
Theoretical Computer Science 429 (2012) 74–86

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Asynchronous P systems with active membranes
Pierluigi Frisco a,∗, Gordon Govan a, Alberto Leporati b
a School of Math. and Comp. Sciences, Heriot–Watt University, EH14 4AS Edinburgh, UK
b Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano – Bicocca, Viale Sarca 336/14, 20126 Milano, Italy

a b s t r a c t

We prove that recognising P systems with active membranes operating in asynchronous
mode are able to solve in a semi-uniform way both NP-complete and PP-complete
problems in linear time (in the best case) and exponential space, when using different
sets of rules. Precisely, the proposed solution of k-SAT, k ≥ 3, uses evolution and
communication rules, as well as membranes creation and division of non-elementary
membranes; however, it does not use neither polarisations nor membrane dissolution
rules. Our solution of MAJORITY-SAT makes use of polarisations as well as evolution and
communication rules, together with rules for dividing non-elementary membranes.

We also prove that these systems can simulate partially blind register machines; the
converse simulation holds for a constrained version of our P systems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Membrane systems (P systems) are an abstract model of computation inspired by the compartmentalisation present in
eukaryotic cells [10,11,5,12]. P systems can be used as a parallel model of computation, utilising the inherent parallelism
that is present in biological cells.

P systemswith activemembranes are able to compute by using a set of rules that describe themovement and evolution of
symbols and compartments. Symbols can move in and out of compartments and evolve into other symbols. Compartments
can be divided into more compartments, have their polarity (the electrical charge of the membrane) changed, etc.

Due to their parallelism, P systems are able to solveNP-complete problems in linear time, but to do so they have to create
an exponentially largeworkspace bymembrane division rules, and try all possible solutions to the problem at the same time.
In fact, when membrane division is not allowed then the resulting P systems can be shown to be no more powerful than
polynomial-time Turing machines [18].

A P system can run in different operating modes: among the others, maximally parallel, minimally parallel, and with
maximal strategy. In this paper, we study P systems operating in the asynchronousmode. This means that in each transition
at least one rule is applied and no upper bound is put to the number of times a given rule can be applied in a transition step.
This operationmode is thusmore general thanmaximal parallelism and other operatingmodes considered in the literature.
We try to clarify this concept with an example. Let us assume that in a certain configuration a P system operating under
maximal parallelism applies two times rule 1 and one time rule 2.We denote this rule application by (1, 1, 2). If the P system
run in asynchronous mode, then in the same configuration different multisets of rules could be applied: (1), (1, 1), (2), (1, 2)
and (1, 1, 2). Clearly, the asynchronous operation mode is more general than maximal parallelism.

When working in the asynchronous mode, in each transition a P systemmay apply any number of applicable rules at the
time; thus for each computation we have a lower bound and an upper bound to the execution time. We will say that they are
the best and the worst execution time, respectively.

∗ Corresponding author.
E-mail addresses: P.Frisco@hw.ac.uk (P. Frisco), gmg8@hw.ac.uk (G. Govan), alberto.leporati@unimib.it (A. Leporati).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.12.026

http://dx.doi.org/10.1016/j.tcs.2011.12.026
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:P.Frisco@hw.ac.uk
mailto:gmg8@hw.ac.uk
mailto:alberto.leporati@unimib.it
http://dx.doi.org/10.1016/j.tcs.2011.12.026

P. Frisco et al. / Theoretical Computer Science 429 (2012) 74–86 75

So we prove that recognising P systems with active membranes operating in asynchronous mode are able to solve
in a semi-uniform way both NP-complete and PP-complete problems in linear time (in the best case) and exponential
space. The selected NP-complete and PP-complete problems are k-SAT (with k ≥ 3) and MAJORITY-SAT, respectively. We
solve them by using different kinds of rules. Precisely, for solving k-SAT we use evolution and communication rules, as
well as membranes creation and division of non-elementary membranes; however, we do not use neither polarisations
nor membrane dissolution rules. On the other hand, our solution of MAJORITY-SAT makes use of polarisations as well as
evolution and communication rules, together with rules for dividing non-elementary membranes.

In the last part of the paper we also show that P systemswith activemembranes operating in the asynchronousmode are
able to simulate partially blind register machines. To this aim we have either the possibility to use polarities—and in such a
case only evolution and communication rules are needed—or not to use them. In the latter case, however, we also need rules
for creating and dissolvingmembranes.We are able to show also the converse simulation, but only for a constrained version
of our P systems. The equivalence between the two models of computation, or proving that P systems are more powerful
than partially blind register machines, remains an open problem.

The paper is structured as follows. In the next section we give some definitions relevant to this paper, while in Section 3
we discuss different operational modes. In Section 4 we show how NP-complete and PP-complete problems can be solved
by the considered P systems, and in Section 5 we explore the relations occurring among our P systems and partially blind
register machines. We end in Section 6 with some comments and directions for future research.

2. Basic definitions

We assume the reader to be familiar with Theoretical Computer Science [17], in particular with Membrane Computing
[5,12] and Computational Complexity Theory [9]. Here we only introduce concepts strictly relevant to what is to be
presented.

Definition 1. A P system with active membranes is a construct

Π = (V , µ, L1, . . . , Lm, R)

where:

V is an alphabet;
µ = (W , E, pol) is a vertex-labelled cell-tree (where a cell-tree is a rooted tree such that the root has only one child)
underlyingΠ , where:
W = {0, 1, . . . ,m} contains vertices. Each vertex inW defines a compartment ofΠ . The root of the cell-tree is vertex 0
and its child is vertex 1;
E ⊆ W × W defines the edges among the vertices of the cell-tree;
pol : W → {+,−, 0} is a labelling function, called polarity function, associating elements of WP = {+,−, 0} to the
vertices;
In the following, µ is depicted using the bracket representation common to P systems;
Li : V → N, i ∈ W \ {0} are multisets of symbols associated with the vertices ofW ;
R is a finite set of rules of the form:
(a) [i v → w]

p
i

with i ∈ W , p ∈ WP , v ∈ V andw : V → N.
Informally: productions associated with compartments;

(b) v [i]
p
i → [i w]

p′

i
with i ∈ W , p, p′

∈ WP , v ∈ V andw ∈ V ∪ {ϵ}.
Informally: a symbol can pass into a compartment;

(c) [i v]
p
i → [i]

p′

i w
with i ∈ W , p, p′

∈ WP , v ∈ V andw ∈ V ∪ {ϵ}.
Informally: a symbol can pass outside a compartment;

(d) [i v]
p
i → w

with i ∈ W \ {0, 1}, p ∈ WP , v ∈ V andw ∈ V ∪ {ϵ}.
Short name: dissolution.
Informally: the presence of a symbol in a compartment lets the membrane defining the compartment disappear;

(e) [i v]
p
i → [i′ w]

p′

i′ [i′ z]
p′′

i′
with i, i′ ∈ W \ {0, 1}, p, p′, p′′

∈ WP , v ∈ V andw, z ∈ V ∪ {ϵ}.
Short name: division of a (simple or composite) compartment.
Informally: the presence of a symbol in a compartment lets the compartment duplicate;

(g) [i v]
p
i → [i[i′ w]

p′

i′]
p
i

with i, i′ ∈ W \ {0, 1}, p, p′
∈ WP , v ∈ V andw ∈ V ∪ {ϵ}.

