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Abstract

We consider the reflection of an additive process with negative drift controlled by a Markov

chain on a finite state space. We determine the tail behaviour of the distribution of the

maximum over a regenerative cycle in the case with subexponential increments. Based on this,

the asymptotic distribution of the running maximum is derived. Applications of the results to

Markov modulated single server queueing systems are given.
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1. Introduction

Random walks and reflected random walks are important stochastic processes in
several areas of applied probability. In dimensioning queueing systems with finite
buffer capacity it is of great interest to study the probability of buffer overflow.
Clearly, this is closely related to the study of the actual waiting time from the arrival
of a customer until service starts, and for a stable GI/G/1 queue this is equivalent to
studying the distribution of a reflected random walk with negative drift, Asmussen
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[4]. Another application of reflected random walks appears in biological sequence
analysis. Here the best local similarity between two aligned sequences of random
letters turns out to be precisely the maximum of a reflected random walk [15,9].

Iglehart [13] shows that the tail of the distribution of the maximal waiting time for
a GI/G/1 queue in the case of a light-tailed service time distribution is asymptotically
exponential. Inspired for instance by problems from biological sequence analysis,
Karlin and Dembo [15] derive similar results for a Markov controlled random walk
with light-tailed increments. Independently, the corresponding result in the frame-
work of Markov controlled queues was obtained by Asmussen and Perry [6].

The cycle maximum for reflected random walks with increment distributions that
are subexponential was dealt with by Asmussen [3]—see also the paper by Heath
et al. [12] for the regularly varying case. Similar results about the maximum over
more general random intervals were treated by Foss and Zachary [11]. In Section 2
we extend the results of Asmussen [3] to the Markov controlled case, where the
increments depend on an underlying finite state Markov chain. Assuming negative
drift we show in Theorem 1 that if the (heaviest) increments are tail equivalent to a
subexponential distribution H, the distribution of the maximum of the reflected
Markov controlled additive process over a regenerative cycle is also tail equivalent to
H. For technical reasons one needs H to belong to the slightly smaller class S�: In
Corollary 2 we find that if H in addition is regularly varying the running maximum
of the reflected process is asymptotically Fréchet distributed.

Finally, in Section 3, we deal with applications of the main result in the field of
queueing theory. For a class of Markov modulated single-server queueing systems
important processes such as the residual workload process may be sampled at
random time points to obtain a reflected MAP. In this way we can use our result to
study the asymptotic behaviour as time evolves of the tail of the maximal amount of
work in the system.
2. Markov additive processes

2.1. Setup and main results

We consider a Markov chain ðJnÞnX0 taking values in a finite state space E with
transition probabilities governed by the transition matrix P. Furthermore,
conditionally on ðJnÞnX0; the process ðX nÞnX1 is a sequence of independent random
variables taking values in R such that the conditional distribution of X n given
ðJnÞnX0 is HJn�1Jn

where Hij for i; j 2 E is a matrix of probability measures on R:
These are called the increment distributions. We will from hereon use Hij to denote
both the probability measure and the distribution function. Let HijðxÞ ¼ 1�HijðxÞ

denote the tail of the distribution function, put Fij ¼ Hijpij for i; j 2 E and F ijðxÞ ¼

HijðxÞpij : We will throughout only consider the non-lattice case, that is Hij is not

concentrated on a grid:

fdj � di þ nd j n 2 Zg;
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for some constants d; di40 and i; j 2 E; see Alsmeyer [2]. We will use Pi to denote
the probability measure where J0 ¼ i and Ei to denote expectation w.r.t. Pi: Denote
by 1 the column vector of ones.

Put S0 ¼ 0 and for nX1

Sn ¼
Xn

k¼1

X k; (1)

together with W 0 ¼ 0 and recursively for nX1

W n ¼ ðW n�1 þ X nÞ
þ: (2)

We call ðJn;SnÞnX0 a Markov Additive Process—from hereon abbreviated MAP—
and ðJn;W nÞnX0 is the corresponding reflected MAP. Both processes are Markov
processes on E � R and E � ½0;1Þ; respectively.

