Nonzero solutions for a class of set-valued variational inequalities in reflexive Banach spaces

Fan Jianghua*, Wei Wenhong

Department of Mathematics, Guangxi Normal University, Guilin Guangxi 541004, PR China

Received 17 April 2007; received in revised form 20 November 2007; accepted 4 December 2007

Abstract

In this paper, we study the existence of nonzero solutions for a class of set-valued variational inequalities involving set-contractive mappings by using the fixed point index approach in reflexive Banach spaces. Some new existence theorems of nonzero solutions for this class of set-valued variational inequalities are established.

Keywords: Set-valued variational inequality; Nonzero solutions; Fixed point index; Set-contractive mapping; Upper hemicontinuous

1. Introduction

Throughout this paper, let X be a real Banach space with dual X^*, let (\cdot, \cdot) be the duality pairing of X^* and X, and let K be a nonempty, closed and convex subset of X. We consider the following set-valued variational inequality, which consists in finding $u \in K$ and $u^* \in A(u)$ such that

$$
\langle u^*, v - u \rangle + j(v) - j(u) \geq \langle g(u), v - u \rangle + \langle f, v - u \rangle, \quad \forall v \in K,
$$

where $A : K \to 2^{X^*}$ is a set-valued mapping with nonempty values, $g : K \to X^*$ is a nonlinear mapping, $j : K \to R \cup \{+\infty\}$ is a functional and $f \in X^*$.

Variational inequality theory is an important part of nonlinear analysis, and has been applied intensively to mechanics, cybernetics, differential equation, quantitative economics, optimization theory and nonlinear programming (see, for example [1,2] and the references therein).

The existence of nonzero solutions for variational inequalities is an important topic of variational inequality theory. [3–7] discussed variational inequality (1.1) when A is a single-valued monotone mapping and g is strongly continuous; [8] considered variational inequality (1.1) when K is a closed convex cone, A is single-valued, g is set-contractive and $f = f = 0$; [9] considered variational inequality (1.1) when A is linear, g is set-contractive and upper semicontinuous, and $f = f = 0$.

* This work was supported by the Guangxi Science Foundation and Innovation Project of Guangxi Graduate Education (Grant No. 2007106020703S05).

* Corresponding author.

E-mail address: jhfan@gxnu.edu.cn (J. Fan).
It is of theoretical and practical significance to study the existence of nonzero solutions for set-valued variational inequalities. In this paper, under suitable assumptions, we discuss the existence of nonzero solutions for set-valued variational inequalities by using the fixed point index approach in reflexive Banach spaces. The results presented in this paper generalize the corresponding results in [8].

2. Preliminaries

In this section, we introduce some basic notations and preliminary results.

Let X, X^* and K be as in Section 1. For each $r > 0$, we denote by $K' = \{ x \in K, \| x \| < r \}$. The normalized duality mapping $J : X \to 2^{X^*}$ is defined by

$$J(x) := \{ f \in X^* : \langle x, f \rangle = \| x \|^2, \| f \| = \| x \| \}, \quad \forall x \in X.$$

Definition 2.1. Let $A : K \to 2^{X^*}$ be a set-valued mapping with nonempty values. A is said to be

(i) upper semicontinuous if, for all $x \in K$ and for each open subset V in X^* with $A(x) \subset V$, there exists an open subset $W \subset X$ with $x \in W$ such that $A(W \cap K) \subset V$.

(ii) upper hemicontinuous if, its restriction on line segments of K is upper semicontinuous, where X^* is equipped with the w^*-topology.

(iii) γ-strongly monotone if, for each pair of points $u, v \in K$ and for all $u^* \in A(u), v^* \in A(v)$, there exists a scalar $\gamma > 0$ such that

$$\langle u^* - v^*, u - v \rangle \geq \gamma \| u - v \|^2.$$

The recession cone of K is defined by

$$rc(K) := \{ y : x + \lambda y \in K, \forall \lambda > 0, \forall x \in K \}.$$

It is evident that $rc(K)$ is a closed convex cone, and for any $u \in K$, $u_0 \in rc(K)$, it holds that $u + u_0 \in K$.

Let $j : K \to R \cup \{ +\infty \}$ be a proper lower semicontinuous and convex functional. The recession function j_∞ of j is defined by

$$j_\infty(y) := \lim_{\lambda \to +\infty} \frac{j(x + \lambda y) - j(x)}{\lambda},$$

which follows that

$$j_\infty(y) = \lim_{t \to +\infty} \frac{j(ty)}{t}.$$

In view of [10], if $j(0) = 0$ and $j(K) \subset R^+ \cup \{ +\infty \}$, we have that j_∞ is a lower semicontinuous convex functional with $j_\infty(0) = 0$ and with the property that $j(u + v) \leq j(u) + j_\infty(v)$ for all $u, v \in K$.

