
J O U R N A L O F T H E A M E R I C A N C O L L E G E O F C A R D I O L O G Y VO L . 6 6 , N O . 1 3 , 2 0 1 5

ª 2 0 1 5 B Y T H E A M E R I C A N C O L L E G E O F C A R D I O L O G Y F O U N D A T I O N I S S N 0 7 3 5 - 1 0 9 7 / $ 3 6 . 0 0

P U B L I S H E D B Y E L S E V I E R I N C . h t t p : / / d x . d o i . o r g / 1 0 . 1 0 1 6 / j . j a c c . 2 0 1 5 . 0 7 . 0 5 2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Fully Automated Versus Standard Tracking
of Left Ventricular Ejection Fraction
and Longitudinal Strain

The FAST-EFs Multicenter Study
Christian Knackstedt, MD,* Sebastiaan C.A.M. Bekkers, MD, PHD,* Georg Schummers,y Marcus Schreckenberg,y
Denisa Muraru, MD, PHD,z Luigi P. Badano, MD, PHD,z Andreas Franke, MD,x Chirag Bavishi, MD, MPH,k
Alaa Mabrouk Salem Omar, MD, PHD,k Partho P. Sengupta, MD, DMk
ABSTRACT
Fro

Sy

Pa

Ca

Me

Mr

Dr

su

La

lat

Sh

Lis

Ma
BACKGROUND Echocardiographic determination of ejection fraction (EF) by manual tracing of endocardial borders is

time consuming and operator dependent, whereas visual assessment is inherently subjective.

OBJECTIVES This study tested the hypothesis that a novel, fully automated software using machine learning-enabled

image analysis will provide rapid, reproducible measurements of left ventricular volumes and EF, as well as average

biplane longitudinal strain (LS).

METHODS For a total of 255 patients in sinus rhythm, apical 4- and 2-chamber views were collected from 4 centers

that assessed EF using both visual estimation and manual tracing (biplane Simpson’s method). In addition, datasets

were saved in a centralized database, and machine learning-enabled software (AutoLV, TomTec-Arena 1.2, TomTec

Imaging Systems, Unterschleissheim, Germany) was applied for fully automated EF and LS measurements.

A reference center reanalyzed all datasets (by visual estimation and manual tracking), along with manual LS

determinations.

RESULTS AutoLV measurements were feasible in 98% of studies, and the average analysis time was 8 � 1 s/patient.

Interclass correlation coefficients and Bland-Altman analysis revealed good agreements among automated EF, local

center manual tracking, and reference center manual tracking, but not for visual EF assessments. Similarly, automated

and manual LS measurements obtained at the reference center showed good agreement. Intraobserver variability was

higher for visual EF than for manual EF or manual LS, whereas interobserver variability was higher for both visual and

manual EF, but not different for LS. Automated EF and LS had no variability.

CONCLUSIONS Fully automated analysis of echocardiography images provides rapid and reproducible assessment

of left ventricular EF and LS. (J Am Coll Cardiol 2015;66:1456–66) © 2015 by the American College of Cardiology

Foundation.
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AB BR E V I A T I O N S

AND ACRONYM S

2-C = 2-chamber

4-C = 4-chamber

EF = ejection fraction

LS = average biplane

longitudinal strain

LV = left ventricle/ventricular

MAA = Maastricht University

Medical Centre

PAD = University of Padua
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T he quantification of left ventricular (LV) size,
geometry, and function represents the most
frequent indication for an echocardiographic