We are interested in the case where the Hij ’s have subexponential tails. Hence let
S denote the set of subexponential distributions on ½0;1Þ and let S� denote the
smaller set of distributions, G; on ½0;1Þ with finite expectation defined by the
requirement

lim
x!1

Z x

0

GðyÞ
Gðx� yÞ

GðxÞ
dy ¼ 2

Z 1
0

GðyÞdy;

see [16].
Assume for the rest of this paper that there exists H 2S� such that for all i; j 2 E

lim
x!1

FijðxÞ

HðxÞ
¼ gij (3)

for some gijX0 and at least one gij40: Let G denote the matrix ðgijÞi;j2E : Using
that the convergence Hðx� yÞ=HðxÞ ! 1 is uniform in y on compact sets [8, Lemma
1.3.5] we get that

lim
x!1

Fijðx� yÞ

HðxÞ
¼ gij (4)

uniformly in y on compact sets. Assume that P is irreducible with invariant
probability measure p and put

mij ¼

Z
yF ijðdyÞ ¼

Z
yHijðdyÞpij ; (5)

m ¼
X
i; j2E

pimij : (6)

We will finally assume that mo0; so the additive process ðSnÞnX0 tends to �1 by
ergodicity of ðJn;X nÞnX0: Let

tn
� ¼ inffk4tn�1

� jSkpStn�1
�
g; ðt0� ¼ 0Þ
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be the successive descending ladder times, which are finite almost surely due to the
negative drift. Then ðJtn

�
ÞnX0 is a Harris recurrent Markov chain [2],1 in particular

there exists i0 2 E such that for all i 2 E

PiðJtn
�
¼ i0 for some nÞ ¼ 1:

Consequently the stopping time

s ¼ inffnX1 jW n ¼ 0; Jn ¼ i0g (7)

is finite Pi-almost surely for all i 2 E: The time s is a regeneration time for
ðJn;W nÞnX0: We want to study the maximum of ðW nÞnX0 up to time s;

Ms ¼ max
0pnps

W n: (8)

Theorem 1. Under assumptions (3) and mo0

Pi0 ðMs4xÞ � HðxÞEi0 ðsÞpG1 (9)

for x!1:

The qualitative content of Theorem 1 is that the distribution of Ms is tail-
equivalent to the heaviest tail of the increment distributions. In addition Theorem 1
provides an explicit and intuitive representation of the constant of proportionality as
the mean cycle length times a weighted average of the tail indices G:

Condition (3) may seem technical and only tied up with the techniques of the
proof. However, Foss and Zachary [11, Theorem 1(ii)] state that for the
corresponding result to hold in the random walk case the condition is also
necessary. Since the ordinary random walk is covered by Theorem 1 the condition is
certainly also necessary for this theorem to be valid in general.

The result obtained in Theorem 1 should be compared to the (tail of the) time
invariant distribution of W n; which is known to be tail equivalent to the integrated
tail of H when e.g. H 2S� [14]. Thus in the heavy-tailed framework the distribution
of the cycle maximum and the invariant distribution of W n are not in general tail
equivalent in contrast to the light tailed case. In this case, as remarked by Asmussen
[3] for the reflected random walk, the process ðW nÞnX0 has extreme value index 0,
and the analysis of the asymptotic behaviour of the running maximum of W n cannot
be related directly to the tail of the invariant distribution. However, it is possible to
derive the asymptotic behaviour on the basis of the tail of the distribution of Ms

taking advantage of the regenerative structure of the reflected MAP.
If we let Mn ¼ max0pkpn W n; we obtain the following corollary as a consequence

of the regenerative structure of ðJn;W nÞnX0 together with Proposition VI.4.10 in
Asmussen [4].
1The paper by Alsmeyer gives a result for a general state space E. In the case considered here with E

finite, a simple proof can be given.
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Corollary 2. If H is regularly varying at infinity with exponent �a; then for any i 2 E

Pi

Mn

bn

px

� �
! expð�x�aÞ; n!1 (10)

with bn satisfying

nHðbnÞ !
1

pG1
; n!1:

One could for instance choose bn ¼ H ð1� 1=ðnpG1ÞÞ:

Note that H denotes the generalised inverse of H defined as

H ðtÞ ¼ inffx 2 R jHðxÞXtg:

The proof of Theorem 1 is divided into a number of lemmas. The idea in the proof is
to use the ‘‘one big jump’’ heuristic for subexponential distributions, thus an extreme
value for the reflected MAP occurs due to one extreme X n-value. We split the
extreme event ðMs4xÞ into the event where the jump to a level above x happens
from an intermediate level in ½x0;x�; x0ox; and the event where the jump happens
from a level below x0: Then we show that the probability of the first event is
asymptotically negligible and that the probability of the last event has the desired
asymptotic behaviour. To deal with the former we use some non-trivial down-
crossing results due to Asmussen [3] in the random walk set-up—see also Foss and
Zachary [10]. This argument is developed in Lemmas 3–5 of Section 2.2. In Lemma 6
we give the asymptotics when jumps occur from levels below some x0 and Lemma 7
shows, using the downcrossing results, that the other probability vanishes
asymptotically.