Let X be a Banach space, $E \subset X$. The Kuratowski measure of noncompactness of E is defined by

$$\alpha(E) := \inf \left\{ \epsilon > 0 : E \subset \bigcup_{i=1}^{n} E_i \text{ and diam}(E_i) \leq \epsilon \text{ for } i = 1, 2, \ldots, n \right\},$$

where $\text{diam}(E) = \sup \{ \| x - y \| : x, y \in E \}$. It is well-known that $\alpha(E) = 0$ if and only if E is relatively compact.

Let X, Y be two real Banach spaces and $E \subset X$. A continuous mapping $T : E \to Y$ is said to be k-set-contractive on E, if there exists a constant $k \geq 0$ such that $\alpha(T(S)) \leq k \alpha(S)$ for any bounded subset S of E, where α is the Kuratowski measure of noncompactness. If $k < 1$, T is called strictly set-contractive. A continuous mapping $T : E \to Y$ is said to be condensing, if for any subset E of X with $\alpha(E) \neq 0$, it holds that $\alpha(T(E)) < \alpha(E)$.

A mapping $T : E \to Y$ is said to be Lipschitz continuous with constant β, if for any $x, y \in E$, there exists a constant $\beta > 0$ such that

$$\| T(x) - T(y) \| \leq \beta \| x - y \|.$$
Let U be an open and bounded subset of X with $U_K = U \cap K \neq \emptyset$. The closure and boundary of U relative to K are denoted by $\overline{U_K}$ and $\partial(U_K)$, respectively. Suppose that $T : \overline{U_K} \to K$ is strictly set-contractive and $x \neq T(x)$ for $x \in \partial(U_K)$, in view of [11], the fixed point index $i_K(T, U)$ is well-defined.

Lemma 2.1 ([11]). Let K be a nonempty closed and convex subset of a real Banach space X, U be an open and bounded subset of X. Suppose that $T : \overline{U_K} \to K$ is strictly set-contractive and $x \neq T(x)$ for $x \in \partial(U_K)$, then the fixed point index $i_K(T, U)$ has the following properties:

(i) For any mapping \hat{x}_0 with constant value x_0, if $x_0 \in U_K$, then $i_K(\hat{x}_0, U) = 1$;

(ii) $i_K(T, U_1 \cup U_2) = i_K(T, U_1) + i_K(T, U_2)$, whenever U_1 and U_2 are disjoint open subsets of X such that $x \neq T(x)$, for $x \in \partial(U_1) \cup \partial(U_2)$;

(iii) Let $H : [0, 1] \times \overline{U_K} \to K$ be continuous and bounded, $H(t, \cdot)$ be strictly set-contractive, for each $t \in [0, 1]$. Suppose that $H(t, x)$ is uniformly continuous at t for all $x \in \overline{U_K}$ and for all $(t, x) \in [0, 1] \times \partial(U_K)$, $x \neq H(t, x)$, then $i_K(H(1, \cdot), U) = i_K(H(0, \cdot), U)$;

(iv) If $i_K(T, U) \neq 0$, then T has a fixed point in U_K.

3. Main results

The following lemma is a special case of Theorem 8 in [12].

Lemma 3.1. Let X be a real reflexive Banach space, K be a nonempty closed convex subset of X and $j : X \to R \cup \{+\infty\}$ be a proper lower semicontinuous and convex functional. Let $B : K \to 2^{X^*}$ be monotone and upper hemicontinuous with nonempty compact convex values. Suppose that there exists $v_0 \in K$ satisfying

$$\lim_{\|v\| \to +\infty} \inf_{v \in BV} \langle v^*, v - v_0 \rangle + j(v) - j(v_0) > 0,$$

then there exist $u \in K$ and $u^* \in B(u)$ such that

$$\langle u^*, v - u \rangle + j(v) - j(u) \geq 0, \quad \forall v \in K.$$

Let X be a real reflexive Banach space, K be a nonempty closed convex subset of X and $j : K \to R \cup \{+\infty\}$ be a proper lower semicontinuous and convex functional with $j(K) \subset [0, +\infty]$. Let $A : K \to 2^{X^*}$ be γ-strongly monotone and upper hemicontinuous with nonempty compact convex values. For any $q \in X^*$, we consider the following variational inequality, which is finding $u \in K$ and $u^* \in A(u)$ such that

$$\langle u^*, v - u \rangle + j(v) - j(u) \geq \langle q, v - u \rangle, \quad \forall v \in K.$$ (3.1)