Short name: creation of a compartment.
Informally: the presence of a symbol in a compartment lets a new compartment to be created.

76 P. Frisco et al. / Theoretical Computer Science 429 (2012) 74–86

Vertex 0 identifies the environment, while vertex 1 the skin compartment of µ. The set WP = {+,−, 0} is called set of
polarities and its elements are called polarities. Specifically, + is called positive, − is called negative and 0 is called neutral
polarity. A compartment having a positive polarity is said to be a positive compartment; similarly for the remaining polarities.
Rules of type (a) are also called evolution rules, whereas rules of types (b) and (c) are commonly called communication rules.

Each instantaneous configuration of a P systemwith active membranes is described by the current membrane structure,
including the electrical charges, together with the multisets located in the corresponding regions. A computation step
consists in the application of one or more rules, according to the selected mode of operation; it changes the current
configuration and produces another configuration.

The initial configuration of Π consists of the membrane structure µ and the multisets of symbols L1, . . . , Lm, each
associated to the corresponding vertex ofW . A halting computation ofΠ is a finite sequence of configurations C⃗ = (C0, . . .,
Ck), where C0 is the initial configuration, every Ci+1 is reachable by Ci via a single computation step, and no rules can
be applied anymore in Ck. A non-halting computation C⃗ = (Ci : i ∈ N) consists of infinitely many configurations, again
starting from the initial one and generated by successive computation steps, where the applicable rules are never exhausted.
For further details on the definition of these P systems, their working and their modes of operation, the reader is referred to
[5,12].

P systemswith activemembranes can be used as recognising devices by employing two distinguished symbols yes, no ∈

V ; exactly one of these must be sent out from the outermost membrane during the last step of each computation, in order
to signal acceptance or rejection, respectively; we also assume that all computations are halting. If all computations starting
from the same initial configuration are accepting, or all are rejecting, the P system is said to be confluent. If this is not the case,
then P systems are said to be non-confluent, and the overall result is established as for nondeterministic Turing machines: it
is acceptance if and only if an accepting computation exists.

Some of the systems considered in the following do not send the symbol no out to the environment in rejecting
computations. Instead, these systems simply halt without letting any symbol pass to the environment. Even if this behaviour
deviates from the above definition—which is the one usually found in the P systems literature—we will see that it does not
change the results we are going to state.

In order to solve decision problems (i.e., decide languages), we use families of recognising P systemsΠ = {Πx : x ∈ V ⋆}.
Each input x is associated with a P system Πx that decides the membership of x in the language L ⊆ V ⋆ by accepting or
rejecting. The mapping x → Πx is restricted, in order to be computable efficiently; usually one of the following uniformity
conditions is imposed.

Definition 2. A family of P systemsΠ = {Πx : x ∈ V ⋆} is said to be semi-uniform if the mapping x → Πx can be computed
in polynomial time by a deterministic Turing machine.

Any explicit encoding of Πx is allowed as output, as long as the number of membranes and objects represented by it
does not exceed the length of the whole description, and the rules are listed one by one. This restriction is enforced in order
to mimic a (hypothetical) realistic process of construction of the P systems, where membranes and objects are presumably
placed in a constant amount during each construction step, and require actual physical space in proportion to their number.
For instance, the membrane structure can be represented by brackets, and the multisets as strings (i.e., in unary notation);
this is a permissible encoding in the sense of [8].

Definition 3. A family of P systemsΠ = {Πx : x ∈ V ⋆} is said to be (polynomial-time) uniform if the mapping x → Πx can
be computed by two deterministic polynomial-time Turing machines F (for ‘‘family’’) and E (for ‘‘encoding’’) as follows:

• The machine F , taking as input the length n of x in unary notation, constructs a P system Πn with a distinguished input
membrane (the P systems structureΠn is common for all inputs of length n).

• The machine E, on input x, outputs a multisetwx (an encoding of the specific input x).
• Finally,Πx is simplyΠn withwx added to the multiset placed inside its input membrane.

Notice how the uniform construction is just a restricted case of semi-uniform construction. The relations between the two
kinds of uniformity have not completely been clarified yet; see [12,8] for further details on uniformity conditions, including
even weaker constructions.

Notice also that the above definition of uniformity is possibly weaker than the one commonly used in membrane
computing [13], where the Turing machine F maps each input x to a P system Πs(x), where s: V ⋆ → N is a measure of
the size of the input (in our case, s(x) is always |x|). In particular, complexity classes defined using this restricted uniformity
condition are not always formally known to be closed under polynomial-time reductions. This might complicate proofs of
inclusions among complexity classes, although one can usually find a proof not relying on closure under polynomial-time
reductions, as in [16]. See [8] for further details on uniformity conditions, including constructions usingweaker devices than
polynomial-time Turing machines.

Usually, time complexity for families of recognising P systems is measured as follows.

Definition 4. A uniform or semi-uniform family of P systemsΠ = {Πx : x ∈ V ⋆} is said to decide the language L ⊆ V ⋆ (in
symbols L(Π) = L) in time f :N → N if and only if, for each x ∈ V ⋆,

P. Frisco et al. / Theoretical Computer Science 429 (2012) 74–86 77

1. the systemΠx accepts if x ∈ L, and rejects if x /∈ L;
2. each computation ofΠx halts within f (|x|) computation steps.

However, since we will consider recognising P systems working in the asynchronous mode, the number of computation
steps will depend upon how the systemΠx selects the rules to be applied at each transition step. Hence, we will distinguish
among the best case (lower bound) and the worst case (upper bound) time complexity. The above definition corresponds to
the worst case, since each computation ofΠx must halt within f (|x|) computation steps. For the best case, we give instead
the following definition.

Definition 5 (Best Case Time Complexity). A uniform or semi-uniform family of P systems Π = {Πx : x ∈ V ⋆} is said to
decide the language L ⊆ V ⋆ (in symbols L(Π) = L) in (best case) time f :N → N if and only if, for each x ∈ V ⋆,

1. the systemΠx accepts if x ∈ L, and rejects if x /∈ L;
2. at least one computation ofΠx halts within f (|x|) computation steps.

As usually done in the literature, we denote by PMCAM (resp., PMC∗

AM) the class of languages (equivalently, decision
problems) which can be decided in worst case polynomial time by uniform (resp., semi-uniform) families of P systems with
active membranes. Similarly, we denote by bPMCAM (resp., bPMC∗

AM) the best case analogues of these classes.
Concerning space complexity, for the purposes of this paper we just define the size |C| of a configuration C of a P system

as the sum of the number of objects and the number of membranes contained in C; this definition assumes that every
component of the system requires some fixed amount of physical space, thus approximating (up to a polynomial) the size
of a real cell. The space required by a halting computation C⃗ = (C0, . . . ,Ck) is then given by |C⃗| = max{|C0|, . . . , |Ck|} and
the space required by a P systemΠ is |Π | = max{|C⃗|: C⃗ is a computation ofΠ}. Finally, we say that a family of P systems
Π = {Πx : x ∈ V ⋆} operates in space f :N → N if |Πx| ≤ f (|x|) for all x ∈ V ∗.