2.2. Proofs

For a matrix, A; of s-finite measures, Aij ; on R let jjAjj denote the matrix whose
ij’th element is the total mass AijðRÞ: Given another matrix, B; of s-finite measures
on R we define the convolution product of A and B by

ðA � BÞij ¼
X
k2E

Aik � Bkj :

Let R be the matrix of occupation measures for the MAP, i.e. let

RijðDÞ ¼
X1
n¼0

PiðJn ¼ j;Sn 2 DÞ:

It is easily seen that R ¼
P1

n¼0 F�n:
Denote by ðJ�n;S

�
nÞ the time reversal of ðJn;SnÞ; which is a MAP with transition

probabilities F�ij ¼ pjF ji=pi: Let G� be the matrix of descending ladder height
distributions for ðJn;SnÞ; let G�þ be the matrix of ascending ladder height
distributions for ðJ�n;S

�
nÞ and define the matrix #Gþ by #Gþ;ij ¼ piG

�
þ;ji=pj :
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Define the corresponding matrices of renewal measures by #Uþ ¼
P1

n¼0ð
#GþÞ

�n

and U� ¼
P1

n¼0G
�n
� ; and let

R�;ijðDÞ ¼ Ei

Xt��1
n¼0

1ðJn¼j;Sn2DÞ

be the occupation measure up to time t� ¼ t1� ¼ inffnX1 jSnp0g: From Asmussen
[4, Proposition XI.2.13] it follows that #Uþ ¼ R� and by the negative drift
assumption it follows from [4, Proposition XI.2.14] that the spectral radius of jj#Gþjj

is strictly less than one. Consequently #Uþ is a matrix of finite measures and we
conclude that in particular

Eiðt�Þ ¼
X
j2E

R�;ijðRþÞo1:

It is clear that the process ðtn
�; Jtn

�
ÞnX0 is a Markov renewal process and due to Harris

recurrence of ðJtn
�
ÞnX0 it follows that

Ei0ðsÞ ¼
P

i2EniEiðt�Þ
ni0

o1;

where ðniÞi2E is the invariant distribution of ðJtn
�
ÞnX0; cf. [4, Proposition VII.4.2]. This

is important since we need to consider a regenerative process with a cycle length
distribution that has finite mean.

Wiener–Hopf theory for MAPs [4, Theorem XI.2.12] gives the following
factorisation identity:

I � F ¼ I � #Gþ
� �

� ðI � G�Þ

which for the occupation measure amounts to

RðDÞ ¼ U� �
#UþðDÞ (11)

valid for D � R a bounded set.
We will need the following non-lattice version of the Markov renewal theorem, cf.

Alsmeyer [1].

Lemma 3. If mo0 the matrix jjG�jj is stochastic and it holds that

Rijððz; zþ y�Þ ! y
pj

jmj
; z!�1

for all y40:

For x40 let

NsðxÞ ¼
Xs�1
n¼0

1ðW n4x;W nþ1pxÞ

be the number of downcrossings of level x before time s: Let

rðxÞ ¼ inffnX1 jSnp� xg
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be the time of the first downcrossing of the MAP of level �x; and if also y40
denote by

Nðx; yÞ ¼
XrðxþyÞ�1

n¼0

1ðSn4�x;Snþ1p�xÞ

the number of downcrossings of level �x before the barrier �ðxþ yÞ is reached. Note
that Nðx; yÞ % NðxÞ ¼

P1
n¼01ðSn4�x;Snþ1p�xÞ for y!1; where NðxÞ is the

total number of downcrossings of level �x: Let in the following m� be the matrix
ðm�;ijÞi;j2E given by

m�;ij ¼

Z 1
0

F ijð�zÞdz:

Lemma 4. When mo0 it holds for all i 2 E that

EiNðxÞ !
pm�1

jmj
; x!1

and the convergence

EiNðx; yÞ % EiNðxÞ; y!1

is uniform in x:

Proof. By conditioning on the value of ðJn;SnÞ for nX0 we get using Lemma 3 that
for all i 2 E

EiNðxÞ ¼
X
j;k2E

Z 1
�x

F jkð�ðxþ yÞÞRijðdyÞ

¼
X
j;k2E

Z 1
0

F jkð�zÞRijðdz� xÞ

!
X
j;k2E

pj

jmj

Z 1
0

Fjkð�zÞdz; x!1

¼
pm�1

jmj
:

For the second result, use the strong Markov property to obtain

0pEiNðxÞ � EiNðx; yÞ

¼ Ei

X1
n¼rðxþyÞ

1ðSn4�x;Snþ1p�xÞ

pmax
j

PjðM4yÞ sup
z

EjðNðzÞÞ;

where M ¼ maxnX0 Sn: Since Mo1 almost surely the result follows if
supz EjðNðzÞÞo1: By the negative drift U�;ij is finite on compact sets, hence from
(11) we conclude that Rjkð½x;1ÞÞo1 for all x. Lemma 3 then implies that there
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exists a such that Rjkð½x;xþ 1ÞÞpa for all x, hence

EjðNðzÞÞ ¼
X
k;l2E

Z 1
0

F klð�xÞRjkðdx� zÞ

p
X
k;l2E

X1
n¼0

F klð�nÞRjkð½n� x; n� xþ 1ÞÞ

pa
X
k;l2E

X1
n¼0

F klð�nÞ:

The right-hand side is finite and independent of z, hence we see that
supz EjðNðzÞÞo1: &

Lemma 5. Under assumptions (3) and mo0

lim
x!1

Ei0NsðxÞ

HðxÞ
¼

Ei0 ðsÞ
jmj

pG1pm�1:

Proof. By Asmussen [4, Proposition XI.2.11] the reflected MAP ðJn;W nÞ has an
invariant distribution l which coincides with the distribution of ðJ�0;M

�Þ where
M� ¼ maxnX0 S�n and J�0 has distribution p: We find that

lim
x!1

F
�

ijðxÞ

HðxÞ
¼ lim

x!1

pjF jiðxÞ=pi

HðxÞ
¼ pjgji=pi:

With ĤðxÞ ¼
R1

x
HðyÞdy the integrated tail of H we get from Jelenković and Lazar

[14, Theorem 4], using that H 2S� implies Ĥ 2S; that

lði; ðx;1ÞÞ

ĤðxÞ
¼

PpðJ
�
0 ¼ i;M�4xÞ

ĤðxÞ
!

pi

jmj
pG1; x!1:

Using that H 2S� Corollary 1 of Asmussen et al. [5] implies that for all i; j 2 ER1
x

Fijðx� yÞlði;dyÞ

HðxÞ
!

pG1
jmj

pi

Z 1
0

Fijð�zÞdz; x!1: (12)

Since s is a regeneration time for ðJn;W nÞ; its time-invariant distribution may be
represented as

lðfig � ½0; t�Þ ¼
1

Ei0 ðsÞ
Ei0

Xs�1
n¼0

1ðJn¼i;W nptÞ

 !
;

hence

Ei0NsðxÞ ¼ Ei0 ðsÞ
X
i; j2E

Z 1
x

Fijðx� yÞlði;dyÞ;

Summing over i; j in (12) we conclude that

Ei0NsðxÞ

HðxÞ
!

Ei0ðsÞ
jmj

pG1pm�1; x!1: &
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Note that Ei0 ðsÞ can be expressed explicitly in terms of the invariant distribution
for ðJn;W nÞnX0;

Ei0ðsÞ ¼
1

pi0Pi0 ðM
� ¼ 0Þ

¼
1

pi0 1�
P

j2E jjG
�
þði0; jÞjj

� � :
Put

tðxÞ ¼ inffnX1 jW n4xg;

so ðMs4xÞ ¼ ðtðxÞosÞ and let for x0ox; y0X0 and j 2 E;

Aðx; x0; y0Þ ¼ ðtðxÞos;W tðxÞ4xþ y0;W tðxÞ�1ox0Þ:

That is, Aðx;x0; y0Þ is the event that the W n-process will exceed x before time s; and
when doing so the W n-process jumps from a value below x0 to a value above xþ y0:

Lemma 6. Under assumptions (3) and mo0

lim
x0!1

lim
x!1

Pi0 ðAðx;x0; y0ÞÞ

HðxÞ
¼ Ei0 ðsÞpG1 (13)

for all y0X0:

