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While metformin has been widely used to treat type 2 diabetes for the last fifty years, its mode of action re-
mains unclear. Hence, we investigated the short-term alterations in energy metabolism caused by metformin
administration in 3T3-L1 adipocytes. We found that metformin inhibited mitochondrial respiration, although
ATP levels remained constant as the decrease in mitochondrial production was compensated by an increase
in glycolysis. While AMP/ATP ratios were unaffected by metformin, phosphorylation of AMPK and its down-
stream target acetyl-CoA carboxylase augmented. The inhibition of respiration provoked a rapid and sus-
tained increase in superoxide levels, despite the increase in UCP2 and superoxide dismutase activity. The
inhibition of respiration was rapidly reversed by fatty acids and thus respiration was lower in treated cells
in the presence of pyruvate and glucose while rates were identical to control cells when palmitate was the
substrate. We conclude that metformin reversibly inhibits mitochondrial respiration, it rapidly activates
AMPK without altering the energy charge, and it inhibits fatty acid synthesis. Mitochondrial β-oxidation is
facilitated by reversing the inhibition of complex I and, presumably, by releasing the inhibition of carnitine
palmitoyltransferase. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference
(EBEC 2012).

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Metformin is a member of the biguanide family of compounds
that has been used for the treatment of diabetes since the 1950s.
Biguanides do not alter insulin secretion but rather, they improve
insulin sensitivity, reduce plasma triglyceride and LDL concentra-
tions, decrease hepatic gluconeogenesis and inhibit glycogenolysis
[1,2]. The mechanism of action by which metformin and its related
compounds, such as phenformin, exert their action is still under de-
bate, although the mitochondrial oxidative phosphorylation appears
to be one of its main targets. Thus, the pioneering work of Hollun-
ger in 1955 [3] showed that guanidines inhibit mitochondrial respi-
ration. The effect of metformin on the respiratory chain is now well
established [4–9]. For many years the prevailing hypothesis stated
, Adenosine monophosphate-
AR, Extracellular acidification
enylhydrazone; OCR, Oxygen
OS, Reactive oxygen species;

uropean Bioenergetics Confer-

d Molecular Medicine, Centro
9, 28040 Madrid, Spain. Tel.:

l rights reserved.
that mitochondrial impairment attenuated mitochondrial ATP syn-
thesis, leading to a compensatory acceleration of glycolytic flux
and increased glucose uptake. In fact, an adverse side effect of
biguanides is an increase in the generation of lactate, which can
enter the circulation and produce lactic acidosis [2,10]. Notably,
phenformin was withdrawn from clinical use in the 1970s follow-
ing reports of cases of severe lactic acidosis [2,11].

Activation of the AMP-dependent protein kinase (AMPK) is cen-
tral to the signaling cascade that results from metformin action
[12,13]. AMPK is considered a key controller of energy metabolism
by “sensing” the cellular ATP levels. When phosphorylated, AMPK is
active and stimulates energy generating pathways, while inhibiting
anabolic processes or cell growth [14]. Cytosolic adenine nucleotides
play a critical role in control of AMPK activity and, thus, AMP not
only enhances allosterically the activity of the phosphorylated en-
zyme but it also protects AMPK from dephosphorylation, an effect an-
tagonized by ATP. It is known that metformin does not interact with
this enzyme complex [15] and it has been suggested that a drop in
ATP levels, caused by the inhibition of respiration, could be behind
its activation [7,16–18]. However, several studies have reported no
changes in the AMP/ATP ratio in response to metformin treatment,
suggesting that alternative signaling pathways underlie AMPK activa-
tion in this context [15,19,20].