study and is pivotal for patient evaluation (1).
Although LV volumes and ejection fractions (EFs)
can be measured using different imaging modalities,
2-dimensional echocardiography continues to be
the most commonly utilized technique in clinical
practice. Despite the existing recommendations for
the use of 3-dimensional (3D) echocardiography (2)
and the reported variability of the biplane disc-
summation method, which can be as high as 14%
(3), the use of 2-dimensional echocardiography has
continued to grow. However, the additional time
and inconsistencies in manual tracing of the endocar-
dial borders have led to the continued use of visual
assessment of EF in busy echocardiographic labora-
tories (4).
SEE PAGE 1467
The inherent subjectivity in visual assessment
of EF and inconsistencies in manual estimation could
potentially be overcome with the use of image
processing algorithms that allow fully automated
measurement of EF (5,6). Moreover, automated mea-
surements could also yield longitudinal strain (LS), a
sensitive marker of cardiac function (7,8). Therefore,
in the present study, we used novel, fully automated
software for measuring EF and LS from biplane views
of the LV and compared the values with visually-
estimated EF, manually-traced EF, and manually-
traced LS. We hypothesized that automated EF and
LS measurements would provide values similar to
manual measurements, with increased precision.

METHODS

PATIENT POPULATION. A total of 4 international
cardiovascular centers (Department of Cardiology,
Maastricht UniversityMedical Centre, the Netherlands
[MAA]; Department of Cardiac, Thoracic and Vascular
Sciences, University of Padua, Italy [PAD]; Department
of Cardiology, KRH Klinikum Siloah, Hannover, Ger-
many; and Zena andMichael A. Wiener Cardiovascular
Institute and the Marie-Josée and Henry R. Kravis
Center for Cardiovascular Health, Mount Sinai School
of Medicine, New York, New York) participated in this
study. All of the participating centers were asked to
provide datasets containing apical 4-chamber (4-C)
and 2-chamber (2-C) views of patients who had un-
dergone clinically-indicated standard transthoracic
echocardiography using commercially available sys-
tems. Datasets from the 4 local centers were blinded
and stored digitally in DICOM 3.0 format. In addition
to serving as a local laboratory from which
basal datasets were collected, MAA also
served as the reference center at which all
echocardiographic studies (including those
from MAA itself) were transferred and stored
in a dedicated prototype image database and
review platform. This platform was used to
perform further analyses, such as heart cycle
selection and manual tracing of endocardial
contours. At MAA, all images were reviewed to
confirm that 1 4-C and 1 2-C view had been
recorded with at least 1 complete heart cycle.

Cardiac cycles were reviewed to avoid large variations
in sinus cycle length, supraventricular or ventricular
extrasystoles, and respiratory variations. The most
suitable cycle was selected and analyzed visually for
EF estimation, manually by Simpson’s method, and by
the automated software. It is important to note that to
reflect the beat-to-beat variations encountered in the
real world, the selection of cardiac cycles at the
reference center was not tied to the cardiac cycles
previously selected at the local centers.

A total of 280 datasets from patients in sinus
rhythm were initially retrieved; 25 were excluded
because of missing DICOM data (n ¼ 2), insufficient
image quality (n ¼ 1), repeated evaluation at 2 points
in time (n ¼ 6), missing visual assessment of EF
(n ¼ 6), missing data (n ¼ 5), or missing calibration
information in the DICOM file for automated analysis
(n ¼ 5). Accordingly, the study consisted of 255
datasets that were included in the final analysis.

It is important to note that whereas manual and
visual assessments of LV volumes and EF were per-
formed at local centers and reassessed in the refer-
ence center, for regulatory purposes, automated
volumes and EF and manual and automated LS were
only performed at the reference center.
CONVENTIONAL EF ANALYSES AT THE LOCAL

CENTERS. At each center, an expert investigator
(level 3 training in echocardiography; C.K., A.F., L.B.,
P.S.) was asked to first qualitatively evaluate the EF
by visual assessment (visual EF), followed by manual
tracing of the endocardial border at end-diastole and
-systole to measure LV volumes and EF (manual EF)
by the biplane-modified Simpson’s method (2). Sub-
sequently, all deidentified images were sent to the
reference center at MAA, together with the informa-
tion about manually-traced LV volumes and EF,
visually-estimated EF, and demographic and clinical
characteristics.
ANALYSES AT THE REFERENCE CENTER. Manual
and v isua l ana lyses . One of the expert investigators
at MAA blinded to the analyses from the local cen-
ters reviewed all datasets and manually traced the



FIGURE 1 Workflow of Software for Automated EF Analysis
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Description of the process of automated assessment of volumes, EF, and LS. After acti-

vation of the dataset, the user identifies 2-C and 4-C views and then activates the AutoLV

analysis package (top). Endocardial borders are then automatically tracked at end-diastole

(end-diastolic volume [EDV]) and end-systole (end-systolic volume [ESV]) (middle).