Proof. Put sðxÞ ¼ s ^ tðxÞ: Then

Pi0 ðAðx;x0; y0ÞÞ ¼
X1
n¼1

Pi0ðW n4xþ y0;W n�1ox0; sðxÞXnÞ

¼
X
i;j2E

X1
n¼1

Pi0 ðW n4xþ y0;W n�1ox0; Jn�1 ¼ i; Jn ¼ j;sðxÞXnÞ

¼
X
i; j2E

X1
n¼1

Z x0

0

Fijðxþ y0 � yÞPi0ðW n�1 2 dyjJn�1 ¼ i;sðxÞXnÞ

�Pi0 ðJn�1 ¼ i;sðxÞXnÞ:

Using that the convergence in (4) is uniform for y 2 ½0;x0� and that sðxÞ % s for
x!1 we get that

Pi0 ðAðx;x0; y0ÞÞ

HðxÞ
!
X
i;j2E

X1
n¼1

gijPi0 ðW n�1ox0; Jn�1 ¼ i;sXnÞ:

Letting x0 !1; the result follows by using that

X1
n¼1

Pi0 ðJn�1 ¼ i;sXnÞ ¼
Xs�1
n¼0

Pi0ðJn ¼ iÞ ¼ piEi0 ðsÞ: &

For x0ox let Aðx; x0Þ ¼ Aðx;x0; 0Þ ¼ ðtðxÞos;W tðxÞ�1ox0Þ and put Bðx; x0Þ ¼

ðtðxÞos;W tðxÞ�1Xx0Þ:
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Lemma 7. Under assumptions (3) and mo0

lim
x0!1

lim sup
x!1

Pi0 ðBðx;x0ÞÞ

HðxÞ
¼ 0: (14)

Proof. Put k ¼ ðpm�1Þ=jmj; let e40 be given, and choose x and y0 according to
Lemma 4 so that

EjðNðy� x;xÞÞXk� e

for yXxþ y0 and all j 2 E: On the event ðtðxÞosÞ; the number of times W n crosses
level x from above after time tðxÞ and before time s is larger than the number of
times W n crosses level x from above after time tðxÞ and before hitting zero. Hence
the strong Markov property of ðJn;W nÞnX0 gives

Ei0 ðNsðxÞ;Aðx; x0ÞÞ

XEi0 ðEJtðxÞ ðNðW tðxÞ � x;xÞÞ;Aðx; x0ÞÞ

¼
X
j2E

Z 1
x

EjðNðy� x;xÞÞPi0 ðW tðxÞ 2 dy; JtðxÞ ¼ j;Aðx;x0ÞÞ

X

X
j2E

Z 1
xþy0

EjðNðy� x; xÞÞPi0ðW tðxÞ 2 dy; JtðxÞ ¼ j;Aðx; x0ÞÞ

Xðk� eÞPi0ðAðx; x0; y0ÞÞ:

Using Lemma 6

lim
x0!1

lim inf
x!1

Ei0ðNsðxÞ;Aðx;x0ÞÞ

HðxÞ
XEi0 ðsÞðk� eÞpG1:

Since e40 was arbitrary and 1Bðx;x0ÞpNsðxÞ1Bðx;x0Þ ¼ NsðxÞ �NsðxÞ1Aðx;x0Þ we get
from Lemma 5 that

lim
x0!1

lim sup
x!1

Pi0 ðBðx;x0ÞÞ

HðxÞ
pEi0 ðsÞpG1

pm�1

jmj
� k

� �
¼ 0: &

Proof of Theorem 1. From the identity

Pi0 ðMs4xÞ ¼ Pi0ðAðx;x0ÞÞ þ Pi0ðBðx; x0ÞÞ

result (9) follows immediately from Lemmas 6 and 7. &
3. Examples

In this section we discuss possible applications of Theorem 1. With focus on a
Markov-modulated queueing system with a single server we explain how the
investigation of certain performance characteristics are related to the study of a
reflected MAP. For concrete examples of single server queues operating in
Markovian environments we refer to the work by Dudin and Klimenok [7].
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3.1. Markov-modulated queues

Consider a single server queueing system where the server handles incoming work
at unit rate. Denote by ~St the total amount of work that has arrived up to time t: In
terms of the netput process, St ¼ ~St � t; the residual workload present in the queue at
time t may be expressed as

Vt ¼ St � inf
spt

Ss:

It is valuable to study the behaviour of V t since many interesting problems
concerning, e.g. buffer overflow and the actual waiting time of ‘‘customers’’ arriving
to the queue can be given formulations in terms of the process ðV tÞtX0; Asmussen [4,
Chapter IV.1].

