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Abstract

Let Pn(x) = xm
+ pm−1(n)xm−1

+ · · · + p1(n)x + pm(n) be a parametrized family of polynomials
of a given degree with complex coefficients pk(n) depending on a parameter n ∈ Z≥0. We use Rouché’s
theorem to obtain approximations to the complex roots of Pn(x). As an example, we obtain approximations
to the complex roots of the quintic polynomials Pn(x) = x5

+ nx4
− (2n + 1)x3

+ (n + 2)x2
− 2x + 1

studied by A. M. Schöpp.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Usually, real roots of parametrized families of polynomials with real coefficients are easy to
locate by looking at sign changes. Here, we explain how to locate complex zeros of such families.
By Rouché’s theorem, if f and g are entire and | f (z) − g(z)| < |g(z)| for |z − a| = r , then f
and g have the same number of zeros in the open disc with center at a and radius r > 0 if they
are counted according to their multiplicities (see Rudin (1987)). Let

P(x) = xm
+ pm−1xm−1

+ · · · + p1x + p0 =

m∏
k=1

(x − ρ(k))

and

Q(x) = xm
+ qm−1xm−1

+ · · · + q1x + q0 =

m∏
k=1

(x − θ (k))
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be two polynomials of the same degree m ≥ 1 with complex coefficients and, to simplify, assume
that the θ (k) are pairwise distinct and that q0 6= 0 (i.e., that none of the θ (k) is equal to zero). If
|z − θ (1)

| = r |θ (1)
| with

r <

min
2≤k≤m

|θ (1)
− θ (k)

|

2|θ (1)||
, (1)

then Q(z) = (z − θ (1))
∏m

k=2(z − θ (1)
+ θ (1)

− θ (k)) yields

|Q(z)| ≥ r |θ (1)
|

(
min

2≤k≤m
|θ (1)

− θ (k)
| − r |θ (1)

|

)m−1

and

|Q(z)| > 2m−1r |θ (1)
|

m∏
k=2

|θ (1)
− θ (k)

|,

and also we have

|P(z) − Q(z)| ≤ ( max
0≤k≤m−1

|pk − qk |)

m−1∑
k=0

|θ (1)
|
k(1 + r)k .

By Rouché’s theorem, if

m22m−1
( max
0≤k≤m−1

|pk − qk |)(max(1, |θ (1)
|)m−1

|θ (1)|

m∏
k=2

|θ (1) − θ (k)|

≤ r ≤ 1, (2)

then one of the roots of P(x), say ρ(1), satisfies

|ρ(1)
− θ (1)

| < r |θ (1)
|.

2. Parametrized families of polynomials

In particular, let Pn(x) = xm
+ pm−1(n)xm−1

+ · · · + p1(n)x + p0(n) (with n a sufficiently
large positive integer) be an explicit parametrized family of complex monic polynomials of a
given degree m ≥ 1.
1. As in the case that Pn(x) = x5

+ nx4
− (2n + 1)x3

+ (n + 2)x2
− 2x + 1 developed in

the next section, suppose that using any algorithm or software for computing complex roots
of polynomials we can find an explicit parametrized family of monic polynomials Qn(x) =

xm
+ qm−1(n)xm−1

+ · · · + q1(n)x + q0(n) of degree m and known pairwise distinct complex
roots θ

(k)
n , 1 ≤ k ≤ m, such that

max
0≤k≤m−1

|pk(n) − qk(n)| ≤ C1n−α

for some α > 0 and some C1 > 0 (i.e., the coefficients of Qn(x) become closer to those of Pn(x)

as n → ∞).
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2. Suppose that for n large enough we have

min
2≤k≤m

|θ (1)
n − θ (k)

n | ≥ C2nβ ,

m∏
k=2

|θ (1)
n − θ (k)

n | ≥ C3nγ

and

C4nδ
≤ |θ (1)

n | ≤ C5nδ

for some β, γ and δ, and C2 > 0, C3 > 0, C4 > 0 and C5 ≥ 1 (recall that we assume that the
θ

(k)
n ’s are known beforehand).