The inhibition of respiration by metformin augments the mito-
chondrial generation of superoxide [21] and, thus, it has been
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shown to cause oxidative stress at least as an early event [20,22].
However, it should be mentioned that long-term metformin treat-
ment improves the antioxidant status of patients due to, among
other parameters, the increase of antioxidant enzymatic activities
and serum glutathione levels [23–25]. Reactive oxygen and nitrogen
species are known to modulate a variety of signal transduction path-
ways, either through changes in gene expression or by directly act-
ing on redox sensitive enzymes and receptors [26,27]. In our
context, peroxynitrite, a potent oxidant formed by reaction between
superoxide and NO, activates c-Src and PI3K leading to AMPK phos-
phorylation without altering the cellular AMP or ATP content [28,29].
This ROS mediated signaling pathway has been proposed to mediate
in the antidiabetic action of metformin [20,28–30]. Intriguingly, a re-
cent study in hepatocytes described AMPK-independent metformin
activity and reported its effects to be due to a decrease in energy
charge. It was suggested that the increase in the AMP/ATP ratio
and the activation of AMPK could represent two parallel, perhaps
even redundant, pathways that exert similar overall effects on cellu-
lar metabolism [31].

Despite being the most commonly prescribed drug for the treat-
ment of type II diabetes for more than five decades, the bioenergetic
mechanisms underlying metformin activity remain largely unknown.
Furthermore, some of the available data are contradictory. Here, we
used differentiated adipocytes to analyze the short-term effects of
metformin and extensively characterize the bioenergetic changes
caused by the drug. We found that, in the presence of glucose and py-
ruvate, the inhibitory effects of metformin on respiration can be
detected within minutes and, as previously reported, they lead to
the activation of AMPK [32,33]. However, these effects were not due
to changes in the cellular energy charge, as no changes in the AMP/
ATP or ADP/ATP ratios were detected, probably due to the marked in-
crease in glycolysis. AMPK phosphorylation inhibits fatty acid synthe-
sis and stimulates their oxidation [12,14]. Intriguingly, the inhibition
by metformin of respiration should hamper their mitochondrial β-
oxidation. However, we found that fatty acids caused a striking
rapid reversal in the inhibition of respiration which may explain the
failure of metformin to inhibit their oxidation. We hypothesize that
metformin favors the oxidation of fatty acids, but that it prevents py-
ruvate oxidation. Moreover, we propose that metformin favors the
oxidation of fatty acids to facilitate the removal of plasma fatty
acids and improve the lipid profile in the diabetic patient.

2. Materials and methods

2.1. Materials

All chemicals were purchased from Sigma-Aldrich (St Louis, MO,
USA) unless otherwise stated. Cell culture media, antibiotics and bo-
vine serum were from Gibco/Invitrogen (Paisley, UK). The UCP2 anti-
body was from Santa Cruz Biotechnology (Santa Cruz, CA, USA),
antibody against mitochondrial porin was from Sigma-Aldrich. Anti-
bodies against AMPK, P-AMPK-Thr172, P-ACC were from Cell Signal-
ling (Invitrogen, Paisley, UK).

2.2. Cell culture and differentiation

3T3-L1 mouse embryo fibroblasts were obtained from the Ameri-
can Type Culture Collection (Mansassas, VA, USA). Cells were cultured
in a humidified atmosphere at 37 °C and 5% CO2 in Dulbecco's modi-
fied Eagle's medium (DMEM) containing 10% (v/v) heat-inactivated
bovine serum supplemented with penicillin (100 U/ml) and strepto-
mycin (100 μg/ml). When the cells reached confluence, the culture
medium was switched to “differentiation medium”: DMEM supple-
mented with 10% (v/v) heat-inactivated fetal bovine serum (FBS)
plus antibiotics. Two days after they reached confluence (day 2),
1 mM 3-isobutyl-1-methylxanthine (IBMX), 1 μM insulin and 1 μM
dexamethasone were added to the medium to induce their differenti-
ation to adipocytes. Three days later (day 5), this medium was
replaced by fresh “differentiation medium” containing only 1 μM in-
sulin. From day 7, cells were maintained in “differentiation medium”

until day 9, when differentiated adipocytes were subjected to the dif-
ferent treatments in the same medium. For the experiments in the
XF24 Seahorse Bioscience instrument, on day 7 of differentiation
cells were removed from the plate with PBS/0.1 mM EDTA and were
seeded in XF 24-well cell culture plates (9×104 cells per well) until
day 9 of differentiation.