Suppose that we can find sampling times rn; nX0; and a Markov chain ðJnÞnX0

such that ðSrn
; JnÞnX0 is a MAP. Then the inequality

W npVrn

involving the reflected MAP ðW n; JnÞnX0; holds, but in general equality does not
hold. However, under the additional assumption that t! St is monotone on each
interval ½rn;rnþ1� it can easily be verified that W n ¼ Vrn

and

Mt :¼ sup
spt

Vs ¼ max
n

Vrn^t ¼ maxfmax
n:rnpt

W n;V tg

� �
:

Occasionally it is convenient to consider instead sampling times rn; nX0; such that
ðSrn�

; JnÞnX0 is a MAP. Also in this case the monotonicity assumption above implies
that W n ¼ Vrn�

and hence

Mn :¼ max1pkpn Vrk�
¼ max1pkpn W k:

These identities relate the study of Mt and Mn to the study of the running maximum
of a reflected MAP. Moreover, if the increments of the MAP can be shown to be
heavy-tailed the asymptotics of Mt and Mn as t!1 resp. n!1 can be derived
from Theorem 1. If the increments have regularly varying tails, say, the asymptotics
is given by Corollary 2.

Example 8 (Markov-modulated single-server queue). Suppose that customers arrive
to a single-server queue at times ðrnÞnX0 and denote by Bn the service time of
customer n: If X n ¼ Bn � ðrnþ1 � rnÞ are conditionally independent given a finite-
state Markov chain ðJnÞnX0 such that X n given ðJnÞnX0 depends only on ðJn�1; JnÞ

then ðSrn�
; JnÞnX0 is a MAP. Since obviously t! St is decreasing on ½rn;rnþ1Þ the

actual waiting time, Vrn�
; of customer n equals the value, W n; of the reflected MAP

with the increments ðX nÞnX0:

Example 9 (Markov-controlled fluid-models). Instead of assuming that work
arrives in jumps we can assume that work flows continuously into to the queue
with a stochastic rate, ln; that changes at the times ðrnÞnX0: If the increments
X n ¼ ðln � 1Þðrnþ1 � rnÞ are conditionally independent given a finite-state Markov
chain ðJnÞnX0 such that X n given ðJnÞnX0 depends only on ðJn�1; JnÞ then ðSrn

; JnÞnX0
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is a MAP. Since t! St is linear, hence monotone, on each ½rn;rnþ1� we
conclude that

Mt ¼ maxn Vrn^t

with ðVrn
ÞnX0 ¼ ðW nÞnX0 the reflected MAP with increments ðX nÞnX0:

In both examples the residual workload process ðV tÞtX0 can be regarded as
controlled by an underlying semi-Markov process with the durations between jumps
being ðrnþ1 � rnÞnX0: The increments in the second example can then be heavy tailed
if either the rate, ln; or the durations, rnþ1 � rn; (when ln41) are heavy tailed. It
could be interesting to be able to handle a semi-Markov modulated queue where
the arrival intensity is 41 during time periods that are heavy tailed. In particular,
we have taken an interest in the residual workload of a queue where the arrival
process is a doubly stochastic Poisson process with an intensity that depends on the
value of a finite state semi-Markov chain. The presence of heavy tails is then
introduced by letting the duration distributions of the semi-Markov chain be heavy-
tailed so that small positive increments can aggregate over long periods of time.
Though such a model does not satisfy the monotonicity assumption presented above
we expect that results about e.g. the workload process can be obtained along the
same lines as in the preceding examples. Unfortunately a direct translation of
Theorem 1 is not possible.
4. Concluding remarks

Theorem 1 has intrinsic value as a generalisation of the corresponding result for
random walks with heavy tailed increments. In addition, it allows us to analyse
certain continuous time processes which contain an embedded MAP obtained by
sampling at random time points. The Achilles’ heel is the path regularity conditions
that the processes must satisfy in between the sampling points. Unfortunately the
monotonicity assumption suggested in Section 3 rules out several interesting
examples as described above. It is an ongoing work to extend our results so that
we can handle more general continuous time processes, e.g. semi-Markov
modulated queues.
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