In this paper we use semi-uniform families of recognising P systems to solve two variants of the SAT problem [9]: k-SAT
and MAJORITY-SAT.

Let {v1, . . . , vn} be a set of Boolean variables. An assignment is a function a: {v1, . . . , vn} → {false, true} that assigns
one of the Boolean values {false, true} to each variable vi. Clearly, there are 2n possible assignments to {v1, . . . , vn}. We say
that a given assignment a satisfies a Boolean formula if the formula is truewhen assigning the values of a to {v1, . . . , vn} and
evaluating it. A literal is either a variable vi or its negation v̄i. A clause is a disjunction of literals. A k-clause is a disjunction of
exactly k literals. A Boolean formulaψ , built over the Boolean variables {v1, . . . , vn}, is said to be in conjunctive normal form
(CNF) ifψ is a conjunction ofm clauses, withm ≥ 1. Similarly,ψ is said to be in k-CNF if every clause ofψ contains exactly
k literals. In what follows we always assume that no variable appears two or more times in the same clause.

Definition 6. The SAT problem is: given a Boolean formula ψ in CNF, having m clauses over n variables, is there an
assignment to the variables such that ψ is satisfied (that is, is true)?

The k-SAT problem is defined in the same way, except that the Boolean formula ψ is given in k-CNF.

It is well known [9] that both SAT and k-SAT, for every integer k ≥ 3, are NP-complete decision problems.
The complexity classPP ariseswhenone considers the number of satisfying assignments of Boolean formulae. It is defined

as follows.

Definition 7. The complexity class PP consists of all decision problems solvable in polynomial time by nondeterministic
Turing machines having the following acceptance criterion: the machine accepts its input if and only if more than half the
computations are accepting.

It is known that NP ⊆ PP [9]. The following is the standard PP-complete problem [9, p. 256].

Definition 8. TheMAJORITY-SAT problem is: given a Boolean formulaψ in CNF, havingm clauses over n variables, do more
than half the assignments (i.e., more than 2n−1 assignments) satisfy it?

Of course it is also possible to define the MAJORITY-k-SAT problem, by requiring that the Boolean formula ψ given as
input to MAJORITY-SAT is in k-CNF. However, it is not currently known whether also MAJORITY-k-SAT, even for k ≥ 3, is
PP-complete.

Another useful PP-complete problem is the following [15].

Definition 9. The SQRT-3SAT problem is: given a Boolean formulaψ in 3-CNF, havingm clauses over n variables, do at least
√
2n among the 2n possible truth assignments satisfy it?

3. Operational modes in P systems

As stated above P systems can operate in different ways, where with operate we mean the way rules are applied. The
operational mode of a P system is detached from the definition of the system itself. This means that giving a P system, it
can operate in different ways. It is known [5,2] that the operational mode is quite influential in P systems. For instance, a
specific P system can have different computational power depending on its operational mode.

78 P. Frisco et al. / Theoretical Computer Science 429 (2012) 74–86

Here we list and briefly describe some operational modes relevant for the following sections:

asynchronous: in each transition, if possible, at least one rule is applied. It is allowed in any transition and for any rule
in a compartment to be applied more than once (as in maximal parallelism);

minimal parallelism: in each transition and for each membrane, if possible, at least one rule is applied. So, this operational
mode has to have at least one rule applied for a membrane where one or more rules can be applied.
If in a configuration there are different sets of rules that can be applied, then one of them is non-
deterministically chosen.

maximal strategy: in each transition any rule that can be applied is actually applied at most once. If in a configuration
there are different sets of rules that can be applied, then one of them is non-deterministically chosen.
It is important to notice that this operational mode does not aim to maximise the number of applied
rules but it aims to maximise the number of different applied rules;

maximal parallelism: this is the classical (most used) operational mode in P systems. It is similar to maximal strategy, but in
each transition any rule can be applied more than once. So, in this operational mode it is possible to
have transitions with more than one applicable set of rules where some of these sets have the same
rules but applied a different number of times.

It is important to notice that in P systems two equal rules present in different compartments are regarded as two different
rules. This is independent from the name on the membrane defining the compartments. This fact is particularly important
in P systems with active membranes because (by the application of rules of type e) a membrane can be duplicated into
two membranes with the same name. So, when such a system computes, the application of the same rule in different
compartments defined by membranes with the same name is regarded as the application of two different rules.

Definition 10. Let X and Y be two different operational modes and Σ be a formal system. We say that X is more general
than Y (or that Y is more restrictive than X) inΣ if:

whenΣ operates in X mode it can compute all what can be computed byΣ when operating in Y mode;
whenΣ operates in Y mode it cannot compute all what can be computed byΣ when operating in X mode.

It is important to notice that the above definition applies to specific formal systems, not to classes of formal systems. This
is because some specific systems have the same behaviour independently of the operational mode. The simplest example is
a system with only one rule which can be applied only once in the initial configuration, and when this happens the system
halts. Clearly, the behaviour of this system is independent from the operation mode: in any way the only thing that can
happen is the single application of the unique rule. Of course this fact is not supposed to hold for the family that specific
system belongs to.

When a result for a specific formal system is stated, then it should consider themost general operational mode for which
that result is valid. Not doing so could lead to confusion. For instance, let us assume that one defines a P systemΠ operating
under maximal parallelism such that Π generates a family of languages L. If in this specific system Π it can never happen
that in a transition a rule is appliedmore than once, then, as amatter of fact, the systemΠ operates undermaximal strategy.
It is indeed true thatΠ generates Lwhen operating undermaximal parallelism, but it ismore proper to say thatΠ generates
L when operating under maximal strategy.

In this respect we think it should be a good practice to explicitly mention in proofs where the restrictions dictated by
the considered operation mode take place and how the absence of these restrictions (that is, the use of a more general
operational mode) would invalidate the proved statement.

It should be clear that the asynchronous operational mode is the most general of the operational modes listed above.
It should also be clear that systems operating in an asynchronous way have lower and upper bounds for the time needed
to compute. The upper bound (also called the worst case) is reached when in each transition only one (any) instruction
is applied, while the lower bound (also best case) is reached when in each transition the maximum number of applicable
instructions is applied (that is, the system operates undermaximal parallelism). In the following, whenwe indicate the time
complexity of systems operating in an asynchronous way, we refer to the lower bound. The upper bound, discussed for each
of the following results, can be exponential.

A natural question is:Why one should be interested in studying systems whose time complexity can be exponential? Because
these systems give the challenge of studying something operating in rather minimalistic terms which make them time-
independent, whose results can be valid also for other operational modes. With ‘time-independent’ we mean that systems
operating in asynchronous mode do not rely on something that could define the passed time. Several proofs in Membrane
Computing use symbols to trace the number of transitions the system went through. This is achieved, for instance, with a
symbol whose subscript is incremented at each computation step. If something specific does not happenwhen the subscript
reaches a certain value, then, for instance, the systemnever stops. This allows these systems to detect if something happened
at a certain transition. Similarly, it has been proved [5] that the lack of a global clock definitely decreases the computational
power of some abstract computational devices, P systems included. This provides the challenge in studying asynchronous
systems.