3. Finally, suppose that the Qn(x)’s are chosen so that α is large enough to satisfy

α > −β − γ + (m − 1) max(δ, 0) and α > −γ − δ + (m − 1) max(δ, 0). (3)

(Notice that β, γ and δ do not depend much on how close to the ρ
(k)
n ’s are the θ

(k)
n ’s, whereas

α can be constructed as large as desired by finding the θ
(k)
n ’s close enough to the ρ

(k)
n ’s. See the

example in the next section.)
Then, we take

r = C6n−α−γ−δ+(m−1) max(δ,0)

(with C6 = m22m−1C1C (m−1) max(δ,0)
5 /C3C4), which will satisfy (1) and (2) for n large enough.

We deduce approximations to one of the complex roots of Pn(x), say of ρ
(1)
n , for they satisfy

|ρ(1)
n − θ (1)

n | ≤ C6n−α−γ−δ+(m−1) max(δ,0)
|θ (1)

n |

and

ρ(1)
n = θ (1)

n + O(n−α−γ+(m−1) max(δ,0)). (4)

The point is that no matter how we guessed approximations θ
(k)
n to the complex roots of

a parametrized family of monic polynomials Pn(x) of a given degree, provided that these
approximations are indeed close enough to the complex roots ρ

(k)
n of these polynomials, then

we can readily deduce proved approximations to these complex roots ρ
(k)
n . We just have to use

any software (e.g., Maple) to determine α.

3. An example

As in Schöpp (2006, Proof of Lemma 4.4), consider the polynomials

Pn(x) = x5
+ nx4

− (2n + 1)x3
+ (n + 2)x2

− 2x + 1,

where n > 0 is a positive integer. These Pn(x) are Q-irreducible and have one real root ρn = ρ
(1)
n

and four complex roots ρ
(2)
n , ρ

(3)
n = ρ

(2)
n , ρ

(4)
n and ρ

(5)
n = ρ

(4)
n . The core of Schöpp’s paper is a

long proof of his Lemma 4.4, in which he gives approximations to these ρ
(k)
n ’s, to deduce, in his

Theorem 4.1, a system of fundamental units for the quintic orders Z[ρn]. Here, on the basis of
the method outlined in our introduction, we will readily obtain better results than his. To begin
with, using any software for computing approximations to these complex roots for various values
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of n (of the form n = 102k with k ≥ 1), e.g. see Cohen (1993, Section 3.6.3) or Ralston (1965,
Section 8.10), or using Newton’s method, we suspect that for n large, good approximations to
these complex roots are

ρ(1)
n ≈ θ (1)

n := −n − 2 +
2
n

(recall also that real roots are easy to locate by looking at sign changes, as in Schöpp (2006,
Proof of Lemma 4.4)),

ρ(2)
n ≈ θ (2)

n :=
i

√
n

(you may also observe that Pn(x) must have complex roots of small absolute value, and these
roots should be close to the ones of (n + 2)x2

− 2x + 1) and

ρ(4)
n ≈ θ (4)

n := 1 −
1
n

+
i

√
n

(you may also notice that the sum of the five complex roots ρ
(k)
n is equal to −n and their

product to −1 to guess this third approximation from the two previous ones). Thanks to these
approximations, we have the following table:

(m = 4) β γ δ Condition on α Approximation
(see (3)) (see (4))

θ
(1)
n 1 4 1 α > −1 ρ

(1)
n = θ

(1)
n + O(n−α)

θ
(2)
n −1/2 1/2 −1/2 α > 0 ρ

(2)
n = θ

(2)
n + O(n−α−1/2)

θ
(4)
n −1/2 1/2 0 α > 0 ρ

(4)
n = θ

(4)
n + O(n−α−1/2)