Let $U(q)$ be the set of solutions in K for the set-valued variational inequality (3.1). From Lemma 3.1, it holds that $U(q) \neq \emptyset$. We introduce a mapping $K_A : X^* \to 2^K$ defined by

$$K_A(q) = U(q), \quad \forall q \in X^*.$$ (3.2)

Lemma 3.2. Let X be a real reflexive Banach space, K be a nonempty closed convex subset of X and $j : K \to R \cup \{+\infty\}$ be a proper lower semicontinuous and convex functional with $j(K) \subset [0, +\infty]$. Suppose that $A : K \to 2^{X^*}$ is γ-strongly monotone and upper hemicontinuous with nonempty compact convex values, then the mapping K_A defined by (3.2) is single-valued, continuous and bounded. Moreover, K_A is $\frac{1}{\gamma}$-set-contractive.

Proof. For any $q_1, q_2 \in X^*$, take any $u_1 \in K_A(q_1), u_2 \in K_A(q_2)$ and any $u^*_1 \in Au_1, u^*_2 \in Au_2$, such that

$$\langle u^*_1, v - u_1 \rangle + j(v) - j(u_1) \geq \langle q_1, v - u_1 \rangle, \quad \forall v \in K, i = 1, 2.$$ (3.3)

Letting $v = u_{3-i}$, $i = 1, 2$, it follows from (3.3) that

$$\langle u^*_1 - u^*_2, u_1 - u_2 \rangle \leq \langle q_1 - q_2, u_1 - u_2 \rangle \leq \|q_1 - q_2\|\|u_1 - u_2\|.$$ (3.4)

From the γ-strong monotonicity of A, it holds that

$$\|u_1 - u_2\|^2 \leq \|q_1 - q_2\|\|u_1 - u_2\||.$$ (3.5)

Letting $q_1 = q_2$ in (3.5), we obtain $u_1 = u_2$, which implies that K_A is single-valued.
Moreover, it follows from (3.5) that
\[\|K_A(q_1) - K_A(q_2)\| = \|u_1 - u_2\| \leq \frac{1}{\gamma} \|q_1 - q_2\|. \tag{3.6} \]
which yields that \(K_A\) is Lipschitz continuous, bounded and \(\frac{1}{\gamma}\)-set-contractive. This completes the proof. \(\Box\)

Theorem 3.1. Let \(X\) be a real reflexive Banach space and \(f \in X^*\), \(K\) be a nonempty closed convex subset of \(X\) with \(0 \in K\). Suppose that \(j : X \to R\) is a proper lower semicontinuous and convex functional with \(j(0) = 0\) and \(j(K) \subset [0, +\infty]\), \(A : K \to 2^{X^*}\) is \(\gamma\)-strongly monotone and upper hemicontinuous with nonempty compact convex values with \(0 \in A(0)\), and \(g : K \to X^*\) is a bounded and \(\beta\)-set-contractive mapping, where \(\beta < \gamma\). If the following assumptions hold

(a) for any sequence \(\{u_n\} \subset K\) with \(\|u_n\| \to +\infty\), we have
\[\liminf_{\|u_n\| \to +\infty} \frac{\langle g(u_n), u_n \rangle}{\|u_n\|^2} < \gamma; \]
(b) there exist \(u_0 \in r\cdot K \setminus \{0\}\) and a neighborhood \(V(0)\) of zero point such that for all \(u \in K \cap V(0)\) and all \(u^* \in A(u)\), it holds that
\[\langle u^*, u_0 \rangle + j_{\infty}(u_0) \leq \langle g(u) + f, u_0 \rangle. \]

Then the set-valued variational inequality (1.1) has a nonzero solution.

Proof. By Lemma 3.2, the mapping \(K_A\) defined by (3.2) is continuous, bounded and \(\frac{1}{\gamma}\)-set-contractive. Define a new mapping \(K_{Ag} : K \to K\) as follows:
\[K_{Ag}(u) = K_A(g(u) + f), \quad \forall u \in K. \]
It is evident that \(K_{Ag}\) is bounded and \(\beta\)-set-contractive. Since \(\beta < \gamma\), \(K_{Ag}\) is strictly set-contractive.

Next we shall verify that \(i_K(K_{Ag}, K^R) = 1\) for large enough \(R\) and \(i_K(K_{Ag}, K^r) = 0\) for small enough \(r\).