P. Frisco et al. / Theoretical Computer Science 429 (2012) 74–86 79

4. Solving NP-complete and PP-complete problems

In this sectionwe showhowsome families of P systemswith activemembranes can solveNP-complete andPP-complete
problems. As indicated in the following, some of the results in this section improve some results present in the literature of
Membrane Computing. The improvement is due to the use of asynchronous operational mode, a mode of operation which
is more general than the one customarily used to prove similar results.

Using the terminology common to Membrane Computing [14], the results present in this section are about P systems
constructed in a semi-uniformway (a P system is built for every instance of the problem) and working in a weakly confluent
manner (the systems are non-deterministic in their computations, all systems halt and give the same answer independently
from the non-deterministic computation).

Theorem 1. The k-SAT problem, for any k ≥ 3, can be solved by asynchronous recognising P systems with active membranes,
without polarities, and using only rules of the kind (a), (b), (c), (e) and (g). The P system requires exponential space and, in the
best case, linear time.

Proof. Letψ = C1 ∧· · ·∧Cm be an instance of k-SAT, for a fixed k ≥ 3, where each clause Cj = lj1 ∨· · ·∨ lkj is built using the
variables {v1, . . . , vn}. Moreover, let true and false be two functions, both from {v1, . . . , vn} to P{C1, . . . , Cm} (the power
set of {C1, . . . , Cm}), such that:

true(v) = {Cj | ∃r, 1 ≤ r ≤ kj such that ljr = v}

false(v) = {Cj | ∃r, 1 ≤ r ≤ kj such that ljr = v̄}

for v ∈ {v1, . . . , vn}. So, these functions return the set of clauses verified and falsified when the Boolean value true is
assigned to v, respectively.

We define a recognising P system with active membranesΠ = (V , µ, L1, L2, R) as follows:

V = {vi, Fi, Ti | 1 ≤ i ≤ n} ∪ {cj, dj | 1 ≤ j ≤ m} ∪ {dm+1, yes};
µ = ({0, 1, 2}, {(0, 1), (1, 2)});
L1 = ∅;

L2 = {v1}.

The bracket representation of the initial underlying compartment structure ofΠ is

[0 [1 [2 v1]2]1]0.

The set R consists of the following rules:

1 : [2 vi]2 → [2 Fi]2 [2 Ti]2 for 1 ≤ i ≤ n,
2 : [2 Fi → false(vi)vi+1]2 for 1 ≤ i ≤ n − 1,
3 : [2 Ti → true(vi)vi+1]2 for 1 ≤ i ≤ n − 1,
4 : [2 Fn → false(vn)d1]2

5 : [2 Tn → true(vn)d1]2

6 : [2 ci]2 → [2 [i+2]i+2]2 for 1 ≤ i ≤ m,
7 : di[i+2]i+2 → [i+2 di]i+2 for 1 ≤ i ≤ m,
8 : [i+2 di]i+2 → [i+2]i+2 di+1 for 1 ≤ i ≤ m,
9 : [2 dm+1]2 → [2]2 yes

10 : [1 yes]1 → [1]1 yes.

We have numbered the (groups of) rules in order to facilitate the explanation.
In compartment 2 the truth assignments for the n variables are generated by the rules 1, . . . , 5. Compartment 2 alternates

between its division and the introduction of symbols. During division a value (T for true and F for false) is associated with
variable vi; the introduced symbols are the ones associated (by the functions false and true) with the clause satisfied by vi
and v̄i. After 2n transitions all the 2n truth assignments forψ are generated and present in compartments 2 (called 2-named
compartment, in the following). It is important to notice that the application of rule 1 sees the duplication of elementary
compartments, that is, compartments with no other compartments inside.

Every time a symbol ci, 1 ≤ i ≤ n, is generated, the application of rule 6 creates a compartment with name i + 2. We
remind the reader that, as the system operates in an asynchronous way, the presence of a ci in a compartment does not
imply the immediate application of rule 6. Moreover, as in a 2-named compartment there can be several copies of ci, then
several compartments with name i + 2 can be created.

When rules 4 and 5 are applied in a 2-named compartment, then the introduction of d1 primes the counting of the
compartments created by rule 6 in that 2-named compartment. This counting takes place by the application of rules 7 and
8. It should be clear that the di symbol cannot visit the same (i+2)-named compartment, 1 ≤ i ≤ n, more than once. This is
because once such a compartment has been visited by di (rule 7), then the application of rule 8 increases the subscript of d to

80 P. Frisco et al. / Theoretical Computer Science 429 (2012) 74–86

i+1. It should also be clear that if an (i+2)-named compartment is not present (because, for instance, the truth assignment
associated to that 2-named compartment does not satisfy clause i) or is not yet present in a 2-named compartment (because
that particular rule 6 has not been applied, yet), then di+1 cannot be generated in that 2-named compartment.

If the truth assignment associated to a 2-named compartment satisfies ψ , then, sooner or later, dm+1 will be present in
this 2-named compartment. When this happens, first rule 9 and then rule 10 are applied so that the system lets yes pass to
the environment. If no assignment satisfied ψ , then yeswill never pass to the environment.

Clearly, Π uses exponential space. If Π operates either under maximal strategy, maximal parallelism, or minimal
parallelism, then it requires linear time with respect to mn. In this system maximal parallelism, maximal strategy and
minimal parallelism coincide as in each transition and in each compartment a rule is applied at most once. The upper bound
for time complexity is exponential. This is reached when in each transition just one rule is applied. �

In [15,7] it is proved that recognising P systems with active membranes operating under maximal parallelism with
polarities, using only rules of the kind (a), (b), (c) and (e) can be used to solve in polynomial time the PP-complete problem
SQRT-3SAT. The solution is uniform, and rules of type (e) operate only on elementary membranes.

Since SQRT-3SAT is PP-complete, the same kind of recognising P systems could in principle be used to solve any decision
problem in PP. However, as stated above, when using our restricted definition of uniformity the closure of the class PMCAM

cannot be given for free. For this reason in [16] the same authors considered another problem, named THRESHOLD-3SAT.
Such a problem asks, given an n-variable Boolean formula ψ in 3-CNF and a non-negative integer k < 2n, whether more
than k assignments (out of 2n) satisfy ψ . The problem is proved to be PP-hard (it is still open whether it is PP-complete),
and a uniform family of recognising P systems with active membranes is presented to solve it. The rules used for solving
THRESHOLD-3SAT are the same as in [15], that is, (a), (b), (c) and (e), over elementary membranes. Further, an explicit
reduction from any decision problem inPP to THRESHOLD-3SAT is shown, that allows to safely conclude that thewhole class
PP is included into PMCAM(−n,−d), the subclass of PMCAM obtained by avoiding dissolution and non-elementary division
rules.

In [6] it is proved that P systems using the same rules, but operating underminimal parallelism, can solveMAJORITY-SAT,
which is also PP-complete. The following theorem improves these results, as we define a similar system to solveMAJORITY-
SAT operating asynchronously.

Theorem 2. MAJORITY-SAT can be solved by asynchronous recognising P systems with active membranes with polarities, and
using only rules of the kind (a), (b), (c), and (e). The P system requires exponential space and, in the best case, linear time.