Finally, the automatically derived 2-C, 4-C, and biplane LV volumes, EF, and LS are

displayed (bottom). 2-C¼2-chamber; 4-C¼4-chamber; EF¼ejection fraction;GLS¼global

longitudinal strain; LS ¼ average biplane longitudinal strain; LV ¼ left ventricular.

TABLE 1 Clinical and Echocardiographic Data (n ¼ 255)

Patient demographics

Age, yrs 50.3 � 17.6

Males 153 (60)

Height, cm 176.5 � 60.9

Weight, kg 73.6 � 14.1

Body mass index, kg/m2 24.6 � 4.3

Medical history

No cardiac disease 21 (8.2)

Arterial hypertension 4 (1.6)

Coronary artery disease 82 (32.2)

Myocardial infarction 37 (14.5)

Cardiomyopathy (noncompaction) 5 (2.0)

Dilated cardiomyopathy 8 (3.1)

Ischemic cardiomyopathy 8 (3.1)

Restrictive cardiomyopathy 13 (5.1)

Constrictive pericarditis 2 (0.8)

Aortic valve pathology 2 (0.8)

Mitral valve pathology 2 (0.8)

Myocarditis 1 (0.4)

Chemotherapy-related heart failure 1 (0.4)

Values are mean � SD or n (%).

Knackstedt et al. J A C C V O L . 6 6 , N O . 1 3 , 2 0 1 5

Automated Left Ventricular Analysis S E P T E M B E R 2 9 , 2 0 1 5 : 1 4 5 6 – 6 6

1458
endocardial contours at end-systole and -diastole on
2- and 4-C views in all study patients. End-diastole
was defined at the peak of the electrocardiographic
R-wave and/or 1 frame before mitral valve closure.
End-systole was defined as 1 frame before mitral
valve opening. To ensure adequate blinding of the
manual evaluation and the visual estimation of EF,
values of LV volumes and EF from the manual tracing
were automatically transferred to the database and
were not visible to the investigator. LS was also
calculated and averaged as the relative change in the
length of the endocardial border from end-diastole
to -systole by manually tracking the endocardial
borders from 4- and 2-C views. The image quality of
all studies from all centers was classified as: 1) good;
2) average; 3) poor; or 4) not analyzable.
Ful ly automated ana lys i s . Fully automated mea-
surements of LV volumes were performed using
AutoLV (TomTec-Arena 1.2, TomTec Imaging Sys-
tems, Unterschleissheim, Germany), a computer
vision vendor-independent software package that
applies a machine-learning algorithm for DICOM im-
ages (9). AutoLV can provide biplane end-diastolic,
end-systolic, and stroke volumes and EF, as well
as LS.

To measure the time spent using AutoLV, a stan-
dardized workflow was used. The dataset of a pa-
tient was uploaded to the review station and
opened. Then, the investigator activated the AutoLV
option, which was followed by a request to identify
the 4- and 2-C views. The algorithm would then run
the automated endocardial border detection and
identify the end-diastole and -systole for both views
(Figure 1).

INTEROBSERVER, INTRAOBSERVER, AND BEAT-TO-

BEAT VARIABILITY. To measure intraobserver and
interobserver variability, a subset of 20 patient data-
sets was randomly selected and resubmitted to MAA
and PAD to be reanalyzed using the same protocol.
Physicians at both centers were blinded to the orig-
inal EF and LS results. Only 1 cardiac cycle was pro-
vided to ensure that all investigators analyzed the
same heartbeat.

