylation of TC10 has
also been demonstrated using radioactive labeling, a biotin switch
assay and further confirmed upon treatment of the GFP-TC10
transfected COS1 cells with the palmitoylation inhibitor 2Br-palmitate
[69,136]. Farnesylation occurs at Cys210 whereas the palmitoylatable
residues are Cys206 and Cys209. TC10, which has both a palmitoyla-
tion site and a polybasic region, is targeted to the plasma membrane
and endosomes [69,136]. In adipocytes, the newly synthesized TC10
protein undergoes farnesylation and subsequently associates with the
ER for proteolytic trimming and carboxyl-methylation [137]. The
majority of the modified TC10 protein enters the Golgi system, where
palmitoylation is supposed to occur, and then follows the membrane
secretory transport pathway en route to lipid rafts/caveolae of the
plasma membrane. Subcellular targeting and membrane localization
of the TC10 Cys206Ser mutant were indistinguishable from those of
wild-type TC10. In contrast, both the single Cys209Ser and the double
Cys206/209Ser TC10 mutants displayed plasma membrane localiza-
tion, but they were excluded from both the secretory membrane
system and the lipid raft compartments [137]. Nevertheless, it has
been reported that, at least in adipocytes, the exocytotic trafficking of
TC10 occurs through both classical and nonclassical secretory
transport pathways [137]. Support for this hypothesis was obtained
when inhibition of Golgi membrane transport with brefeldin-A
treatment did not prevent the plasma membrane localization of
TC10. Consequently, a second potentially soluble, parallel pathway
can escape palmitoylation and direct TC10 to the non-lipid raft plasma
membrane regions. It has been proposed that TC10 may be
continuously exchanging between these two pathways through a
regulatory balance of palmitoylation–depalmitoylation reac-
tions [137]. In addition, as in the case of RhoB, TC10 palmitoylation
prevents its recognition by RhoGDIα [69].

TCL also possesses two carboxyl-terminal putative palmitoylation
sites similar to TC10 that may serve as additional signals to control
proper subcellular localization (Box 4). Despite the prediction of
palmitoylation in these Cys residues [138], TCL palmitoylation has
remained elusive. In mammalian cells, TCL, as was the case for TC10,
becomes farnesylated and localizes at the plasma membrane and in
early endocytic compartments [136,139]. Ectopically expressed TCL
also exhibited perinuclear endosomal localization and induced
filopodia formation. Interestingly, 2Br-palmitate treatment of mam-
malian cells transfected with GFP-tagged TCL had no effect on the
subcellular localization of the chimera [136], and likewise, the biotin
switch assay for palmitoylated proteins also tested negative [136]. It is
then conceivable that TCL might become only very marginally
palmitoylated in vivo, as previously reported for R-Ras, in which
palmitate incorporation is far less evident than in the case of H-Ras
when compared under identical labeling conditions [67].

There are three Rac proteins in humans, Rac1, 2 and 3, and all three
contain a functional CaaX box with a Cys residue that becomes
geranylgeranylated. Rac1, which has a strong polybasic region, is
targeted like K-Ras4B primarily to the plasma membrane although
2Br-palmitate treatment of cells transfected with a GFP-Rac1 chimera
did not result in significant changes in the subcellular localization [69]
and a biotin switch assay also seems to indicate that Cys178 of Rac1 is
not palmitoylated in vivo [136]. This observation contrasts with the
identification of Rac1 as a palmitoylated protein in a general screen for
palmitoylated proteins rat brain [140] and with the reduced colony
formation capacity of a Rac1 Cys178Ser mutant [136].

Finally, palmitoylation of a carboxy-terminal Cys has also been
reported for Wrch-1 andWrch-2, two additional small GTPases of the
RhoB family. The carboxy-terminus of Wrch-1 displays a KKYCCFV
amino acid sequence although its CaaX box seems to be non-
functional (Box 4). Unusually, Wrch-1 is not isoprenylated but is
insteadmodified by palmitoylation [141] being this acylation required
for both its subcellular localization and biological activities [142].
Significantly, the carboxy-terminal Cys256, but not Cys255, becomes
palmitoylated and is required for Wrch-1 transformation [141]. In
addition, lacking any isoprenyl group, Wrch-1 does not bind RhoGDI
[143]. In the case of Wrch-2, palmitate incorporation was absent in a
Cys234Ser mutant protein, but, remarkably, the Cys227Ser mutant
had similar amounts of labeling as wild type Wrch-2, suggesting that
this small GTPase contains a single palmitoylation site in the carboxyl
terminus at residue Cys234 [144].