2.3. Preparation of mitochondria-enriched extracts and
whole-cell extract

PBS-washed 3T3-L1 adipocytes were suspended in a buffer con-
taining 250 mM sucrose, 0.1 mM EDTA, 5 mM Hepes pH 7.4 plus
0.1% (v/v) of the protease inhibitor cocktail. Cells were subjected to
3 freeze/thaw cycles and centrifuged at 750×g for 10 min, the super-
natant collected and centrifuged at 10,000×g for 20 min. The pellet
obtained was resuspended in 10–20 μl of the same buffer. Whole-
cell extracts were prepared from cells lysed in RIPA buffer (150 mM
NaCl, 2 mM EDTA, 50 mM Tris–HCl pH 7.5, 1% (v/v) NP40, 0.1% (v/
v) SDS and 1%(v/v) deoxycholate) supplemented with protease and
phosphatase inhibitor cocktails. In all cases, the protein concentration
was determined by the bicinchoninic acid assay (BCA, Pierce, Rock-
ford, IL, USA) using bovine serum albumin as standard.

2.4. Western blot analysis

30 μg of the mitochondrial extracts or 40 μg of the total cellular ex-
tracts were resolved by SDS-PAGE and then transferred to nitrocellu-
lose membranes that were probed with the antibodies at 1:1000
dilution except for the anti-UCP2 antibody that was used at 1:500.
Equal loading of the mitochondrial extracts was confirmed by quanti-
fying the content of mitochondrial porin. The immunoblots were de-
veloped with the Super Signal West Dura chemiluminescent
substrate (Pierce, Thermo Scientific, Rockford, IL, USA) and band in-
tensity recorded using the CCD camera of a Fujifilm LAS-3000 analyz-
er (Düsseldorf, Germany) and quantified with the Fujifilm
MultiGauge programme.

2.5. Measurement of levels of reactive oxygen species and
apoptosis assay

ROS levels were determined by incubating the cells with dihy-
droethidium (DHE). The evaluation of cellular apoptosis was carried
out with annexin-V and propidium iodide staining using the Vybrant
Apoptosis Assay Kit 2 (Invitrogen, Paisley, UK) and following the
manufacturer's instructions. For both assays, adipocytes were trypsi-
nized and resuspended in DMEM without serum at a concentration
of one million cells per ml. For ROS detection, cells were incubated
in 5 μMDHE for 30 min at 37 °C in the dark, while for apoptosis assays
cells were stained for 15 min at room temperature. Samples were
washed twice in the same medium and the fluorescence analyzed
using an EPICS XL flow cytometer (Beckman Coulter, Brea, CA, USA).

2.6. Oxidized glutathione determination

Glutathione levels were measured in cell extracts with the GSH/
GSSG-412 kit from Oxis Research (Percipio Biosciences, Portland,
OR), according to the manufacturer's instructions. To determine
GSSG levels, GSH was scavenged with 1-methyl-2-vinylpyridinium.
The change in absorbance at 412 nm was recorded for 15 min. GSSG
levels were determined from GSSG standards and normalized with
protein content.
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2.7. Superoxide dismutase activity

Mn- and Cu/Zn-SOD activity was determined with the “SOD Assay
Kit II” (Calbiochem, Darmstadt, Germany) according to the manufac-
turer's instructions. Cells were lysed in a buffer containing 1 mM
EGTA, 210 mM mannitol, 70 mM glucose and 20 mM HEPES pH 7.2.
SOD activity was determined spectrophotometrically following the
absorbance changes at 450 nm.

2.8. Measurement of the adenine nucleotide levels

AMP, ADP and ATP levels were determined by reverse-phase HPLC
using a C18 column (Mediterranea SEA 18, Teknokroma, Sant Cugat,
Spain) and following essentially the protocol of Vives-Bouza et al.
[34]. Cells were washed with cold PBS and quenched with 660 mM
HClO4 and 10 mM theophylline. Extracts were homogenized and cen-
trifuged 15 min at 16,000×g, supernatant was neutralized using
2.8 M K3PO4 and samples stored at −80 °C until HPLC assay. External
standards were treated in the same way as the samples.

