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ABSTRACT

The Wiener process with constant drift is modified by a time-dependent retaining barrier that in-
creases at a constant rate and by an absorbing barrier at zero. Explicit expressions in terms of
series expansions are derived for the Laplace transform and the probability density function of

the time of absorption.

1. INTRODUCTION

Let X? =x +Wt + ut, where {Wt} is the standard

Wiener process and i a constant drift. Consider a re-
taining barrier which is at b, at time t > 0, and denote

by {X,} the modified process. Thus

0 0 +
X, =X, - max {(Xs-bs) ,0<s<t}. (1)
We shall consider the case of a linear barrier,
bt = at +b, where 2> 0 and b 2 x are constants. Let

T =inf {tX, = 0} denote the time of absorption at
zero,

L(x,b;\) = E[¢M],A> 0, (2)

its Laplace transform, and £(t) its probability density
function. Note that in the case £ > 0, T has a defective
distribution.

The purpose of this note is to compute L and f. The
results for the limiting case of a constant barrier (a=0)
are well known, see Example 5.6., page 233, in [1].

Its discrete analogue has been treated by Weesakul
[5].

In an actuarial context [2,3], X, can be interpreted as

the surplus of an insurance company at time t, T as
the time when ““ruin” occurs, and b, defines the pay-

ment of “dividends”. If u > 0, bt =at+bwitha>0

is the most simple dividend barrier that does not lead
to automatic ruin of the company.

2. THE LAPLACE TRANSFORM OF THE TIME OF
ABSORPTION

The function L(x, b; A); 0 < x < b <, can be charac-
terized as the unique bounded solution of the partial
differential equation

2
1970 4 0L 4, 0L 1 =9 3)
2 axz ox b
that satisfies the boundary conditions
Ll =9 (4)
0x |
and
L(0,b;\) = 1. (5)
In the following we shall construct this solution ex-
plicitly.

We shall expand L as a series whose first term is

L(x,%;\) = lgEmL(x, b; ).

L(x, °°; A) is the bounded solution of the differential
equation %L ”+uL’ - AL = 0 subject to the boun-

dary condition L(0, ;A) = 1. Thus

L(x, 0 \) = "H TU)x, 6)
where
u=@2+201/2, (7)
The subsequent terms will satisfy the equation

2
10% 4,0k 4,0k j3p=p 8)
2 axz aX ab

with the boundary condition k(0,b) = 0. The special
solutions of the boundary value problem are of the
form

X I,X
kixp)=eP (el -e2), )
where, for given s, r and 1, are solutions of the
equation

%rz +pr+as-A=0. (10)
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Thus, we are looking for a solution of the form

Ry k)

_el'z ],
(11)
with s(K) < 0 for all k. We shall determine s(k), rsk)

and r&k) recursively such that

) 4100 = S(k*1) +{) k> 1, (12)

oo k
L(x,b;?\)=e'("“+u)x+k2_$_ . Cy es( )b[erl

where s(1) +r(11) = - g4 - u. Then (4) is satisfied if we
start with C; = B ndser

A

k
c 5 c (13)
k+1 r(k+1) k:

1

We rewrite (10) in the form

%r2+(p—a)r+a(s+r)—)\=0, (14)

which is useful when the value of s +r is given, such
as in (12). Using this, we see that

V= _p+utoa (15)
and thus

s =_2u-2a (16)
) =g -u-2a. (17)

From (10), (14) and Vieta’s rule we find that
a(s(k) + r(zk)) -A
)

(k+1)
v

k
PSP WP ) (18)
(k) 1
r
2
Similarly,
k) _ astktl) _a
2 (k+1)
1

_ a[s(k) +r(2k) - r(1k+1)] -A
- (k+1)
1

=_2a +r(2k) (19)

Hence,

= _ptut2ak (20)

= p-u-2ak (21)

From this and (12) we get

stk t1) = oK) o) _ o {kF) = (k) _ o _ 202k +1),
(22)

and thus

k) = _ 2 uk -2 ak?2 (23)

From (13) we obtain

1 k-1 B tu -
k=[.t+u i r(z)r(z )=(_1)k—1 ( 2a )k
R ) (J‘iz?+1)k

(24)
with the notation (r), = r(r +1) ... (r +k - 1). Finally,

(20), (21), (23) and (24) are substitued in (11) to
obtain L(x, b; ).