4. Subcellular trafficking of palmitoylated proteins

Unlike N-myristoylation and isoprenylation, S-acylation has no
clear sequence requirement other than a cysteine residue. Site
directed mutagenesis of Cys residues in the proximity of myristoy-
lated N-terminal Gly residues and in the proximity of isoprenylated C-
terminal Cys residues has been extensively used for the identification
of palmitoylation sites. Palmitoylation sites are also found in the
proximity of transmembrane helices. That is the case of the carboxy-
terminus intracellular loop of many G-protein coupled receptors
[72,145], transferrin receptor [146], certain viral glycoproteins that
traverse the bilayers [147], the transmembrane linker for activation of
T cells [148], BACE [149] and also Surfactant Protein C [150]. In the
case of proteins with a single transmembrane helix palmitoylation
occurs on Cys residues facing the cytoplasm, both in case of type I
(CD4, CD8, BACE) or type II (Transferrin Receptor, Surfactant Protein
C) topology (Box 5). Protein palmitoylation in the lumen of the
endoplasmic reticulum is characteristic of secreted proteins that
follow the anterograde sorting route such as Hedgehog.

Protein palmitoylation at the N-terminus in the absence of
myristoylation (Box 5) has been described in the case of PSD-95
and PSD-93 [151,152], iNOS [53,153] and GAP43/neuromodulin [154].
It is interesting to remark that some of these non-myristoylated,
N-terminally palmitoylated proteins have a palmitoylatable Cys
residue at position 3, but never at position 2. Both PSD-95 and
GAP43 are substrates for DHHC7 and DHHC15 [19], hence indicating
that these palmitoyl transferases might transfer the palmitoyl moiety
selectively to position 3.

Synaptic vesicles, which are specialized secretory organelles that
store and secrete neurotransmitters during synaptic transmission in
neurons, are enriched in numerous membrane-associated proteins, very
frequently palmitoylated. That is the case of synaptobrevin 2, synapto-
tagmin, SNAP23, SNAP25, AQP4 and GAD65 [155,156]. SNAP25 is a
neuronal SNARE protein that has a Cys string motif which is
palmitoylated in 4 Cys among residues 83–95 within its membrane-
targeting sequence. 25 amino acids downstream of the cysteine motif
there is a five amino acid motif (QPARV) necessary for efficient
palmitoylation and membrane targeting [157]. Recent studies have
revealed that coexpression of SNAP25with DHHC3, DHHC7 andDHHC17
is sufficient to promote membrane association in HEK293 cells [158].
Recent review articles have analyzed in detail the palmitoylation of
SNAP25 [70] as well as the co-receptors CD4 and CD8 [71].

One of the first proteins with transmembrane domains to be
recognized as palmitoylated was the transferrin receptor [146]. In this
case, Cys62 and Cys67, both adjacent to the predicted single



Box 5
Selected examples of human palmitoylated proteins in the absence of
myristoylation or isoprenylation. The predicted transmembrane helices
are shaded in gray whereas the palmitoylated Cys residues are shaded
in yellow. Positively and negatively charged residues are shaded blue
and red respectively. 25 amino acids are shown in every case. In all
cases, proteins with a single transmembrane stretch display the
palmitoylatable Cys residues facing the cytoplasm.
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transmembrane helix incorporate the fatty acid, a modification
reported to regulate the rate of endocytosis of the receptor [159].

Synaptotagmins comprise a family of type I membrane proteins
characterized by a short N-terminal region, a single transmembrane
domain, a spacer region and two highly conserved cytosolic C2
domains. One of its members, Syt VII is a Ca2+ sensor that regulates
lysosome exocytosis and plasma membrane repair. Syt VII displays
three cysteines within and adjacent to the transmembrane domain,
Cys35, Cys38 and Cys41, known to become palmitoylated [160]
(Box 5). Mutation of Syt VII palmitoylation sites blocks its trafficking
to lysosomes [161] hence demonstrating a palmitoylation-dependent
targeting to this organelle.

4.1. Surfactant Protein C

Surfactant Protein C (SP-C), a small, hydrophobic, 3.9 kDa
polypeptide composed of just 35 amino acids is one of the four
specific proteins isolated from pulmonary surfactant [150,162,163]. It
is synthesized in the ribosome as a precursor protein of 21 kDa
(proSP-C) that is proteolytically processed along the secretory
pathway at both the C-terminal and N-terminal ends [164,165]
rendering mature SP-C, which ultimately becomes secreted to the
alveolar spaces as part of the surfactant complex. In addition, both the
amino acid sequence and the palmitoylated Cys residues of SP-C, are
highly conserved among species [166]. This palmitoylated integral
membrane protein (Box 5) adopts a type II orientation (N cytosol/C
lumen) and a 24° average angle of orientation with respect to the
phospholipid bilayer [167].