To derive interobserver variability, 1 physician
from each center was asked to recalculate manual EF
and manual LS and to allocate a visual assessment of
the EF for all 20 patient datasets. Two investigators
(C.K. and L.B.) were asked to perform these mea-
surements twice to assess intraobserver variability.



TABLE 2 Echocardiographic Measurements Performed With the

Various Methods in the Local and the Reference Centers

Local Centers Reference Center

Manual assessment

End-diastolic volume, ml* 117.1 � 45.4 126.1 � 48.6

End-systolic volume, ml* 52.3 � 31.0 57.6 � 35.7

Ejection fraction, % 57 � 10.8 56.5 � 12.3

Visual assessment

Ejection fraction, % 54.3 � 11.9 54.6 � 11.0

Automated assessment

End-diastolic volume, ml — 124.4 � 41.3

End-systolic volume, ml — 56.1 � 32.9

Ejection fraction, % — 56.8 � 12.5

LS, % — 20.0 � 0.6

Values are mean � SD. *Left ventricular volumes were not provided by the local
center in 38 patients.

LS ¼ longitudinal strain.
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The same subset of 20 patient datasets was also
used for beat-to-beat variability. A second cardiac
cycle was used to derive manual as well as automated
EF and LS and was compared with measurements
obtained from the original cardiac cycle.

The investigation conformed to the principles out-
lined in the Declaration of Helsinki, and each partici-
pating center conformed to local ethical regulations.

STATISTICAL ANALYSIS. Normal distributions of
variables were checked before analysis. Continuous
variables were presented as mean� SD and categorical
variables were presented as n (%). Agreement between
various echocardiographic measures was performed
using intraclass correlation coefficients (ICCs) and
Bland-Altman analysis. The paired Student t test was
used to compare the mean values between 2 groups.
TABLE 3 Agreement and Bland-Altman Bias Matrix Between EFs Ass

Local Center
Visual EF

Local Cente
Manual EF

Agreement: ICC (95% CI)

Local center visual EF 1.0 —

Local center manual EF 0.82 (0.77 to 0.86)* 1.0

Reference center visual EF 0.73 (0.62 to 0.80)*† 0.87 (0.83 to 0

Reference center manual EF 0.74 (0.67 to 0.80)* 0.84 (0.78 to 0

Automated EF 0.70 (0.62 to 0.77)* 0.83 (0.78 to 0

Bland-Altman: bias (95% CI)

Local center visual EF 0 —

Local center manual EF 2.7 (1.6 to 3.8) 0

Reference center visual EF �0.6 (�2.4 to 1.2)† 2.4 (1.5 to 3.3

Reference center manual EF �2.2 (�3.5 to �0.8) 0.9 (�0.6 to 2

Automated EF �2.5 (�3.9 to �1.1) 0.2 (�0.9 to 1

*p < 0.001. †147 patients (after exclusion of cases from MAA where reference center w

CI ¼ confidence interval; EF ¼ ejection fraction; ICC ¼ intraclass correlation coefficien
For all statistical tests, a 2-tailed p value <0.05 was
considered statistically significant. Statistical analysis
was performed using SPSS for Windows, version 19.0
(SPSS, Inc., Chicago, Illinois) and Stata, version 11
(Stata Corp., College Station, Texas).

RESULTS

Table 1 summarizes demographic and clinical data,
and Table 2 summarizes volumes and EF measure-
ments at all study sites by all methods. Although
the average image quality was reasonably good
(1.6 � 0.7), and both manual measurement and visual
estimation of EF were possible in all patients, fully
automated measurements of LV volumes and LS were
not feasible in 5 patients (feasibility ¼ 98%). The
average time for obtaining the EF by automated
analysis was 8 � 1 s/patient (analyzed in 20 patients).