First, we define a mapping \(H_1 : [0, 1] \times K \to K\) as follows:
\[H_1(t, u) = K_A(t(g(u) + f)). \]
Clearly, \(H_1\) is continuous and bounded in \([0, 1] \times K\) and for each \(t \in [0, 1]\), \(H_1(t, \cdot)\) is strictly set-contractive.

By (3.6), we have
\[\|H_1(t_1, u) - H_1(t_2, u)\| = \|K_A(t_1(g(u) + f)) - K_A(t_2(g(u) + f))\| \]
\[\leq \frac{1}{\gamma} \|t_1(g(u) + f) - t_2(g(u) + f)\| = \frac{1}{\gamma} \|g(u) + f\| |t_1 - t_2|, \tag{3.7} \]
which means that \(H_1(t, u)\) is uniformly continuous at \(t\) for all \(u \in K\).

Now we prove that there exists large enough \(R > 0\) such that \(u \neq H_1(t, u)\) for all \(t \in [0, 1], u \in \partial(K^R)\). Otherwise, there exist two sequences \(\{t_n\}\) and \(\{u_n\}\) with \(t_n \in [0, 1], u_n \in \partial(K^R)\) and \(\|u_n\| \to +\infty\) such that
\[u_n = H_1(t_n, u_n) = K_A(t_n(g(u_n) + f)). \]
Then there exists \(u_n^* \in A(u_n)\) such that
\[\langle u_n^*, v - u_n \rangle + j(v) - j(u_n) \geq t_n \langle g(u_n) + f, v - u_n \rangle, \quad \forall v \in K. \tag{3.8} \]
Letting \(v = 0, (3.8)\) yields that
\[\langle u_n^*, u_n \rangle + j(u_n) \leq t_n \langle g(u_n) + f, u_n \rangle. \tag{3.9} \]
From the \(\gamma\)-strong monotonicity of \(A\) and \(0 \in A(0)\), we have
\[\langle u_n^*, u_n \rangle \geq \gamma \|u_n\|^2. \tag{3.10} \]
Let X be a real reflexive Banach space and f and g jointly yield
\begin{equation}
(3.10)
\end{equation}
We only need to show that the conditions in (1.1) are satisfied. Theorem 3.1
\begin{equation}
(1.1)
\end{equation}
Combining (3.11) and (3.12), we obtain that
\begin{equation}
\gamma \leq \liminf_{\|u_n\| \to +\infty} \frac{t_n \langle g(u_n) + f, u_n \rangle}{\|u_n\|^2} < \gamma,
\end{equation}
which is a contradiction.

On the other hand, since $j(0) = 0$ and $j(v) \geq 0$ for any $v \in K$, we have
\begin{equation}
(0, v - 0) + j(v) - j(0) \geq (0, v - 0), \quad \forall v \in K,
\end{equation}
\begin{equation}
(0, v - 0) + j(v) - j(0) \geq (0, v - 0), \quad \forall v \in K,
\end{equation}
Together with $0 \in A(0)$, which implies that $0 = K_A(0)$. Thus, we have
\begin{equation}
i_K(K_{Ag}, K^R) = i_K(H_1(1, \cdot), K^R) = i_K(H_1(0, \cdot), K^R) = i_K(\hat{0}, K^R) = 1.
\end{equation}
Let $r > 0$ be small enough such that $\overline{K^r} \subset K \cap V(0)$. From condition (b), there exists $u_0 \in rcK \setminus \{0\}$, for all $u \in \overline{K^r}$ and all $u^* \in A(u)$, it holds that
\begin{equation}
\langle u^*, u_0 \rangle + j_\infty(u_0) < \langle g(u) + f, u_0 \rangle.
\end{equation}
We now claim that $i_K(K_{Ag}, K') = 0$. If $i_K(K_{Ag}, K') \neq 0$, then, by Lemma 2.1(iv), the mapping K_{Ag} has a fixed point $u \in K'$, i.e., $u = K_A(g(u) + f)$. From the definition of the mapping K_A, there exists $u^* \in A(u)$ such that
\begin{equation}
\langle u^*, v - u \rangle + j(v) - j(u) \geq \langle g(u) + f, v - u \rangle, \quad \forall v \in K.
\end{equation}
Since $u_0 \in rc(K)$ and $u \in K$, we have $u_0 + u \in K$. Taking $v = u_0 + u$ in (3.17), it holds that
\begin{equation}
\langle u^*, u_0 \rangle + j(u_0 + u) - j(u) \geq \langle g(u) + f, u_0 \rangle.
\end{equation}
Since $j(u_0 + u) \leq j_\infty(u_0) + j(u)$, (3.18) implies that
\begin{equation}
\langle u^*, u_0 \rangle + j_\infty(u_0) \geq \langle g(u) + f, u_0 \rangle,
\end{equation}
which contradicts (3.16). Thus we have proved $i_K(K_{Ag}, K') = 0$.