2.9. Measurements of cellular respiration and estimation of the rate of
glycolysis

An XF24 Seahorse Bioscience (North Billerica, MA, USA) instru-
ment was used to measure the oxygen consumption rate (OCR) of dif-
ferentiated 3T3-L1. 9×104 cells were seeded per well on day 7 of
differentiation. For the XF24 assay, DMEM growth media was
replaced by unbuffered DMEM supplemented with 25 mM glucose,
1 mM pyruvate and 2 mM L-glutamine and cells incubated at 37 °C
Control

Metformin

E
C

A
R

Time of treatment (hours)
2 6 15 24

0

2

4

6

8

10

*
**

**

*
*

Oligo

Metformin concentration (mmol/l)
0 0.1 0.5 1

O
C

R
 (

n
m

o
l O

2/
m

in
 m

g
 p

ro
te

in
)

0

2

4

6

8

10

*

A B

C D

O
C

R
 (

n
m

o
l O

2 
m

in
-1

 m
g

 p
ro

te
in

-1
)

Fig. 1. Effect of metformin on the oxygen consumption rate (OCR) of differentiated 3T3-L1 a
incubation of the adipocytes with the drug (n=3–7). (B) Kinetics of the inhibition of respir
on the rate of respiration of 3T3-L1 cells maintained for 2, 6, 15 or 24 h in the presence of the
(n=5–6). (D) Effect of the treatment of 3T3-L1 adipocytes on the extracellular acidificati
expressed as the fold increase in the ECAR compared to the respective control cells (n=3–
in a CO2-free incubator for 1 h. Cells were then placed in the instru-
ment and basal oxygen consumption recorded for 24 min and subse-
quently 1 μg/ml oligomycin and 400 nM FCCP were added. At the end
of the run, 1 μM rotenone and 1 μM antimycin A were added to deter-
mine the mitochondria-independent oxygen consumption. When the
OCR was determined in the presence of palmitate, unbuffered KHB
medium (111 mM NaCl, 4.7 mM KCl, 2 mM MgSO4, 1.2 mM
Na2HPO4, 2.5 mM glucose and 2.5 mM carnitine) was used. Cells
were incubated at 37 °C in a CO2-free incubator for 1 h and the
assay run subsequently. Two palmitate additions were made after re-
cording the basal OCR. The rate of glycolysis was estimated from the
extracellular acidification rate (ECAR) [35]. Protein concentration in
each well was determined with the BCA method after lysing cells in
RIPA buffer.

2.10. Statistical analysis

All values are expressed as mean±SEM of at least three indepen-
dent experiments. Differences between groups were determined
using either two-tailed unpaired Student's t-tests or the One-Way
ANOVA test using the SigmaPlot software. Significant differences be-
tween groups are indicated as *Pb0.05 and **Pb0.01.

3. Results

3.1. Metformin inhibits cellular respiration

Metformin is known to act on mitochondria and inhibit respira-
tion [4–9]. Fig. 1A shows that, after 24 h of treatment, increasing
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concentrations of metformin have a measurable effect on the rate of
respiration in 3T3-L1 adipocytes. Thus, 0.5 mM metformin induced a
clear decrease (25%) in the basal rate of respiration. The time required
for metformin to exert its effects remains a matter of some debate [7].
Hence, we analyzed the time course over which the basal rate of res-
piration was inhibited by 1 mM metformin. Inhibition of respiration
was apparent after 30 min and increased progressively over the 2 h
period analyzed (Fig. 1B). In cells maintained in culture in the pres-
ence of 1 mM metformin for up to 24 h, the inhibition of respiration
persisted for the duration of the test (Fig. 1C). The extent of the inhi-
bition is similar to the one observed in control cells when the ATPase
inhibitor oligomycin is present. The effect of metformin on respira-
tion has also been observed in other cell types [7,9,10,20].