ASSESSMENT OF DIFFERENT METHODS OF DETERMINING

EF IN THE REFERENCE VERSUS LOCAL CENTERS. Using
ICC, good correlations were seen between all con-
ventional EF methods and automated EF (Table 3,
Figure 2). Bland-Altman analysis showed that the bias
and limits of agreement were relatively lower when
the same methods for EF assessment were compared
at the local and the reference centers (local visual EF
vs. reference visual EF: mean bias �0.6%; 95% confi-
dence interval [CI]: �2.4% to 1.2% [Figure 2B]; local
manual EF vs. reference manual EF: mean bias 0.9%,
95% CI: �0.6% to 2.4% [Table 3, Figure 2D]), than
when different methods were compared at the local
and the reference centers (local visual EF vs. refer-
ence manual EF: mean bias �2.2%; 95% CI: �3.5%
to �0.8%; local manual EF vs. reference visual EF:
mean bias 2.4%; 95% CI: 1.5% to 3.3%) (Table 3). Bias
essed Using Various Methods

r Reference Center
Visual EF

Reference Center
Manual EF Automated EF

— — —

— — —

.90)* 1.0 — —

.88)*† 0.86 (0.82 to 0.89)* 1.0 —

.86)* 0.83 (0.79 to 0.87)* 0.83 (0.78 to 0.86)* 1.0

— — —

— — —

) 0 — —

.4)† �1.8 (�2.9 to �0.8) 0 —

.3) �2.2 (�3.3 to �1.1) �0.3 (�1.5 to 0.9) 0

as located to avoid same-center-related measurement bias).

t; MAA ¼ Maastricht.



FIGURE 2 Concordance of EF Measurements
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datasets provided by MAA from ICC and Bland-Altman analyses when comparing visual and manual assessments between the reference and local centers, thereby

yielding 147 patient datasets (A to D). CI ¼ confidence interval; ICC ¼ intraclass correlation coefficient; MAA ¼ Maastricht; other abbreviations as in Figure 1.
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and levels of agreement within the local and reference
centers were also relatively high (local visual EF vs.
local manual EF: mean bias 2.7%; 95% CI: 1.6% to
3.8%; reference visual EF vs. reference manual EF:
mean bias �1.8%; 95% CI: �2.9% to �0.8%) (Table 3).

Bland-Altman analyses between the conventional
methods and the automated EF showed that the bias
and levels of agreement were wider when visual EF at
the local centers was compared with the automated
EF (mean bias �2.5%; 95% CI: �3.9% to �1.1%)
(Table 3), whereas manual EF measurements at the
local centers were similar to the corresponding
automated EF values, with a negligible bias (mean
bias 0.2%; 95% CI: �0.9% to 1.3%) (Table 3). These
observations were confirmed in the reference center,
as there was a relatively higher bias for visual EF
compared with the automated EF (mean bias �2.2%;
95% CI: �3.3% to �1.1%) (Table 3, Figure 2F), whereas
the values for the manual and automated EF were
relatively similar (mean bias of �0.3%; 95% CI: �1.5%
to 0.9%) (Table 3, Figure 2H).

We also checked for >10% absolute difference be-
tween automated and manual EF at the reference
center and for the manual measurements at the local
centers and reference center. These observations
were restricted to 147 cases, excluding the cases at
MAA where the measurements were not repeated.
A >10% difference between the automated and the
manual measurements at the reference center
occurred in 31 cases (21.1%) and between manual
measurements at the local and reference centers in 35
cases (23.85; p ¼ 0.576). There was no variability seen
for automated measurements.

In addition, when patient datasets were classified
according to image quality, correlations for auto-
mated EF were preserved for visual and manual EF in
patient datasets with good (ICC ¼ 0.83, 0.84; 95% CI:
0.76 to 0.88 and 0.76 to 0.88; respectively, p < 0.001)
and with moderate image quality (ICC ¼ 0.83, 0.84;
95% CI: 0.76 to 0.88 and 0.77 to 0.89; respectively,
p < 0.001), whereas correlations marginally worsened
when the image quality was poor (ICC ¼ 0.79, 0.63;
95% CI: 0.54 to 0.9 and 0.2 to 0.83; p < 0.001,
p ¼ 0.006, respectively).