From Lemma 2.1(ii), we obtain $i_K(K_{Ag}, K^R \setminus \overline{K^r}) = 1$. Thus the mapping K_{Ag} has a fixed point in $K^R \setminus \overline{K^r}$, which is a nonzero solution of the set-valued variational inequality (1.1). This completes the proof.

Remark 3.1. If A is single-valued and bounded, $j = f = 0$ and K is a closed convex cone, Theorem 3.1 reduces to Theorem 2.2 in [8].

Corollary 3.1. Let X be a real reflexive Banach space and $f \in X^*$, K be a nonempty closed convex subset of X with $0 \in K$. Suppose that $j : X \to R$ is a proper lower semicontinuous and convex functional with $j(0) = 0$ and $j(K) \subset [0, +\infty)$. Suppose that $A : K \to 2^{X^*}$ is γ-strongly monotone and upper semicontinuous with nonempty compact convex values with $0 \in A(0)$, $g : K \to X^*$ is Lipschitz continuous with constant β, where $\beta < \gamma$. If there exists $u_0 \in rcK \setminus \{0\}$ such that
\begin{equation}
\sup_{v_0^* \in A(0)} \langle v_0^*, u_0 \rangle < \langle g(0) + f, u_0 \rangle - j_\infty(u_0).
\end{equation}
Then the set-valued variational inequality (1.1) has a nonzero solution.

Proof. We only need to show that the conditions in Theorem 3.1 are satisfied.

First, since g is Lipschitz continuous with constant β, g is β-set-contractive. Moreover, we have
\begin{equation}
\|g(u) - g(0)\| \leq \beta\|u\|.
\end{equation}
which follows that
\[\langle g(u), u \rangle \leq \|g(u) - g(0)\|\|u\| + \|g(0)\|\|u\| \leq \beta \|u\|^2 + \|g(0)\|\|u\|. \]

This implies that
\[\liminf_{\|u\| \to +\infty} \frac{\langle g(u), u \rangle}{\|u\|^2} \leq \beta < \gamma. \]

Secondly, from (3.19), we have
\[\sup_{v^*_0 \in A(0)} \langle v^*_0 - g(0), u_0 \rangle = \langle f, u_0 \rangle - j_\infty(u_0), \]

which yields that
\[A(0) - g(0) \subset \{v^* \in X^* : \langle v^*, u_0 \rangle < \langle f, u_0 \rangle - j_\infty(u_0)\}. \] (3.20)

Since A is upper semicontinuous and g is continuous, A - g is upper semicontinuous. From (3.20), there exists a neighborhood V(0) of zero point, for all u \in K \cap V(0), it holds that
\[A(u) - g(u) \subset \{v^* \in X^* : \langle v^*, u_0 \rangle < \langle f, u_0 \rangle - j_\infty(u_0)\}, \]

which means that, for all u \in K \cap V(0) and all u^* \in Au, we have
\[\langle u^*, u_0 \rangle + j_\infty(u_0) < \langle g(u) + f, u_0 \rangle. \]

This completes the proof. \(\square\)

Remark 3.2. If A(0) = \{0\}, (3.19) can be rewritten as \(\langle g(0) + f, u_0 \rangle - j_\infty(u_0) > 0\). If, in addition, \(j_\infty(u_0) \leq 0\), (3.19) becomes \(\langle g(0) + f, u_0 \rangle > 0\).

The following example shows us that functions satisfying conditions in Corollary 3.1 and Theorem 3.1 exist.

Example 3.1. Let \(X = R\) be the set of real numbers with usual norm, \(K = [0, +\infty), u_0 = 1\) and \(A : K \to 2^R\) be a set-valued mapping defined by
\[A(u) = \begin{cases} \left\{ \frac{2}{3}u \right\}, & u \in [0, 1), \\
\left\{ \frac{2}{3}, 1 \right\}, & u = 1,
\{u\}, & u \in (1, +\infty). \end{cases} \]

It is obvious that A is \(\frac{2}{3}\)-strongly monotone and upper semicontinuous with nonempty compact convex values with
\(A(0) = \{0\}\). Define \(j : K \to R\) as \(j(u) := \|u\| + \frac{1}{\sqrt{|u| + 2}} - \frac{1}{\sqrt{2}}\), then \(j_\infty(u) = \|u\|\). Define \(g : K \to R\) as \(g(u) := \frac{1}{3}u - \frac{1}{2}\) and choose \(f = 3\). It is easy to see that the functions g, A, j and f satisfy all conditions in Corollary 3.1 and Theorem 3.1.