Proof. Let ψ be an instance of MAJORITY-SAT, that is, a Boolean formula in CNF having m clauses built on the variables
{v1, . . . , vn}. Moreover, let true and false be the functions defined as in Theorem 1.

We define a recognising P system with active membranesΠ = (V , µ, L1, . . . , Lm+n+2, R) as follows:

V = {vi, Fi, Ti | 1 ≤ i ≤ n} ∪ {cj, dj | 1 ≤ j ≤ m}∪

{dm+1, e, e1, . . . , en−2, g1, . . . , gn−1, p0, . . . , pn−2, yes};
L2 = {v1};
Lk+i = {pn−2−i}, k = m + 3, 0 ≤ i ≤ n − 2;
Lj = ∅, 1 ≤ j ≤ m + n + 2, j ≠ 2, j ≠ k + i, k = m + 3, 0 ≤ i ≤ n − 2.

The bracket representation of the initial underlying compartment structure ofΠ is

[0 [1 [k pn−2]
0
k . . . [k+n−2 p0]

0
k+n−2 [k+n−1]

0
k+n−1 [2 v1 [3]

0
3 . . . [2+m]

0
2+m]

0
2]

0
1]0.

The set R consists of the following rules:

1 : [2 vi]
0
2 → [2 Fi]

0
2 [2 Ti]

0
2 for 1 ≤ i ≤ n,

2 : [2 Fi → false(vi)vi+1]
0
2 for 1 ≤ i ≤ n − 1,

3 : [2 Ti → true(vi)vi+1]
0
2 for 1 ≤ i ≤ n − 1,

4 : [2 Fn → false(vn)d1]
0
2

5 : [2 Tn → true(vn)d1]
0
2

6 : ci [2+i]
0
2+i → [2+i]

+

2+i for 1 ≤ i ≤ m,
7 : di [2+i]

+

2+i → [2+i di]
+

2+i for 1 ≤ i ≤ m,
8 : [i+2 di]

+

i+2 → [i+2]
−

i+2 di+1 for 1 ≤ i ≤ m,
9 : [2 dm+1]

0
2 → [2]

0
2 dm+1

10 : [k+j pi]
0
k+j → [k+j pi−1]

0
k+j [k+j pi−1]

0
k+j for 0 ≤ j ≤ n − 2, 1 ≤ i ≤ n − 2

11 : [k+j p0]
0
k+j → [k+j]

+

k+j [k+j]
+

k+j for 0 ≤ j ≤ n − 2
12 : dm+1 [k]

+

k → [k e]
−

k

P. Frisco et al. / Theoretical Computer Science 429 (2012) 74–86 81

13 : dm+1 [k]
−

k → [k]
0
k

14 : [k e]
0
k → [k]

0
k g1

15 : gi [k+i]
+

k+i → [k+i ei]
−

k+i for 1 ≤ i ≤ n − 2
16 : gi [k+i]

−

k+i → [k+i]
0
k+i for 1 ≤ i ≤ n − 2

17 : [k+i ei]
0
k+i → [k+i]

0
k+i gi+1 for 1 ≤ i ≤ n − 2

18 : dm+1 [k+n−1]
0
k+n−1 → [k+n−1]

+

k+n−1

19 : gn−1 [k+n−1]
+

k+n−1 → [k+n−1 yes]
−

k+n−1

20 : [k+n−1 yes]
−

k+n−1 → yes

21 : [1 yes]
0
1 → [1]

0
1 yes

where k = m + 3.
We have numbered the (groups of) rules in order to facilitate the explanation.
The first part of this proof is very similar to the proof of Theorem 1. In compartment 2 the truth assignments for the

n variables are generated by the rules 1, . . . , 5. Compartment 2 alternates between its division and the introduction of
symbols. During division a value (T for true and F for false) is associated with variable vi; the introduced symbols are
the ones associated (by the functions false and true) with the clause satisfied by vi and v̄i. After 2n transitions all the 2n

truth assignments for ψ are generated and present in compartments 2 (called 2-named compartment, in the following).
It is important to notice that the application of rule 1 sees the duplication of non-elementary compartments, that is,
compartments with other compartments inside.

Every time a symbol ci, 1 ≤ i ≤ n, is generated, the application of rule 6 lets this symbol enter compartment 2 + i and
makes this compartment change polarity. This means that in each 2-named compartment, rule 6 for a particular i can be
applied at most once. We remind the reader that, as the system operates in an asynchronous way, the presence of a ci in a
compartment does not imply the immediate application of rule 6.

When rules 4 and 5 are applied in a 2-named compartment, the introduction of d1 primes the counting of the
compartments given a positive polarity by rule 6 in that 2-named compartment. This counting takes place by the application
of rules 7 and 8. It should be clear that the di symbol cannot visit the same (i + 2)-named compartment, 1 ≤ i ≤ n, more
than once. This is because once such a compartment has been visited by di (rule 7), then the application of rule 8 let the
polarity of that compartment to change such that rule 7 cannot be applied again for a specific i. It should also be clear that if
an (i + 2)-named compartment cannot be present (because, for instance, the truth assignment associated to that 2-named
compartment does not satisfy clause i) or is not yet present in a 2-named compartment (because that particular rule 6 has
not been applied, yet), then di+1 cannot be generated in that 2-named compartment.

If the truth assignment associated to a 2-named compartment satisfies ψ , then, sooner or later, dm+1 will be present
in this 2-named compartment. When this happens rule 9 is applied, so that the system lets dm+1 pass to compartment 1.
Eventually there will be a dm+1 in compartment 1 for each of the assignments satisfying ψ .

The compartments k + i, k = m + 3, 0 ≤ i ≤ n − 2 present in the current system are used to count the number of
assignments satisfying ψ . If this number is bigger than 2n−1, then yeswill pass to the environment.

We describe how the count of the assignments satisfying ψ takes place in Π with the help of an example. The
generalisation to the computations ofΠ should be straightforward.

Consider, for example, that n = 5, so that there are 25
= 32 assignments. Π let yes pass to the environment only if

at least 16 + z, z ≥ 1, assignments verify ψ . If less than 16 + z assignments verify ψ , then yes will never pass to the
environment. So, the system must count the number of assignments verifying ψ . This counting has to consider that Π
operates in an asynchronous way (so the dm+1 symbols can arrive in compartment 1 at any time) and that the number of
dm+1 may be exponential in the input size. This means that the counting of the dm+1 has to be done in an efficient way: it
cannot be done in a ‘linear’ way, one after the other, because in this case the best time complexity would be exponential.

Let us assume that there are 16 + z, z ≥ 1, assignments which verify ψ . 16 of these assignments are counted in an
efficient way. As n = 5, initially compartment 1 contains: [k p3]

0
k, [k+1 p2]

0
k+1, [k+2 p1]

0
k+2 and [k+3 p0]

0
k+3. Rules 10 and

11 let these compartments duplicate such that at the end of this process:

8 copies of [k]
+

k
4 copies of [k+1]

+

k+1

2 copies of [k+2]
+

k+2

1 copy of [k+3]
+

k+3

are present. These compartments are given a positive polarity during their last division to identify that they have finished
dividing.