It is important to note that, because MAA served
both as a local center and as the reference center, and
to avoid local site measurement bias, 108 datasets
provided from MAA were excluded from all ICC and
Bland-Altman analyses when comparing visual and
manual assessments between the reference and local
centers.
LS MEASUREMENT. At the reference center, the
manual tracking-derived LS was 21 � 6% and auto-
mated LS was 20 � 6%. Although significant
differences between the absolute values was found
(p ¼ 0.02), ICCs and Bland-Altman analysis sug-
gested that there was good correlation and agree-
ment between the manual and the automated LS
(ICC: 0.83; bias: 0.7%; 95% CI: 0.1% to 1.3%).

A strong correlation was seen when comparing
automated LS with automated EF (r ¼ 0.92; p < 0.001).
A simplified regression equation derived from the
automated measurements (EF ¼ 2 � automated LS þ
20) yielded EF values that showed similar correlations
with both automated and manual EF (ICC ¼ 0.96
and 0.77, respectively; both p < 0.001).

INTRAOBSERVER, INTEROBSERVER, AND BEAT-TO-BEAT

VARIABILITY. Table 4 summarizes intraobserver and
interobserver variability measurements for visual,
manual, and automated EF, as well as for manual
LS derived from MAA and PDA. In general, the intra-
observer variability was not statistically significantly
different, except for visual estimations at MAA
(p < 0.001) and manual LS estimations at PAD
(p ¼ 0.03) (Table 4). Bland-Altman analysis showed
that the bias and levels of agreement for intraobserver
variability in both centers were larger for visual EF
than for manual EF or manual LS. In contrast, inter-
observer variability was significantly different for
both visual (p ¼ 0.001) and manual EF (p < 0.001),
whereas it was not different for LS (p ¼ 0.539)
(Table 4). Bland-Altman analysis also showed that the
bias and levels of agreement for interobserver vari-
ability were larger for visual and manual EF compared
with manual LS (Table 4). Automated EF and LS mea-
surements had no variability because machine anal-
ysis revealed the same pattern recognition and similar
measurement on repeated assessments. Finally, beat-
to-beat variability was �0.96 � 3.52% for automated
EF, 2.7 � 8.16% for manual EF, �0.19 � 1.31% for
automated LS, and 1.09 � 3.29% for manual LS.

DISCUSSION

The main finding of this study was that a fully auto-
mated measurement of EF is technically feasible, can
be performed within a few seconds, and is comparable
to manual tracking (Central Illustration). Furthermore,
the automated image analysis yields information
beyond LV volumes and EF, such as LS, and (unlike all
conventional methods of EF and LS assessment) does
not include any variability.

THE CLINICAL NEED FOR AUTOMATED ASSESSMENT

OF LV FUNCTION. As with most techniques, echo-
cardiography is associated with a steep learning curve
(10), and the overall proficiency and expertise of
the practitioner is directly related to the volume



TABLE 4 Interrater and Intrarater Reliability of EF and LS Measurements in MAA and PAD

Intraobserver Variability Interobserver Variability

Reading 1 Reading 2 p Value ICC
Bland-Altman
Bias (LOA) MAA PAD p Value ICC

Bland-Altman
Bias (LOA)

Visual EF, % 43.8 � 14.8 51.4 � 17.4 0.001 0.87 �7.6 (�25.6 to 10.4)

MAA 43.8 � 14.8 50.5 � 13.6 <0.001 0.96 �6.8 (�9.4 to �4.1)

PAD 51.4 � 17.4 49.5 � 15.9 0.18 0.97 1.9 (�1.0 to 4.7)

Manual EF, % 49.6 � 14.8 62.0 � 16.1 <0.001 0.78 �12.4 (�29.8 to 5.0)

MAA 49.6 � 14.8 52.2 � 14.3 0.19 0.90 �2.6 (�6.7 to 1.4)