Theorem 3.2. Let \(X\) be a real reflexive Banach space and \(f \in X^*, K\) be a nonempty closed convex subset of \(X\) with \(0 \in K\). Suppose that \(j : X \to R\) is a proper lower semicontinuous and convex functional with \(j(0) = 0\), \(j(K) \subset [0, +\infty)\), \(A : K \to 2^{X^*}\) is \(\gamma\)-strongly monotone and upper hemicontinuous with nonempty compact convex values, A is bounded with \(0 \in A(0)\), \(g : K \to X^*\) is bounded and \(\beta\)-set-contractive, where \(\beta < \gamma\). If the following assumptions hold
(a) for any sequence \(\{u_n\} \subset K\) with \(\|u_n\| \to 0\), we have
\[\liminf_{\|u_n\| \to 0} \frac{\langle g(u_n) + f, u_n \rangle}{\|u_n\|^2} < \gamma; \]

(b) there exist \(u_0 \in rK \setminus \{0\}\) and a constant \(\rho > 0\) such that for all \(u \in K\) with \(\|u\| > \rho\) and for all \(u^* \in A(u)\), we have
\[\langle u^*, u_0 \rangle + j_\infty(u_0) < \langle g(u) + f, u_0 \rangle. \]
Then the set-valued variational inequality (1.1) has a nonzero solution.

Proof. By Lemma 3.2, the mapping \(K_A \) defined by (3.2) is continuous, bounded and \(\frac{1}{p} \)-set-contractive. Define \(K_{Ag} : K \rightarrow K \) as follows:

\[
K_{Ag}(u) = K_A(g(u) + f), \quad \forall u \in K.
\]

It is easy to see that \(K_{Ag} \) is \(\frac{1}{p} \)-set-contractive. Since \(\beta < \gamma \), \(K_{Ag} \) is strictly set-contractive.

Now we verify that \(i_K(K_{Ag}, K^R) = 0 \) for large enough \(R \).

Since \(A \) and \(g \) are bounded, there exist constants \(M > 0 \) and \(L > 0 \) such that

\[
\sup_{u \in K^R, \|u\| \leq L} \|u^*\| \leq M \quad \text{and} \quad \sup_{u \in K^R} \|g(u)\| \leq L.
\]

which follows that

\[
\sup_{u \in K^R, v \in A(u)} \langle u^*, u \rangle \leq M\|u_0\| \quad \text{and} \quad \sup_{u \in K^R} \langle g(u), u \rangle \leq L\|u_0\|.
\] (3.21)

Since \(u_0 \neq 0 \), there exists some \(h \in X^* \) such that \(\langle h, u_0 \rangle > 0 \). Letting \(N \) be large enough, we have

\[
M\|u_0\| + L\|u_0\| + j_{\infty}(u_0) < \langle f, u_0 \rangle + N \langle h, u_0 \rangle.
\] (3.22)

Define \(H_2 : [0, 1] \times K^R \rightarrow K \) as follows:

\[
H_2(t, u) = K_A(g(u) + f + tN h), \quad \forall (t, u) \in [0, 1] \times K^R.
\]

Then \(H_2(t, u) \) is continuous and bounded in \([0, 1] \times K^R\), and \(H(t, \cdot) \) is strictly set-contractive for each \(t \in [0, 1] \). It is easy to verify that \(H_2(t, u) \) is uniformly continuous at \(t \) for all \(u \in K^R \).

We claim that there exists large enough \(R \) such that \(u \neq H_2(t, u) \), for all \(t \in [0, 1] \) and all \(u \in \partial \delta(K^R) \). Otherwise, there exist sequences \(\{t_n\} \) with \(t_n \in [0, 1] \) and \(\{u_n\} \) with \(\|u_n\| \rightarrow +\infty \) such that \(u_n = H_2(t_n, u_n) = K_A(g(u_n) + f + t_n N h) \). Hence, it holds that

\[
\langle u_n^*, v - u_n \rangle + j(v) - j(u_n) \geq \langle g(u_n) + f + t_n N h, v - u_n \rangle, \quad \forall v \in K.
\] (3.23)

Since \(u_0 \in r c(K) \) and \(u_n \in K \), we have \(u_0 + u_n \in K \). Letting \(v = u_0 + u_n \), (3.23) yields that

\[
\langle u_n^*, u_0 \rangle + j(u_0 + u_n) - j(u_n) \geq \langle g(u_n), u_0 \rangle + \langle f + t_n N h, u_n \rangle.
\] (3.24)

Since \(j(u_0 + u_n) \leq j_{\infty}(u_0) + j(u_n) \), it follows from (3.24) that

\[
\langle u_n^*, u_0 \rangle + j_{\infty}(u_0) \geq \langle g(u_n), u_0 \rangle + \langle f + t_n N h, u_0 \rangle \geq \langle g(u_n) + f, u_0 \rangle,
\] (3.25)

which contradicts condition (b).

