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Abstract

We have derived the expression for the free boundary and price of an American perpetual put as the limit of a
finite-lived option.
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1. Introduction

The pricing of American options has been the subject of extensive research in the last three decades.
There is no known closed form solution and many numerical and analytic approximations have been
proposed. However, in the special case of a perpetual option, Samuelson [1] derived a closed-form
expression for the price of the American perpetual warrant and Carr and Faguet [2] used this expression
to derive the price ofa finite-livedoption.

In this note, we derive the same expressions as Samuelson [1] for the free boundary and price of a
perpetual put using Mellin transform techniques. Our expression for the price is derived as a steady-state
solution (solving as a limiting case of the time to maturity tending to infinity) to the non-homogenous
Black–Scholes equation, rather than as a solution to the ‘static’ problem (where the option price is
assumed to be independent of time).
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2. Price of an American put

For a non-dividend paying stock, it has been shown by Panini and Srivastav [3], that the value of a
finite-lived American put may be expressed as an inverse Mellin transform as follows:

The non-homogenous Black–Scholes equation for the price of an American putP(S, t) is
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where

f = f (S, t) =
{−r K if 0 < S ≤ S∗(t),

0 if S > S∗(t), (2.2)

with the final time condition

P(S, T ) = θ(S) = (K − S)+. (2.3)

Note that the free boundaryS∗(t) also depends on the expiry timeT . Strictly, we should writeS∗(t, T ).
The Mellin transform of (2.1) yields
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Eq. (2.4) is alinear ordinary differential equation of first order which is solved forP̂. Invertingthe Mellin
transform we get the relation
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where Re(w) > 0,

q(w) = (w + 1)(w − k1) with k1 = 2r

σ 2
, (2.7)

andθ̂ (w) is the Mellin transformof the payoff functionθ(S).
The unknown free boundaryS∗(t) is determined using the “smooth pasting” conditions:

P(S∗(t), t) = K − S∗(t), (2.8)
∂ P

∂S
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= −1. (2.9)

Note that for (2.6) to hold asT → ∞, it is necessary that Re(q(w)) < 0, i.e. 0< Re(w) < k1.
The first term in (2.6) is theprice of a European put, which by using the Black–Scholes formula and

the call-put parity, can be written as

P0(S, t) = K e−r(T −t)(1 − N (d2)) − S(1 − N (d1)), (2.10)
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where
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d2 = d1 − σ
√

T − t, (2.12)

andN is the Gaussiandistribution function.
The second integral in (2.6), which we shall denote asP1(S, t), is the premium for the opportunity of

early exercise offered by the American put.

3. Free boundary for a perpetual put

In this section we use the second smooth pasting condition to derive an expression for the free
boundary of the perpetual put. Note that at any timet, there is infinite time to maturity, and therefore the
free boundary for the perpetual put is constant, i.e.S∗∞(t) = S∗∞ for all t.

The smooth pasting condition (2.8) for a perpetual option can be written as
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We begin with the P0 term. Differentiating (2.10), we get
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As T → ∞, d̂1 → ∞ and therefore
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Now consider theP1 term,
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Thelimit T → ∞ yields
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Since 0< Re(w) < k1, application of Cauchy’s residue theorem leads to
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Eqs. (3.1), (3.4) and (3.8) together give

S∗∞ = k1

k1 + 1
K . (3.9)

4. Price of a perpetual put

We use the value ofS∗∞ from (3.9) to derive an expression for the price of a perpetual putP∞(S, t).
Note that the price of a perpetual European put is zero, since it can never be exercised. Therefore,

taking the limitT → ∞ in (2.6), the price of the American perpetual put forS > S∗∞, is given by
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where Re(q(w)) < 0. Integrating the time variable leads to
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As before, since 0< Re(w) < k1, wecan apply the residue theorem to get
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(
S

S∗∞

)− 2r
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for S > S∗∞. (4.3)
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