PAD 62.0 � 16.1 62.1 � 17.2 0.93 0.96 �0.1 (�3.0 to 2.8)

Manual LS, % 19.7 � 6.0 20.3 � 6.0 0.539 0.88 �0.6 (�9.2 to 8.0)

MAA 18.3 � 7.0 19.7 � 6.0 0.14 0.90 �1.4 (�3.3 to 0.5)

PAD 21.8 � 7.0 20.3 � 6.0 0.03 0.95 1.6 (0.1 to 3.0)

Automated LS, % 19.1 � 6.0 19.1 � 6.0 � 1.00 0 19.1 � 6.0 19.1 � 6.0 NS 1.00 0

Values are mean � SD.

LOA ¼ levels of agreement; PAD ¼ Padua; other abbreviations as in Tables 2 and 3.
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performed at a given center (11). Overall, 100 echo-
cardiographic examinations are required for attaining
expertise, including accurate determination of EF
(12). However, the dramatic increase in the use of
echocardiography and the accompanying growth in
new echocardiographers have exceeded the ability for
adequate training.

EF is an important diagnostic and prognostic
echocardiographic marker that is used to decide and
monitor treatment options in patients with heart
failure. However, because of the large variability in
EF measurements that can occur at different centers,
it is possible that therapies in one-fifth of patients
may be confounded when decisions are made on the
basis of EF (13). Moreover, newer modalities, such as
strain imaging, impose more challenges in the echo-
cardiography field (14). Consequently, there has been
renewed interest in automated software tools that
can facilitate assessment of LV function with the least
possible variability among echocardiographers and
between different centers (14,15).

AUTOMATION SHORTENS TIME REQUIRED FOR

ASSESSING LVEF. Automated determination of EF
is not a new idea and has been applied to diff-
erent imaging modalities, including echocardiography
(6,16–19). However, technical limitations have pre-
vented automated EF from being adopted in clinical
practice (20). Recent improvements in automated
boundary detection have circumvented some of these
limitations (6,17–19). In contrast to older methods,
which were dependent on image quality and gain set-
tings (21–23), newer algorithms that rely primarily on
speckle tracking and artificial intelligence in tracking
techniques were recently reported to be feasible in
several studies (5,6,17,18,24–27). However, the time
needed for the automated analysis and the levels of
agreement with reference methods in these studies
were variable (Table 5). In addition, some studies
either used a semiautomated EF determination or
required manual corrections that resulted in variable
results and increased measurement time (Table 5).

In comparison, the new software algorithm used in
the current study differs from the previous ap-
proaches, as the user only identifies 2- and 4-C views
followed by activation of the automated EF evalua-
tion (Figure 1). The program subsequently detects and
contours the endocardium and cardiac cycle and de-
termines the EF and corresponding measurements.
Importantly, this process only took 8.1 � 1 s/patient
dataset, thus showing greater time efficiency than all
previously described approaches (Table 5).

REPRODUCIBILITY OF TECHNIQUES FOR ASSESSING

LVEF. Overall, the decision to rely on either manual
or visual determination of EF is a matter of long-
standing debate (28,29). More recently, even with the
advent of better images due to improved software
and hardware, there are still conflicting results.
Variability is a particularly important issue when
considering the use of manual EF, and is of greatest
concern when considering visual EF because of the
subjective nature of the assessment. McGowan et al.
(30) recently reviewed results from studies that
evaluated EF using different techniques. They re-
ported that interobserver variability in previous
studies ranged from 9% to 21% for manually-tracked
EF and from 8% to 17% for visually-assessed EF,
with an intraobserver variability that ranged from 6%
to 13% for Simpson’s method and from 11% to 13% for



CENTRAL ILLUSTRATION Automated Versus Standard Tracking of Left Ventricular EF and LS

Knackstedt, C. et al. J Am Coll Cardiol. 2015; 66(13):1456–66.