We now claim that \(i_K(H_2(1, \cdot), K^R) = 0 \).

If \(i_K(H_2(1, \cdot), K^R) \neq 0 \), then from Lemma 2.1(iv), the mapping \(H_2(1, \cdot) \) has a fixed point \(u \in K^R \), i.e., \(u = H_2(1, u) = K_A(g(u) + f + N h) \). Then there exists \(u^* \in A(u) \) such that

\[
\langle u^*, v - u \rangle + j(v) - j(u) \geq \langle g(u) + f + N h, v - u \rangle, \quad \forall v \in K.
\] (3.26)

Taking \(v = u_0 + u \), (3.26) yields that

\[
\langle u^*, u_0 \rangle + j_{\infty}(u_0) \geq \langle g(u), u_0 \rangle + \langle f + N h, u_0 \rangle > \langle g(u) + f, u_0 \rangle.
\] (3.27)

We consider the following two cases.

Case 1. \(\|u\| > \rho \), (3.27) contradicts condition (b).

Case 2. \(\|u\| \leq \rho \), (3.27) implies that

\[
\langle f + N h, u_0 \rangle \leq \langle u^* - g(u), u_0 \rangle + j_{\infty}(u_0) \leq M\|u_0\| + L\|u_0\| + j_{\infty}(u_0),
\]

which contradicts (3.22).

Hence, we obtain \(i_K(H_2(1, \cdot), K^R) = 0 \). Furthermore, \(i_K(K_{Ag}, K^R) = i_K(H_2(0, \cdot), K^R) = i_K(H_2(1, \cdot), K^R) = 0 \).
As in the first part of the proof of Theorem 3.1, we can obtain \(i_K(K_{Ag}, K') = 1 \).

It follows from Lemma 2.1(ii) that \(i_K(K_{Ag}, K^R \setminus K') = -1 \). Thus the mapping \(K_{Ag} \) has a fixed point in \(K^R \setminus K' \), which is a nonzero solution of the set-valued variational inequality (1.1). This completes the proof. \(\square \)

Remark 3.3. If \(A \) is single-valued, \(j = f = 0 \) and \(K \) is a closed convex cone, Theorem 3.2 reduces to Theorem 2.1 in [8].

Corollary 3.2. Let \(X \) be a real reflexive Banach space and \(f \in X^* \), \(K \) be a nonempty closed convex subset of \(X \) with \(0 \in K \). Let \(j : X \to R \) be a proper lower semicontinuous and convex functional with \(j(0) = 0 \), \(j(K) \subset [0, +\infty) \), \(A : K \to 2^{X^*} \) be \(\gamma \)-strongly monotone and upper hemicontinuous with nonempty compact convex values, and let \(A \) be bounded with \(0 \in A(0) \). Suppose that \(u_0 \in r cK \setminus \{0\} \) and \(g : K \to X^* \) is continuous with the form \(g = g_1 + g_2 \), where \(g_1(u) = \frac{1}{\|u_0\|}h(u)v_0 \), \(h : K \to R \), \(v_0 \in Ju_0 \), \(J \) is the normalized duality mapping of \(X \), \(g_2 : X \to X^* \) is \(\beta \)-set-contractive. Assume that

(a) there exists a constant \(r > 0 \) such that \(\langle g(0) + f, u \rangle \leq 0 \) for all \(u \in K' \), and the restriction of \(g \) on \(K' \) is Lipschitz continuous with constant \(\beta \), where \(\beta < \gamma \).

(b) there exist constants \(\rho, \alpha, \beta_1, \beta_2, \beta_3, C, C_1, C_2 \) and \(C_3 \), such that for all \(u \in K \) with \(\|u\| > \rho \), the following results hold

\[
\frac{h(u)}{\|u\|^\alpha} \geq C, \quad \frac{\|g_2(u)\|}{\|u\|^{\beta_1}} \leq C_1, \quad \frac{j(u)}{\|u\|^{\beta_2}} \leq C_2 \quad \text{and} \quad \sup_{u^* \in A(u)} \frac{\|u^*\|}{\|u\|^{\beta_3}} \leq C_3,
\]

where \(\alpha > \max\{\beta_1, \beta_2, \beta_3\} \), \(\rho, \alpha, C > 0 \) and \(\beta_2 \leq 1 \).

