Available online at www.sciencedirect.com

SClENCE@D'RECT® Applled .

Mathematics
Letters
ELSEVIER Applied Mathematics Letterss (2005) 471474

www.elsever.com/locate/aml

Pricing perpetual options using Mellin transforms

Radha Panini, Ram P. Srivastav
Department of Applied Mathematics and Satistics, SUNY at Sony Brook, Sony Brook, NY 11794, USA

Received 12 February 2004; accepted 10 March 2004

Abstract

We have derived the expression for the free boundary and price of an American perpetual put as the limit of a
finite-lived option.
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1. Introduction

The pricing of American options has been the subject of extensive research in the last three decades.
There is no known closed form solution and many numerical and analytic approximations have been
proposed. However, in the special case of a perpetual option, Samug]soerived a closd-form
expression for the price of the American perpetual warrant and Carr and F&usefl this gpression
to derive the price o& finite-lived option.

In this note, we derive the sanexpressions as Samuelsdl for the free boundary and price of a
perpetual put using Mellin transform techniques. Our expression for the price is derived as a steady-state
solution (solving as a limiting case of the time to maturity tending to infinity) to the non-homogenous
Black—Scholes equation, rather than as a solution to the ‘static’ problem (where the option price is
assumed to be independent of time).
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2. Priceof an American put

For a non-dividend paying stock, it has been shown by Panini and Sriva3fathét the alue of a
finite-lived American put may be expressed as an inverse Mellin transform as follows:
The non-homogenous Black—Scholes equation for the price of an Americdh BLt) is

P 1 P P
aat 252?932 sa —rP = f(S1), O<t<T, 0< S<oo, (2.1)
where
_ _J-rK if0 < S< S*(t),
F=fESyH= {o if S> S (1), (2.2)
with the final time condition
P(ST)=60(9=(K-9". (2.3)

Note that the free boundaf (t) also depends on the expiry tinie Strictly, we should write S*(t, T).
The Méllin transform of @.1) yields

dP (02 , s .
e —I—(?(w —I—w)—rw—r)P_ f(w,t), (2.4)
where
R SE(b) _
f(w,t) =/ —rks*lds= r—K(s*(t))“a (2.5)
0 w

Eq. 2.4) is alinear odinary differential equation of first order which is solved frInvertingthe Mellin
transform ve get the elation

1 Ct+loo 1.2 -
P(St) = ﬁ/ 0(w)ez° qw)(T-t) g-w gy,
c—

K IO('C:)—i—loo S w (26)
+ srw/ CTUD ehoawn-0 dx g
2mi
where Réw) > 0,
. 2r
qw) = (w+ 1w —ky) with k3 = -2 (2.7)

andd (w) is the Mellin transfornof the payoff functiord(S).
The unknown free boundai§* (t) is determined usmthe “snooth pasting” conditions:

P(S'(), 1) = K — S¥(1), (2.8)
9P
ol - ey (2.9)

Note that for 2.6) to hold asT — oo, it is necessary that Rg(w)) < 0, i.e. 0< Re(w) < kj.
The first term in 2.6) is theprice of a European put, which by using the Black—Scholes formula and
the call-put parity, can be written as

Po(S,t) = Ke "T-Y(1 — N(dp)) — S(1 — N(dp)), (2.10)
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where
1 S 02
do=d; —ovT -1, (2.12)

andN is the Gaussiadistribution function.
The second itegral in €.6), which we shlhdenote asPi(S, t), is the premium for the opportunity of
early exercise offered by the American put.

3. Freeboundary for a perpetual put

In this section we use the second smooth pasting condition to derive an expression for the free
boundary of the perpetual put. Note that at any tinthere is infirite time to maturity, and therefore the
free boundary for the perpetual put is constant, 88.(t) = Si, for all t.

The smooth pasting conditio.Q) for a pepetual option can be written as

o P oP
1=22 £ as T - . (3.1)
We bagin with the Py term. Differentiating 2.10, we get
0P .
2 =—@1- N, (3.2)
where
R 1 S o2
P P +(r__)T_t] 33
1= g () + (-5 ) -0 33)
AsT — oo, d; — oo and theefore
aP
£ 0. (3.4)
Now consider theP; term,
+i T -
9Py rK el / S ) ehotawx-0 gy ) du, (3.5)
S 271 Je—ico S\Jt \ S*(X)

Thelimit T — oo yields

0P K o1 ( / > <£)_w ebo?aw)x-v dx) dw. (3.6)
t

39S 27 Jeiino S S
Therefore,
P K 2 [Cti© 1 1
Py _TK 2 / 1 . 3.7)
9S |s_g 27102 Joine S (w+ 1)(w —kyp)
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Since 0< Re(w) < ki, applicdion of Cauchys resdue theorem leads to
Py K ki

Egs. 8.1, (3.4) and @.8) together give
Ky
= K. :
Soko ki+1 (3:9)

4. Price of a perpetual put

We use he value ofS;, from (3.9) to derive an gpression for the price of a perpetual g, (S, t).
Note that the price of a perpetual European put is zero, since it can never be exercised. Therefore
taking the limitT — oo in (2.6), the price of the American perpetual put = Sf, is given by

C+ioo —w 00
Po(S ) = L >) L f €37 4 iy ) g, (4.1)
271 Je—ico S w \Jt

where Réq(w)) < 0. Integrating the time variable leads to

rK 2 ot/ g\ 1
P"O(S’t)z_z_ni?/c_m (%) wiw+ Do — k) “2)

As befae, since O< Re(w) < ki, we can apply the residue theorem to get

2
Po(Sit) = (K — S%) (g) “ for S> S (4.3)

00

References

[1] P.A. Samuelson, Rational theory of warrant pricing, Industrial Management Review 6 (1965) 13-31.
[2] P. Carr, D. Faguet, Valuing finite-lived options as perpetual, 1996, Working pager//ssrn.com/abstract=706
[3] R. Panini, R.P. Srivasta Option pricing with Mellin transforms, Maematical and Computer Modeling 40 (2004) 43-56.


http://ssrn.com/abstract=706

	Pricing perpetual options using Mellin transforms
	Introduction
	Price of an American put
	Free boundary for a perpetual put
	Price of a perpetual put
	References