SP-C is present in lipid–protein surfactant complexes assembled in
alveolar pneumocytes in the form of tightly packed membranes, which
are stored in specialized organelles called lamellar bodies that
subsequently become secreted. SP-C isolated from mammalian bron-
cho-alveolar lavage is dipalmitoylated on cysteines 5 and 6 [166]. The
palmitoyl chains are attached to cysteines 28 and 29 of proSP-C (the
equivalent positions to Cys5 and Cys6 in the mature protein) before its
processing to SP-C, since the precursor polypeptides also incorporate
radioactive palmitate [168,169]. Palmitoylation of proSP-C probably
occurs immediately after insertion of its only transmembrane helix in
the ER membrane and depends largely on the conformation of its
cytosolic domain. Delivery of proSP-C to distal processing organelles is
dependent upon this N-terminal cytoplasmic SP-C propeptide, which
contains a conserved PPDY motif capable of interaction with several
WW domains found in the Nedd4 family of E3 ligases [170]. SP-C
palmitoylation early in the sorting process, probably in the ER–Golgi
intermediate compartment (ERGIC) or cis-Golgi, is further verified by
the observation that it is not affected by the Golgi disturbing agent
brefeldinA [169,171,172]. Interestingly, proSP-C contains twopositively
charged residues (Lys34 and Arg35) in the proximity of the post-
translationally palmitoylated Cys residues (Cys28 and Cys29). Substi-
tution of these residues with uncharged Gln residues results in a
complete inversion of the topology of proSP-C and the palmitoylatable
Cys residues become translocated to the lumen of the endoplasmic
reticulum and palmitoylation is lost [173]. Thus, palmitoylation of
proSP-C is dependent on those N-terminal positively charged residues
[171]. In addition, fluorescence microscopy revealed that this mutant
SP-C protein appeared retained in the ER, suggesting that the Lys and
Arg residues influence transport of proSP-C to compartments distal to
the ER.

The successful recombinant expression and purification of mature
SP-C has allowed the analysis in detail of the significance of the acyl
moiety [174]. The behavior of native palmitoylated SP-C and
recombinant unpalmitoylated versions of SP-C produced in bacteria
were compared to understand the importance of the palmitic chains
to optimize interfacial performance of cholesterol-containing surfac-
tant films [129,175]. Palmitoylation of SP-C was determined not to be
essential for the protein to promote rapid interfacial adsorption of
phospholipids to equilibrium surface tensions (22 mN/m), in the
presence or absence of cholesterol, but it was critical for cholesterol-
containing films to reach surface tensions ≤1 mN/m at the highest
compression rates assessed in a captive bubble surfactometer, in the
presence of SP-B. Nevertheless, although SP-C palmitoylation is
necessary for its proper function in pulmonary surfactant, palmitoyla-
tion itself does not seem to guide its subcellular traffic. The sorting
activity of the palmitoylated cysteines was tested by mutating both
Cys residues to Ser or Ala in the context of the SP-C proprotein. The
successful sorting followed by extracellular secretion of the mutant
proteins was confirmed using chromogranin staining (a marker for
dense core granules) and was found indistinguishable from that of the
wild-type counterpart [176].