As we will see:

8 pairs (that is, 16 copies) of dm+1 can enter the 8 k-named compartments. 8 copies of g1 will be generated by these 8
k-named compartments;

82 P. Frisco et al. / Theoretical Computer Science 429 (2012) 74–86

4 pairs (that is, 8 copies) of g1 can enter the 4 (k + 1)-named compartments. 4 copies of g2 will be generated by these
(k + 1)-named compartments;
2 pairs (that is, 4 copies) of g2 can enter the 2 (k + 2)-named compartments. 2 copies of g3 will be generated by these
(k + 1)-named compartments;
1 pair (that is, 2 copies) of g3 can enter the only (k + 3)-named compartment. 1 copy of g4 will be generated by this
(k + 3)-named compartment.

So, if g4 is present inΠ , then at least half of the assignments verify ψ . It should be clear that the counting of the x = 16
(in this example) copies of dm+1 is efficient: the number of dm+1 is halved, then the result is halved, and so on. As this process
can take place in parallel, then in the best case the counting will require log2 2n−1

= n − 1 steps.
Let us indicate now what rules in R perform what we have just described in the example. As already said, group of rules

10 and 11 create the compartments needed for the counting. Rules 12, 13 and 14 let the first ‘halving’ to take place:

rule 12 allows one dm+1 to pass into a k-named compartment, changing its polarity frompositive to negative.While doing
so dm+1 becomes e;
rule 13 allows a second dm+1 to pass into a negatively charged k-named compartment. Doing so the polarity of the
compartment changes into neutral;
rule 14 allows the e present in a neutral k-named compartment to go outside it as a g1. As the polarity of this compartment
remains negative, no other rule can be applied to it.

Rules 15, 16 and 17 operate in a similar way: they keep ‘halving’ the number of g symbols until, eventually, a copy of
gn−1 appears in compartment 1.

Now the system has to do a very simple thing: check if compartment 1 contains a copy of gn−1 and at least one copy of
dm+1. If this is the case, then a yes passes to the environment. This check is performed by rules 18 and 19. Rule 18 allows a
dm+1 to change the polarity of a neutrally charged (k + n − 1)-named compartment into positive. After this happened, the
application of rule 19 let the gn−1 to pass into this compartment as yes and to change the polarity to negative. When this
happens yes passes to compartment 1 (rule 20) and from there to the environment (rule 21).

It should be clear that the statement holds. �

The system Π defined in the proof of Theorem 2 is such that yes passes to the environment only if the instance of
MAJORITY-SAT is satisfied. OtherwiseΠ halts without letting anything pass to the environment. As stated in Section 2, this
is not the behaviour usually assumed in the literature: recognising P systems should instead send a no to the environment
in rejecting computations. However, the system Π can be used to create a recognising system Π ′ that behaves exactly in
this way. The systemΠ ′ can be logically divided in two sub-systemsΠ ′

1 andΠ ′

2, operating in parallel:

Π ′

1 does exactly whatΠ does;
Π ′

2 checks (in a way similar to Π) if at least 2n−1 assignments verify ψ ′, where ψ ′ is as ψ but such that each clause is
negated. If this is the case, then no passes to the environment.

Indeed, the class PP is closed under complementation, and the above construction can be replicated for all PP problems
thanks to the following theorem.

Theorem 3. Let L ∈ PP. Then L can be solved by asynchronous recognising P systems with active membranes with polarities, and
using only rules of the kind (a), (b), (c) and (e). The P system requires exponential space and, in the best case, linear time.

Proof. Let R be the deterministic Turing machine that computes the polynomial time reduction from L to MAJORITY-SAT.
Moreover, let M the deterministic Turing machine that, given any instance ψ of MAJORITY-SAT, computes in polynomial
time (w.r.t. the size ofψ) the encoding of the recognising P systemΠ

MAJ–SAT
ψ that solves such an instance of MAJORITY-SAT,

as described in Theorem 2.
We can then define a deterministic Turing machine T that, given any instance x of L, first simulates R to produce an

equivalent instanceψ of MAJORITY-SAT, and then simulatesM to produce the recognising P systemΠ
MAJ–SAT
ψ . Let us callΠ L

x

such a P system. By construction, the systemΠ L
x lets pass the symbol yes to the environment if and only if ψ is a positive

instance of MAJORITY-SAT. By reduction, this happens if and only if x is a positive instance of L. Hence T can be seen as a
deterministic Turing machine that, given any instance x of L, produces in polynomial time an encoding of the recognising P
systemΠ L

x that solves x. This concludes the proof. �

Clearly the same construction can be done for all problems in NP, relying on Theorem 1. For the sake of completeness,
we explicit it in the following.

Theorem 4. Let L ∈ NP. Then L can be solved by asynchronous recognising P systems with active membranes without polarities,
and using only rules of the kind (a), (b), (c), (e) and (g). The P system requires exponential space and, in the best case, linear
time.

P. Frisco et al. / Theoretical Computer Science 429 (2012) 74–86 83

Proof. Let R be the deterministic Turing machine that computes the polynomial time reduction from L to k-SAT, for a
fixed value of k ≥ 3. Moreover, let M the deterministic Turing machine that, given any instance ψ of k-SAT, computes
in polynomial time (w.r.t. the size of ψ) the encoding of the recognising P system Π k−SAT

ψ that solves such an instance of
k-SAT, as described in Theorem 1.

We can then define a deterministic Turing machine T that, given any instance x of L, first simulates R to produce an
equivalent instance ψ of k-SAT, and then simulates M to produce the recognising P systemΠ k−SAT

ψ . Let us callΠ L
x such a P

system. By construction, the systemΠ L
x lets pass the symbol yes to the environment if and only if ψ is a positive instance

of k-SAT. By reduction, this happens if and only if x is a positive instance of L. Hence T can be seen as a deterministic Turing
machine that, given any instance x of L, produces in polynomial time an encoding of the recognising P systemΠ L

x that solves
x. This concludes the proof. �

Recalling that by bPMC∗

AM we denote the class of languages (equivalently, decision problems) that can be recognised
(resp., solved) in (best case) polynomial time by semi-uniform families of recognising P systems with active membranes
operating in asynchronous mode, we can summarise the results we have obtained as follows:

PP ⊆ bPMC∗

AM and NP ⊆ bPMC∗

AM.

Since NP ⊆ PP, we can also write NP ⊆ PP ⊆ bPMC∗

AM . Moreover, since the class PP is closed under complementation,
all recognising P systems solving a PP problem can be assumed to let pass the symbol no to the environment in the last
transition of all rejecting computations. Note that we cannot make the same assumption regarding recognising P systems
solving NP problems, since it is not currently known whether the class NP is closed under complementation (indeed, it is
believed that the classes NP and coNP are disjoint).

5. Computational power

In [1], Theorem 3, it is proved that P systems with active membranes, using polarities and rules of type (a), (b) and (c)
and operating under minimal parallelism can simulate register machines. In the following we prove that in these P systems
the presence of polarities can be replaced by rules of type (d) and (g).

As expected (by some results in [5,4]), if the operational mode of the P system in [1, Th.3] is changed into asynchronous,
then the resulting system is equivalent to a partially blind program machine.

Lemma 1. Asynchronous P systems with active membranes without polarities, using only rules of type (a)–(d) and (g) can
simulate partially blind register machines.