Then the set-valued variational inequality (1.1) has a nonzero solution.

Proof. We only need to verify that the conditions in Theorem 3.2 are satisfied.

It is easy to see that \(g_1 \) is compact, then \(g_1 \) is \(0 \)-set-contractive, thus \(g \) is \(\beta \)-set-contractive. It is obvious that

\[
\langle g(u) + f, u \rangle = \langle g(u) - g(0), u \rangle + \langle g(0) + f, u \rangle.
\]

From condition (a), we obtain that

\[
\langle g(u) - g(0), u \rangle \leq \beta \|u\|^2 \quad \text{and} \quad \langle g(0) + f, u \rangle \leq 0, \quad \forall u \in K'.
\]

(3.28) and (3.29) jointly yield that

\[
\langle g(u) + f, u \rangle \leq \beta \|u\|^2, \quad \forall u \in K'.
\]

For any sequence \(\{u_n\} \subset K \) with \(\|u_n\| \to 0 \), we have

\[
\liminf_{\|u_n\| \to 0} \frac{\|g(u_n) + f, u_n\|}{\|u_n\|^2} \leq \beta < \gamma.
\]

Since \(g_1(u) = \frac{1}{\|u_0\|}h(u)v_0 \) and \(v_0 \in J(u_0) \), we have

\[
\langle g_1(u), u_0 \rangle = h(u)v_0.
\]

From condition (b), for any \(u \in K \) with \(\|u\| > \rho \), we have \(j(u) \leq C_2 \|u\|^{\beta_2} \). For \(t > 0 \) big enough with \(\|tu_0\| > \rho \), it holds that \(j(tu_0) \leq C_2 \|tu_0\|^{\beta_2} \), which yields that \(j(tu_0) \leq C_2 t \|u_0\|^{\beta_2} \). It follows from \(\beta_2 \leq 1 \) that \(j_{\infty}(u_0) < \infty \).

Moreover, we obtain

\[
\liminf_{\|u\| \to +\infty} \frac{\|g_1(u), u_0\|}{\|u\|^\alpha} \geq C, \quad \limsup_{\|u\| \to +\infty} \frac{\|g_2(u) + f, u_0\|}{\|u\|^\alpha} = 0 \quad \text{and} \quad \limsup_{\|u\| \to +\infty} \sup_{u^* \in A(u)} \frac{\langle u^*, u_0 \rangle}{\|u\|^\alpha} = 0.
\]

Thus, the following results hold

\[
\liminf_{\|u\| \to +\infty} \frac{\|g(u) + f, u_0\|}{\|u\|^\alpha} \geq \liminf_{\|u\| \to +\infty} \frac{\|g_1(u), u_0\|}{\|u\|^\alpha} - \limsup_{\|u\| \to +\infty} \frac{\|g_2(u) + f, u_0\|}{\|u\|^\alpha} \geq C.
\]
and
\[
\limsup_{\|u\| \to +\infty} \sup_{u^* \in A(u)} \frac{\langle u^*, u_0 \rangle + j_\infty(u_0)}{\|u\|^\alpha} = 0.
\]

Therefore, there exists a constant \(\rho_1 \), for all \(u \in K \) with \(\|u\| > \rho_1 \) and for all \(u^* \in A(u) \), it holds that
\[
\langle u^*, u_0 \rangle + j_\infty(u_0) < \langle g(u) + f, u_0 \rangle.
\]

This completes the proof. \(\square \)

Remark 3.4. If \(g(0) + f = 0 \) in condition (a) of Corollary 3.2, then, for any \(r > 0 \), all \(u \in K' \), we have \(\langle g(0) + f, u_0 \rangle = 0 \).

The following example shows us that functions satisfying conditions in Corollary 3.2 and Theorem 3.2 exist.

Example 3.2. Let \(X \) be a Hilbert space, \(K \) be a nonempty closed convex subset of \(X \) with \(0 \in K \) and \(u_0 \in rcK \setminus \{0\} \). Define \(g : K \to X^* \) as \(g(u) := \frac{\|u\|^2}{\|u_0\|^2} \), define \(j : K \to R \) as \(j(u) := \|u\| \) and define \(A : K \to X^* \) as \(A(u) := u \), choose \(f = 0 \). It is easy to see that the functions \(g, A, j \) and \(f \) satisfy all conditions in Corollary 3.2 and Theorem 3.2.

Acknowledgments

The authors sincerely thank the referees for their helpful suggestions on the earlier version of this paper.

References