4.2. Alpha subunits of G proteins

Heterotrimeric G proteins, composed of α, β and γ subunits, relay
signals between cell surface receptors and membrane-bound effectors
in numerous signaling cascades. Activation of a heptahelical transmem-
brane G protein-coupled receptor by an extracellular agonist, such as
hormones, light or odorants, activates the G protein by catalyzing the
release of GDP fromGα. In order to ensure specificity aswell as effective
concentrations and speed of interactions, these signaling components
are usually translocated to the cytoplasmic side of the plasma
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membrane.Whereas theGγ subunit is irreversibly isoprenylated, theN-
terminus of the Gα subunits of heterotrimeric G proteins can be
myristoylated, palmitoylated ormyristoylated plus palmitoylated [177–
179]. In fact, the N-termini of all Gα are regions of great diversity, not
only in terms of types and combinations of lipid modifications, but also
in terms of amino acid sequence and length (ranging from 29 amino
acids in Gαt to 55 amino acids in Gα12 before the beginning of the
highly conserved β-sheet 1) [179]. Myristoylation in the absence of
palmitoylation occurs in the Gα subunits of Gαt1, Gαt2 and Gαgust
whereas palmitoylation is found in the fourmembers of the GαQ family
(GαQ,Gα11,Gα14andGα16/Gα15) aswell as inGα12,Gα13,GαS and
Gα olfactory [177,180,181]. Myristoylation plus palmitoylation occurs
in Gαi1 Gαi2 Gαi3, Gα0 and GαZ, and in every case, site directed
mutagenesis of Gly2, which abolishes myristoylation, leads to the
absence of N-terminal palmitoylation and to the translocation to the cell
cytoplasm [81,182,183]. Translocation of Gα subunits to the plasma
membrane has been explained by the “two-signal model” which
suggests that peripheral membrane proteins such as Gα subunits
require more than one signal to firmly attach them to the plasma
membrane [180]. In addition to these lipid modifications, other
mechanisms contribute to plasma membrane targeting of the hetero-
trimeric G proteins, such as the direct interaction of Gαwith Gβγ [184]
or the clusters of basic amino acids present at the N-terminus [181,185].
In fact, when site directedmutagenesis of residues that interact directly
with the Gβγ heterodimer was performed in GαS or GαQ, efficient
palmitoylation of the Gα subunitswas clearly reduced, hence indicating
that formation of the heterotrimer andGα palmitoylation are concerted
processes [186]. Thus, the plasma membrane targeting of Gα subunits
requires both interaction with the Gβγ complex and subsequent
palmitoylation of Gα. Nowadays, it is accepted that the spatiotemporal
dynamics of Gα subunits involve continuous shuttling between the
plasmamembrane and intracellularmembranes, a process that requires
efficient palmitoylation [187].

Elegant studies have been recently performed in order to
determine the functional significance of palmitoylation at N-terminal
Cys residues of GαQ (Box 5) in terms of subcellular localization and
coupling to G-protein coupled receptors and signaling. Taking
advantage of photoconvertible fluorescent proteins, the anterograde
and retrograde traffic between plasma membrane and endomem-
branes of GαQ transfected in HeLa cells has been studied [47]. Indeed,
palmitoylation of GαQ is essential for plasma membrane targeting, as
shownwhen transfected cells were incubatedwith the palmitoylation
inhibitor 2Br-palmitate [47] or when site directed mutagenesis
eliminated the palmitoylatable Cys residues present at the N-
terminus [188] since under these circumstances, GαQ relocalized
from the plasma membrane toward endomembranes and the
cytoplasm. A general screening using 23 DHHC palmitoyl transferases
cotransfected with GαQ showed that DHHC3 and DHHC7 coexpres-
sion increased GαQ palmitoylation significantly [47]. As expected
siRNA-mediated silencing of DHHC3, DHHC7 or both significantly
diminished GαQ palmitoylation, induced its translocation from the
plasma membrane toward the cytoplasm and abrogated its signaling
mediated by the α1A-AR. Colocalization studies with GM130 revealed
that DHHC3 is specifically detected at the Golgi apparatus where it
partially overlaps with GαQ. Hence it has been proposed that GαQ
shuttles between the plasma membrane and the Golgi apparatus
through de/repalmitoylation cycles and this dynamic movement
allows cells to adjust to extracellular stimulation [47].

4.3. Inducible Nitric Oxide Synthase (iNOS)

iNOS is a transcriptionally-regulated enzyme expressed in several
cell types, such as macrophages, mesangial cells, muscular myotubes,
hepatocytes and even endothelial cells, in most cases in response to an
exogenous stimuli, fundamentally proinflammatory cytokines or
bacterial lipopolysaccharide. Remarkably, •NO synthesis by iNOS is
tightly regulated, occurring in a vectorial fashion at certain discrete
subcellular sites [189]. Although early reports remarked that iNOS
suffered a post-translational modification at its N-terminus, the identity
of thismodification remained elusive [190]. Using radiolabelled palmitic
acid, we showed that both transcriptionally induced iNOS in muscular
myotubes as well as transfected iNOS becomes palmitoylated at Cys3
[53,153]. In fact, iNOS palmitoylation is completely necessary for its
intracellular trafficking toward subcellular domains where nitric oxide
release is required. The correct targeting of palmitoylated iNOS allows
its proper localization within the cells, therefore preventing the toxic
effects of an uncontrolled release of nitric oxide. Using a Transwell cell
culture system that allowed themeasurement of the amount of released
•NO at both apical and basolateral chambers, we showed that iNOS
targets the apical membrane selectively, without •NO being released to
the basolateral compartment [189,191].