Proof. LetM = (S, I, s1, sf) be a partially blind register machine with n registers γi, 1 ≤ i ≤ n, whose initial value is 0. We
describe a P system with active membranesΠ = (V , µ, L1, L#, R) simulatingM where:

V = S ∪ {ci | 1 ≤ i ≤ n} ∪ {di,v | (s, γ−

i , v) ∈ I} ∪ {#};

µ = ({0, 1,#}, {(0, 1), (1,#)});
L1 = {s1};
L# = {#}.

The bracket representation of the initial underlying compartment structure ofΠ is

[0[1 s1]1[# #]#]0.

The rules in R are given in the following.
For each instruction of the kind (s, γ+

i , v) ∈ I the set R contains:

1 : [1 s → ci]1

2 : [1 ci]1 → [1[ci v]ci]1

3 : [ci v]ci → [ci]ci v

while for each rule of the kind (s, γ−

i , v) ∈ I the set R contains:

4 : [1 s → di,v]1

5 : di,v [ci]ci → [ci di,v]ci

6 : [1[ci di,v]ci]1 → [1 v]1.

The set R contains also:
7 : [# #]# → [#]# #
8 : # [#]# → [# #]#

9 : sf [#]# → [# sf]#

10 : [1[# sf]#]1 → [1 sf]1.

84 P. Frisco et al. / Theoretical Computer Science 429 (2012) 74–86

As usual, we have numbered the rules to facilitate the explanation. The addition of 1 to register γi inM is simulated inΠ
by the creation of a compartment ci inside compartment 1. The subtraction of 1 to register γi in M is simulated inΠ by the
dissolution of a ci compartment present in compartment 1. The symbol s1, indicating the simulation ofM being in its initial
state, is initially present in compartment 1. In general, in Π the presence of an element s ∈ S in compartment 1 indicates
the simulation of M being in state s. The system Π simulates M faithfully: Π can halt with a number of ci compartments
equal to val(γi), 1 ≤ i ≤ n, if and only if M halts with its registers having values val(γi), respectively. If Π simulates an
instruction of the kind (s, γ−

i , v) on an empty register, thenΠ never halts.
Rules 7 and 8 letΠ compute forever as they let symbol # to go in and out from compartment #. This can be interrupted

only by the application of rules 9 and 10: sf , the final state ofM can enter compartment # and dissolve it so that rules 7 and
8 can no longer be applied. This can happen only if all instructions have been simulated accordingly.

The simulation of instructions of the kind (s, γ+

i , v) is performed by the sequential application of rules 1, 2 and 3, while
the simulation of instructions of the kind (s, γ−

i , v) is performed by the sequential application of rules 4, 5 and 6. Of course,
because of the operational mode, these rules performing simulations can be interleaved by (or occur in parallel with) rules
7 and 8. This does not affect the overall computation. �

We were not able to prove the reverse of the inclusion stated in Lemma 1, that is that partially blind register machines
can simulate asynchronous P systemswith activemembranes without polarities, using only rules of type (a)–(d) and (g).We
were only able to prove that partially blind register machines can simulate rules of the type (a)–(c), as shown in Lemma 3.
The possibility to simulate rules of types (d) and (g) remains an open problem.

As stated by the following results the relation between partially blind register machines and asynchronous P systems
with active membranes is close to be an equality when these P systems use only rules of type (a)–(c) as well as polarities.

Lemma 2. Asynchronous P systems with active membranes with polarities, using only rules of type (a)–(c) can simulate partially
blind register machines.

Proof. Let M = (S, I, s1, sf) be a partially blind register machine with n registers γi, 1 ≤ i ≤ n, whose initial value is 0. We
describe a P system with active membranesΠ = (V , µ, L1, L#, R) as in the statement, simulatingM , where:

V = S ∪ {ci,v | (s, γ+

i , v) ∈ I} ∪ {di,v | (s, γ−

i , v) ∈ I} ∪ {o,#};

µ = ({0, 1, c1, . . . , cn,#}, {(0, 1), (1, c1), . . . , (1, cn), (1,#)});
L1 = {s1};
Lci = ∅ for 1 ≤ i ≤ n;
L# = {#}.

The bracket representation of the initial underlying compartment structure ofΠ is

[0[1 s1]1[c1]c1 · · · [cn]cn [# #]#]0.

The rules in R are given in the following.
For each instruction of the kind (s, γ+

i , v) ∈ I the set R contains:

1 : [1 s → ci,v]1

2 : ci,v [ci]
0
ci → [ci ov]

0
ci

3 : [ci v]
0
ci → [ci]

0
ci v

while for each rule of the kind (s, γ−

i , v) ∈ I the set R contains:

4 : [1 s → di,v]1
5 : di,v [ci]

0
ci → [ci di,v]

+
ci

6 : [ci o]
+
ci → [ci]

−
ci

7 : [ci di,v]
−
ci → [ci]

0
ci v.

The set R contains also:

8 : [# #]
0
→ [#]

0
#

9 : # [#]
0
→ [# #]

0
#

10 : sf [#]
0
→ [# sf]

+

.

In order to facilitate the explanation, rules have been numbered. The addition of 1 to register γi inM is simulated inΠ by the
addition of a copy of symbol o in compartment ci. The subtraction of 1 to register γi in M is simulated inΠ by the removal
of a copy of symbol o in compartment ci. The symbol s1, indicating the simulation of M being in its initial state, is initially
present in compartment 1. In general, inΠ the presence of an element s ∈ S in compartment 1 indicates the simulation of
M being in state s. The systemΠ simulates M faithfully:Π can halt with a number of o symbols in compartments ci equal

P. Frisco et al. / Theoretical Computer Science 429 (2012) 74–86 85

to val(γi), 1 ≤ i ≤ n, if and only ifM halts with its registers having values val(γi), respectively. IfΠ simulates an instruction
of the kind (s, γ−

i , v) on an empty register, thenΠ never halts.
Rules 8 and 9 letΠ compute forever as they let symbol # to go in and out from compartment # when this compartment

has neutral charge. This can be interrupted only by the application of rule 10: sf , the final state ofM , can enter compartment
and change its polarity to positive so that rules 8 and 9 can no longer be applied. This can happen only if all instructions
have been simulated accordingly.

The simulation of instructions of the kind (s, γ+

i , v) is performed by the sequential application of rules 1, 2 and 3, while
the simulation of instructions of the kind (s, γ−

i , v) is performed by the sequential application of rules 4, 5, 6 and 7. Of course,
because of the operational mode, these rules performing simulations can be interleaved by (or occur in parallel with) rules
8 and 9. This does not effect the overall computation. �

Lemma 3. Partially blind register machines can simulate rules of type (a)–(c) in asynchronous P systems with active membranes
with polarities.

Proof. LetΠ = (V , µ, L1, . . . , Ln, R) a P system as in the statement. The systemΠ uses a total of |V | symbols and, because
of the available rules, there will be always n compartments in it. The partially blind program machineM = (S, I, s1, sf) has
n|V | registers with names γi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ |V |. In general, the content of register γi,j reflects how many instances of
symbol j are present in compartment i. The rules ofΠ are simulated byM in a non-deterministic way: any of the rules in R
can be chosen to be simulated. If the simulation is completed, then M can go on trying to simulate another rule, otherwise
M halts in a non-final state.