Using these approximations, we have

Qn(x) =

(
x + n + 2 −

2
n

)(
x −

i
√

n

)(
x +

i
√

n

)
×

(
x − 1 +

1
n

−
i

√
n

)(
x − 1 +

1
n

+
i

√
n

)
(5)

and n4(Pn(x) − Qn(x)) = −(8n3
− 3n2)x3

+ (3n3
− 4n2

+ 2n)x2
+ (n3

− 7n2
+ 3n)x

−(n3
− 3n2

+ 4n − 2), i.e., the coefficients of Pn(x)− Qn(x) are O( 1
n ). Hence, here α = 1, and

we obtain that

ρ(1)
n = n − 2 + O

(
1
n

)
,

ρ(2)
n =

i
√

n
+ O

(
1

n3/2

)
and

ρ(4)
n = 1 −

1
n

+
i

√
n

+ O

(
1

n3/2

)
,

which implies Points (iii)–(vi) of Schöpp (2006, Lemma 4.4) for n effectively large enough. Now,
construct the polynomial Qn(x) by using the following suspected better approximations (which
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can also be deduced from the previous ones by applying Newton’s method):

ρ(1)
n ≈ θ (1)

n := −n − 2 +
2
n

−
8

n2 ,

ρ(2)
n ≈ θ (2)

n :=
1

2n2 +

(
1

√
n

−
1

2n
√

n

)
i

and

ρ(4)
n ≈ θ (4)

n := 1 −
1
n

+
7

2n2 +

(
1

√
n

−
5

2n
√

n

)
i.

Then, the coefficients of the complicated polynomial Pn(x)−Qn(x) are O( 1
n2 ) (e.g., use Maple).

Hence, now α = 2 and we obtain the following result which implies (Schöpp, 2006, Lemma 4.4)
for n effectively large enough:

Theorem 1. For n −→ ∞, the five complex roots ρ
(1)
n , ρ

(2)
n , ρ

(3)
n = ρ

(2)
n , ρ

(4)
n and ρ

(5)
n = ρ

(4)
n

of Pn(x) = x5
+ nx4

− (2n + 1)x3
+ (n + 2)x2

− 2x + 1 satisfy

ρ(1)
n = −n − 2 +

2
n

+ O

(
1

n2

)
,

ρ(2)
n =

1

2n2 +

(
1

√
n

−
1

2n
√

n

)
i + O

(
1

n5/2

)
and

ρ(4)
n = 1 −

1
n

+
7

2n2 +

(
1

√
n

−
5

2n
√

n

)
i + O

(
1

n5/2

)
,

where the implied constants in these errors terms are effective and explicit.

4. Explicit results

To show that our method easily leads to explicit results, let us, for example, give a proof based
on our ideas of Point (iii) of Schöpp (2006, Lemma 4.4). We use the polynomial Qn(x) given in
(5).
If |z| =

1
2
√

n
and n ≥ 2, we have

|Qn(z)| ≥

(
n + 2 −

1

2
√

n
−

2
n

)((
1 −

1
n

−
1

2
√

n

)2

+
1
n

)/
4n

and

|Pn(z) − Qn(z)| ≤

8n3
−3n2

8n3/2 +
3n3

−4n2
+2n

4n +
n3

−7n2
+3n

2n1/2 +
(
n3

− 3n2
+ 4n − 2

)
n4 .

Hence, |Pn(z) − Qn(z)| < |Qn(z)| for |z| =
1

2
√

n
and n ≥ 2. Since Qn(z) has no complex root

inside the open disc |z| < 1
2
√

n
, neither does Pn(x).

If |z| =
2

√
n

and n ≥ 9, we have

|Qn(z)| ≥

(
n + 2 −

2
√

n
−

2
n

)((
1 −

1
n

−
2

√
n

)2

+
1
n

)/
n



S.R. Louboutin / Journal of Symbolic Computation 43 (2008) 304–309 309

and

|Pn(z) − Qn(z)| ≤
8 8n3

−3n2

n3/2 + 4 3n3
−4n2

+2n
n + 2 n3

−7n2
+3n

n1/2 + (n3
− 3n2

+ 4n − 2)

n4 .

Hence, |Pn(z) − Qn(z)| < |Qn(z)| for |z| =
2

√
n

and n ≥ 14. Since Qn(z) has two conjugate

complex roots inside the open disc |z| < 2
√

n
, so does Pn(x).

Hence, we have proved that

1

2
√

n
≤ |ρ(2)

n | <
2

√
n

for n ≥ 12.
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