The inhibition of respiration by metformin increases the rate of
lactic acid production [2]. Under our experimental conditions, inhibi-
tion of adipocyte respiration also induced an increase in the extracel-
lular acidification rate (ECAR) (Fig. 1D), an indirect measure of the
rate of glycolysis [35]. The ECAR increased by approximately 25%
after 2 h, reaching a plateau after 6 h at a level 50% higher than that
seen in untreated cells. Notably, oligomycin inhibition of mitochon-
drial ATP synthesis in control 3T3-L1 cells also increased in glycolysis
to a similar extent to metformin.

3.2. Metformin inhibition activates AMPK but has no effect on ATP levels

The effects of metformin are mediated by AMPK activation and in-
creases in the AMP/ATP ratio have been reported in response to met-
formin inhibition of respiration [7,16–18]. In 3T3-L1 adipocytes,
metformin did not alter the cellular energy charge, as reflected by
the comparable AMP/ATP and ADP/ATP ratios in control and
metformin-treated cells (Fig. 2). It can be envisaged that the increase
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cells [22]. In support of these findings, elevated superoxide levels
were already apparent here after 2 h of metformin treatment
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increase glycolysis. However, it is known that metformin promotes
catabolism by activation of AMPK [12,13] and particularly fatty acid
oxidation. This is a paradoxical situation since β-oxidation of fatty
acid requires a competent complex I.

The design of the experiments on the XF24 Extracellular Fluid An-
alyzer, to investigate the respiration properties of our cell prepara-
tions revealed the unexpected finding that despite a marked
inhibition of the basal rate of respiration, the rates in the presence
of the uncoupler FCCP were identical to those seen in untreated
cells (Fig. 4B). This uncoupler-induced reversal of the inhibition was
not observed when a low dose of rotenone (10 nM) was used to
cause a similar degree of inhibition of respiration (Fig. 4C). Fig. 4D
presents the rates of respiration of control and metformin-treated
cells in the presence of the uncoupler. To investigate the effect of met-
formin on fatty acid oxidation in the 3T3-L1 cells, adipocytes were
pre-incubated for 1 h in a starvation medium that lacked both pyru-
vate and glutamine, and in which glucose concentration was lowered
to 2.5 mM. Basal respiration in this medium was slightly lower than
under the standard conditions although the differences between con-
trol and metformin-treated cells were maintained (data not shown).
The addition of 300 μM palmitate (molar ratio 6:1 to albumin), in
the presence of 2.5 mM carnitine, increased the respiration rates to
values slightly higher than those observed in the presence of pyru-
vate. Strikingly, no differences were observed between the control
and metformin-treated cells (Fig. 4E).

4. Discussion

While the inhibition of respiration by metformin is well-
documented, it remains unclear whether this represents the primary
effect of the drug, accounting for the multiple metabolic alterations
seen in target cells. Biguanides target complex I, as witnessed by the
inhibition of respiration when the mitochondria oxidize glutamate
and malate, an effect not observed when succinate is used as the sub-
strate [6–8,36]. Inhibition of respiration leads to the upregulation of
glycolytic enzymes, increasing lactate production. Limiting the mito-
chondrial capacity to produce ATP may decrease the energy charge
(i.e.: AMP/ATP or ADP/ATP ratio), but only if glycolysis is unable to
meet the cellular demand for ATP. Here, treatment with metformin
(1 mM) inhibited respiration by 50%, although this appeared to be
compensated by a 50% increase in ECAR (Fig. 1), since the AMP/ATP
or the ADP/ATP ratios remained absolutely constant for several
hours (Fig. 2).

The cellular events that trigger the activation of AMPK, and the
subsequent metabolic reprogramming, remain the subject of much
debate. A decrease in the energy charge has been proposed to be
the key event in these processes [7,16–18], although AMPK activation
has also been seen in the absence of changes in adenine nucleotide
levels [15,19,20]. Our study provides new evidence that increased
glycolysis appears to sustain the ATP levels at least during the first
hours of exposure to the drug. The discrepancies reported could be
due to differences in the capacity of glycolysis to maintain the energy
charge in the different cell types. Nonetheless, our results further sup-
port the proposal that metformin activation of AMPK does not neces-
sarily involve a change in the energy charge, although it may
strengthen the metabolic signal.