Remarks

(1) Setting A = 0 in formula (11) we obtain the
probability for absorption at zero (the probability of
“ruin” in actuarial terminology). The resulting series
in the nontrivial case ¢t > 0 has been obtained in [3].
(2) In the limiting case a = 0, the series in (11) is a
geometric series that can be simplified. Of course, the

resulting expression for L can be obtained directly
from (3), (4), (5) asit is done in [1].

3. THE P.D.F. OF THE TIME OF ABSORPTION

Let £ denote the Laplace transform, and it in

inverse, We want to find f(t)=£'1 L(x, b; A). For
this purpose we write the series that was obtained for
L in the following form :

L(x,b;A) =eHX {e'“x+l§_1[¢k(x, b,u) - ¢} (-x,b,u)]},

(25)
where u = u(}\) is defined in formula (7) and
¢k(x’ b,u) — (—l)k-l e—2 ak(kb —x) e‘(z kb “x)u
)
2k (26)
)
2a k

The last term can be expanded by partial fractions as
follows :

@ty
2a 'k
(- E +u + 1)
2a k

B_1_;
k-1 . & )
=143 (k1 (27)
j=0 jk-j-1)! —p+u 44 +j
2a

Hence, by the linearity of L

f(r) = e **{g(x, 1,0;¢)

+°E° &, (x, b; t) - Py (—x, b; )]}, 28
k_=1[ k(X bst) =Py (x, bs t)]} (28)

where
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Tu

g, prait) = £ [;;qu] r>0,p>0,g30, (29)

and¢k=£‘1¢kis

@y (x,b;t) = (-1)k-1 2 2k(kb-x) (o141, 0;1)

1 L (B-1-))

+Z (-f 2k okhox, B4y, L
i=o! >Jj!(k—l-j)!g( © g TR
(30)

The remaining problem is to compute g(r, p, q; t).
First it is easily verified that

Ll e™N=6(t-1 (31)
and, for q > 0, that

B e—r>‘ 0. fort<r
L7 E=l=1. (32)
pHaA 1 e-p(t—r)/q fort>r
q

How do these relationships have to be modified if we
replace A by u = u(A) on the left ? The answer is given
by the following lemma.

Lemma
If g(t) = £~ [h (A)], it follows that

-3/2 2 oo 2
£'1 [h (u)]=—t—-{-— e~ Ht/2 fo se=S/2t g(s) ds,

Vor (33)

where u = u() is defined in formula (7).

Proof

The proof follows from the relation
32 2

£ i) = NG Jy se” S T4 g(s) s,

- see for example formula (1.27.), page 210, in [4] -
and the more trivial relation

£ a1 =2 e /B 8E) forp>0.
)

From formula (31) and the lemma we obtain

-3/2 2, 2
g(r’l,o;t)z_t_zTe‘# t/2 -t /2t (34)

From (32) and (33) we get

-3/2 2, 2 ’

a1t -petf2 oo —s%/2t - p/q (s-1)
,P.qgit) = - ——= e ds.

Bl ait) q\/2ﬂe b (35) s

The integral can be simplified to
2 2 I‘+Bt
te T 12 _P /27 32 FP/at(p/a) 2 _q ),

1 " (36)

where ® () = 1 - ®(.), and ® is the standard normal
distribution. Thus

= 1 -
g(r!psq,t) = e r /2t—# t/2

2mt
_P rplat(p/q)® -1 ]t/2<'5(_7q;_) (37)
2 At
q

In summary, formula (28), together with formulas
(30), (34) and (37), gives the p.d.f. of the time of

absorption at zero.
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