The finite state control of M keeps track of the compartment hierarchy and the polarity of each compartment (clearly,
this information is linear in the size of the input). For instance, we can assume that this information is stored as a subscript
in each state of S. This information is used when rules of type (b) and (c) are simulated (because it is needed to knowwhere
the symbols aremoved from/to) and it is changedwhen the application of a rule let the polarity of a compartment to change.

The simulation of rules of type (a) ([i v → w]
p
i , w = w1 . . . w|w|) is performed by first decreasing by one the content

of γi,v and then sequentially increasing by one the content of γi,wk , for all 1 ≤ k ≤ |w|. The simulation of the other kinds of
rules is performed in a similar way.

It should be clear that the simulation is faithful. �

Now one would expect to have a theorem showing that the computational power of asynchronous P systems with active
membranes with polarities using only rules of type (a)–(c) is equivalent to the one of partially blind register machines.
Unfortunately we do not have such a general statement. The problem we were not able to overcome is the simulation of
the termination of a P system by such a register machine. If the termination of the P system is due to, for instance, a specific
symbol entering/leaving a compartment, then the equivalence is straightforward. This kind of termination in asynchronous
P system has been used in, for instance, [3]. If instead it is assumed that such a P system terminates when there is no
applicable rule, then the equivalence cannot be there as a partially blind programmachine cannot test if something cannot be
done.

6. Final remarks

Semi-uniform families of recognising P systems with active membranes have been proved to be able to solve all NP and
all PP problems in (best case) polynomial time, by using either polarities or creation and dissolution rules, when working
in the asynchronous operational mode. In short, this can be written as NP ⊆ PP ⊆ bPMC∗

AM . The worst case execution
time, as well as the amount of space used to perform the computations, remain exponential. An outstanding open problem
is whether the class bPMC∗

AM coincides with the standard complexity class PSPACE.
In the previous sectionwe have also shown that themodel of P systems studied in this paper are able to simulate partially

blind registermachines, either using polarities or trading themwith creation anddissolution rules. The possibility to perform
the converse simulation has also been discussed, highlighting the difficulties that did not allow us to prove the equivalence
between the two computational models.

As we said in Section 3, in [5,4,2] some studies relating different operational modes are present. Unfortunately, this study
is far from being complete. It would be very interesting to study how different operationalmodes relate to each other, if they
form a hierarchy and if this hierarchy is valid for all formal systems or not. We continue to investigate also on this further.

Another natural question thatmay be posed is: is asynchronous operationalmode themost general? The answer is negative,
because one can think to even more general operational modes. Asynchronous mode assumes that different kinds of rules
need the same time to be completed and that the application of each rule is atomic. One could, for instance, assume that
rules of type e take more time to be completed than rules of other types and that the implementation of this kind of rules is
sequential: first one compartment is created and then the other one. Results obtained with asynchronous operational mode
would not necessarily be valid with these relaxed assumptions.

86 P. Frisco et al. / Theoretical Computer Science 429 (2012) 74–86

References

[1] G. Ciobanu, L. Pan, G. Păun, M. J. Pérez-Jiménez, P systems with minimal parallelism, Theoretical Computer Science 378 (1) (2007) 117–130.
[2] R. Freund, S. Verlan, A formal framework for static (tissue) P systems, in: G. Eleftherakis, P. Kefalas, G. Păun, G. Rozenberg, A. Salomaa (Eds.), Membrane

Computing. 8th International Workshop, WMC 2007, Thessaloniki, Greece, June 2007, Revised Selected and Invited Papers, in: LNCS, vol. 4860,
Springer-Verlag, 2007, pp. 271–284.

[3] P. Frisco, The conformon-P system: a molecular and cell biology-inspired computability model, Theoretical Computer Science 312 (2–3) (2004)
295–319.

[4] P. Frisco, A hierarchy of computational processes. Technical report, Heriot-Watt University, 2008. HW-MACS-TR-0059 http://www.macs.hw.ac.uk:
8080/∼techreps/index.html.

[5] P. Frisco, Computing with Cells. Advances in Membrane Computing, Oxford University Press, 2009.
[6] P. Frisco, G. Govan, P systems with active membranes operating under minimal parallelism. In: 12th Conference on Membrane Computing, 2011 (in

press).
[7] G. Mauri, A. Leporati, A.E. Porreca, C. Zandron, Recent complexity-theoretic results on P systems with active membranes, Journal of Logic and

Computation (2011) (in press).
[8] N. Murphy, D. Woods, The computational power of membrane systems under tight uniformity conditions, Natural Computing 10 (1) (2011) 613–632.
[9] C.H. Papadimitriou, Computational Complexity, Addison-Wesley Pub. Co, 1994.

[10] G. Păun, Computing with membranes, Journal of Computer and System Sciences 1 (61) (2000) 108–143.
[11] G. Păun, Membrane Computing. An Introduction, Springer-Verlag, 2002.
[12] G. Păun, G. Rozenberg, A. Salomaa (Eds.), The Oxford Handbook of Membrane Computing, Oxford University Press, 2010.
[13] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Complexity classes inmodels of cellular computingwithmembranes, Natural Computing

2 (3) (2003) 265–285.
[14] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Computationally hard problems addressed through P systems, in: G. Ciobanu, Gh. Păun,

M.J. Pérez-Jiménez (Eds.), Applications of Membrane Computing, Springer-Verlag, 2006, pp. 313–346.
[15] A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, P systems with elementary active membranes: beyond NP and coNP, in: Proceedings of the 11th

International Conference on Membrane Computing, CMC 10, in: LNCS, vol. 6501, Springer-Verlag, 2010, pp. 338–347.
[16] A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, Elementary active membranes have the power of counting, International Journal of Natural Computing

Research 2 (3) (2011) 35–48. doi:10.4018/jncr.2011070104.
[17] J. Van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Elsevier and MIT Press, 1990.
[18] C. Zandron, C. Ferretti, G Mauri, Solving NP-complete problems using P systems with active membranes, in: Proceedings of the Second International

Conference on Unconventional Models of Computation, Springer-Verlag, 2001, pp. 289–301.

http://www.macs.hw.ac.uk:8080/~techreps/index.html
http://www.macs.hw.ac.uk:8080/~techreps/index.html
http://www.macs.hw.ac.uk:8080/~techreps/index.html
http://www.macs.hw.ac.uk:8080/~techreps/index.html
http://www.macs.hw.ac.uk:8080/~techreps/index.html
http://www.macs.hw.ac.uk:8080/~techreps/index.html
http://www.macs.hw.ac.uk:8080/~techreps/index.html
http://www.macs.hw.ac.uk:8080/~techreps/index.html
http://www.macs.hw.ac.uk:8080/~techreps/index.html
http://www.macs.hw.ac.uk:8080/~techreps/index.html
http://dx.doi.org/doi:10.4018/jncr.2011070104

	Asynchronous P systems with active membranes
	Introduction
	Basic definitions
	Operational modes in P systems
	Solving NP-complete and PP-complete problems
	Computational power
	Final remarks
	References