There is an alternative hypothesis to explain AMPK activation
and that also derives from the metformin effects on the respiratory
chain. The inhibition of complex I increases formation of superoxide
giving rise to reactive oxygen and nitrogen species. Peroxynitrite, a
product of the reaction of superoxide with nitric oxide, has been
shown to affect signaling pathways by nitration as well as by oxida-
tion [37]. Thus, it has been proposed that peroxynitrite, formed due
to metformin action, may activate AMPK via a c-Src-mediated PI3K-
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dependent pathway [20,28–30]. In fact, metformin action does re-
quire ROS generation since AMPK activation is prevented if SOD1
or SOD2 is overexpressed [20]. In the same line, restoration of elec-
tron flow by introducing a rotenone-insensitive NADH dehydroge-
nase prevents the metformin-induced AMPK activation [18]. The
role of peroxynitrite as intermediate has also been confirmed,
since inhibition of nitric oxidase synthase (NOS) with L-NAME also
prevents metformin-induced AMPK phosphorylation [20]. In our
cellular model, we observed a rapid increase in ROS levels, which
is accompanied with the increase in UCP2 levels, that would be act-
ing as part of the antioxidant defense (Fig. 3B). SOD levels also in-
creased, although this did not occur until 12 h later. These
findings indicate that UCP2 constitutes the first line of defense
and that its levels can be rapidly modulated by its efficient transla-
tional regulation [22,38]. While the exact sequence of events in our
model remains to be established, it appears that ROS-induced acti-
vation of AMPK leads to increased UCP2 levels since AMPK inhibi-
tion totally prevented the metformin-induced increase (Fig. 3D). A
similar relationship has been described previously in endothelial
cells, in which AICAR increased UCP2 levels and reduced superoxide
levels [39,40]. We also observed the phosphorylation of AMPK and
its downstream target ACC, with a rise evident from the very first
time point. We should mention that metformin has previously
been shown to activate AMPK in 3T3-L1 adipocytes [32,33].

One of themost striking findings of our workwas the capacity of the
uncoupler FCCP to rapidly reversemetformin-induced inhibition of res-
piration in intact cells (Fig. 4B). Thus while metformin alone induced a
sustained 50% inhibition of cellular respiration, identical oxygen con-
sumption rates were observed in control and metformin-treated cells
in the presence of FCCP (Fig. 4D). This reversible inhibition contrasts
with that induced by rotenone at concentrations that produce a similar
inhibition of respiration as metformin. However, this puzzling aspect of
metformin's behavior is not unprecedented as studies into the effect of
guanidine on isolated mitochondria performed in the sixties also dem-
onstrated dinitrophenol-mediated reversal of guanidine inhibition
[4,36,41,42]. Derived from those findings came the observation that
the inhibition of mitochondrial respiration by phenylethylbiguanide
could also be antagonized by free fatty acids [42].

It is surprising that while the mechanism of metformin action re-
mains unclear, the earlier findings described above are nowadays nei-
ther taken into consideration nor challenged. Our results clearly
demonstrate that the inhibition of respiration by metformin is fully
reversible in 3T3-L1 adipocytes, and furthermore, that adipocytes dis-
play the same rate of palmitate oxidation (Fig. 4E). This fatty acid-
induced reversal of metformin inhibition may be relevant to the
drug's mode of action. AMPK phosphorylates and inactivates ACC,
inhibiting fatty acid synthesis and stimulating fatty acid oxidation.
In addition, reduced synthesis of the ACC product, malonyl-CoA,
should relieve the inhibition of fatty acid transfer into the mitochon-
dria and increase fatty acid oxidation [31,43]. AMPK stimulation of
fatty acid oxidation facilitates the removal of plasma fatty acids,
which is made possible by the fatty acids reversing metformin inhibi-
tion of NADH oxidation. Moreover, metformin is known to improve
the lipid profile of diabetic patients, reducing plasma triglyceride
and LDL concentrations [1,2]. In summary, our results could provide
an explanation of how metformin favors the mitochondrial oxidation
of fatty acids, while preventing the mitochondrial oxidation of pyru-
vate that would preferentially be converted to lactate.
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