The mutant iNOS Cys3Ser did not incorporate palmitic acid, forms
irreversibly aggregates in the Golgi and is unable to progress along the
secretory pathways, becoming completely inactive. This is especially
important in polarized cell types in which a pro-inflammatory stimulus
results in iNOS expression, since the carboxy-terminal tail of iNOS is
known to subsequently attach to PDZ domains of certain transporter
proteins such as EBP50 or CAP70 becoming selectively delivered to the
apical surface [189,191]. In fact, N-terminal palmitoylation of iNOS at
Cys3 together with the binding of its carboxy-terminus to these PDZ
domain-containing proteins are equally indispensable requirements for
the proper apical release of nitric oxide [53,153,191]. Support for the
important role of iNOS palmitoylation is strengthened by the observa-
tion that treatment of COS7 cells transfected with iNOS or muscular
myotubes treated with pro-inflammatory cytokines with both 2Br-
palmitate or 8Br-palmitate severely affects nitric oxide synthesis. Site
directedmutagenesis studies of the residues surrounding Cys3 followed
by measurement of [3H]-palmitate incorporation concluded that the
hydrophobic amino acid Pro4 as well as the basic residues Lys6 and
Lys10 is indispensable for the incorporation of the fatty acid. Unlike
eNOS, in which palmitoylation is necessary for caveolar targeting,
interaction with caveolin and protein inactivation, iNOS palmitoylation
does not result in caveolar localization, but rather is necessary for proper
sorting along the secretory route and its exit from the endoplasmic
reticulum. Nevertheless, iNOS can become associated with caveolin-1
and marginally with caveolin-2 and -3 within muscle cells and this
interaction abrogates nitric oxide synthesis [192], although in mature
myotubes the samecytokine stimuli that induce iNOS expression lead to
the downregulation of all three caveolin isoforms, hence allowing iNOS
to be completely active [192,193]. Interestingly, the transit of iNOSalong
the secretory pathway is exquisitely regulated through palmitoylation
at Cys3, and this post-translationalmodification cannot be replaced by a
surrogate myristoylation at glycine 2 nor by an additional palmitoyla-
table cysteine at position 2 [53].

4.4. AMPA receptor subunits

Several subunits of the AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazole propionate) receptor, an ionotropic glutamate, ligand-gated
cation channel that mediates the fast component of excitatory
postsynaptic currents in the central nervous system are also palmitoy-
lated [194]. All AMPA receptors consist of four types of subunits, GluR1–
4 [195], and can be palmitoylated at the side chain of two Cys residues:
one in the second transmembrane domain (TM2), the other in the
C-terminal intracellular region, hence regulating receptor trafficking.
TM2palmitoylation has a profound effect on the delivery of the receptor
from the Golgi to the cell surface, leading to an accumulation of the
receptor in the Golgi and a reduction of receptor surface expression.
Nevertheless, C-terminal palmitoylation did not affect the trafficking
toward the cell surface but instead decreased the interaction of the
AMPA receptorwith the 4.1Nprotein,mediating agonist-inducedAMPA
receptor internalization [196]. Therefore, regulated palmitoylation
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of AMPA receptor subunits on distinct cysteines modulates receptor
trafficking and therein regulates the levels of receptor surface
expression and may be important for synaptic plasticity [197]. Over-
expression experiments indicate that DHHC3/GODZ increase palmitoy-
lation of the AMPA receptor subunits GluR1 and GluR2 [197].

5. Current challenges and future perspectives

Although in the past few years the identification of several palmitoyl
transferases as well as their protein substrates has brought major
advances to the protein palmitoylation field many central questions
remain. Considering that there are hundreds or thousands of cellular
proteins that become palmitoylated and only several dozen of
palmitoyl transferases it remains to be established how the substrate
recognition takes place. It is not well determined if palmitoyl
transferases specifically recognize an amino acid sequence, a subcel-
lular localization of the substrate or a previous acylation (i.e.
myristoylation or prenylation) in the proximity of a palmitoylatable
Cys residue. Likewise, although the palmitoylation–depalmitoylation
cycle of proteins such as H-Ras, N-Ras or PSD-95 are beginning to be
unraveled it is not well known if these cycles also apply to other
palmitoylated protein substrates. Finally, the inter-relationship be-
tween protein palmitoyl transferases and thioesterases, their precise
subcellular localization as well as their activity in terms of time and
space are questions that, no-doubt, will be addressed in coming years.
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