From 4 international centers (PAD, NY, HAN, and MAA), 255 echocardiographic datasets containing manual calculations of volumes and EF

using the biplane Simpson’s method and visual assessment of EF were collected and stored (pooled data). MAA also served as the reference

center to which all echocardiographic studies were transferred. At the reference center, 2 different types of analyses were done: 1) the

conventional assessment composed of manual calculation of LV volumes and EF and visual assessment of EF, in addition to calculation of LS by

manual tracking of endocardial borders; and 2) fully automated LV volumes, EF, and LS performed using the AutoLV software package.

Correlations and agreement were checked between the reference center and the pooled data for manual, visual, and automatic volumes and EF

(data derived from MAA were excluded in this comparison to avoid bias). Correlations and agreement were also checked between the manual

and automated volumes, EF, and LS calculated at the reference center. Finally, a subset of 20 patients’ datasets were randomly selected and

resubmitted to MAA and PAD to reassess manual calculation and visual estimation of EF, in addition to manual LS to determine intraobserver

and interobserver variability. EF ¼ ejection fraction, HAN ¼ Hannover; LS ¼ average biplane longitudinal strain; LV ¼ left ventricular; MAA ¼
Maastricht; NY ¼ New York; PAD ¼ Padua.
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the visual assessment. More recent studies have re-
ported similar variability for manual and visual EF
(6,17,27,31,32). In addition, Kaufmann et al. (13)
demonstrated that EF, measured either manually or
by visual assessment, has a good correlation between
2 centers (r2 ¼ 0.63), but with a wide level of agree-
ment (bias ¼ 0.2, levels of agreement ¼ �17.4%
and þ17.8%) and relatively large variability between



TABLE 5 Time Needed for and Variability in Automated EF Measurements in Different Studies

First Author, Year (Ref. #) N Feasibility Modality
Time Required

for Measurement (s)
Interobserver
Variability (%)

Intraobserver
Variability (%)

Correlation With
Reference Methods

Kühl, 2004 (44) 24 100% Semiautomated 3D 720 � 300 �1.5 � 7.0 �0.6 � 4.1

Cannesson et al., 2007 (6) 218 92% 2D 48 � 26 1.3 � 1.7 0.5 � 1.2 0.98

Rahmouni et al., 2008 (18) 92 — 2D — — 3.7 � 3.5 0.80

Maret et al., 2008* (17) 60 100% 2D with and without
manual correction

159 � 46 3.5 � 6.7 2.2 � 4.7 0.89

Szulik et al., 2011 (27) 81 90% 2D 54 � 22 — — 0.77

Barbosa et al., 2013 (5) 24 100% 3D 30.7 6.06 � 4.85 — 0.853

Shibayama et al., 2013 (19) 41 93.2% Automated 3D 37 � 8 �6.6 to 7.7† �0.1 to 0.2† 0.54

Semiautomated 3D 371 � 116 �7.9 to 15† �7.8 to 13.1† 0.90

Current study 255 98% 2D 8 � 1 0 0 0.83

*Results presented represent corrected AutoEF; time needed for uncorrected AutoEF is 79 � 5 s. †Levels of agreement.

2D ¼ 2-dimensional; 3D ¼ 3-dimensional; other abbreviations as in Table 2.
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the centers (14.1 � 10.9%). They also mentioned that
these differences were not primarily due to varying
image quality (13). Overall, the intraobserver and
interobserver differences, bias, and levels of agree-
ment reported in our study for visual and manual EF
are consistent with the published data, confirming
the problem of variability between centers in the vi-
sual and manual EF assessments. In contrast, auto-
mated EF had no data variability, which is consistent
with most intelligent tracking techniques and which
gives it a great advantage over conventional methods
in addressing the current problem of EF variability
between sonographers and centers.

ASSESSMENT OF LS. Assessment of LS is a robust
method for assessing LV systolic function (7). Several
studies have shown that LS provides incremental
diagnostic and prognostic value, and is a more sen-
sitive marker of LV systolic function than EF (33–39).
However, variability in LS values has been a source of
concern (13), and has been largely attributed to the
use of different software from different vendors (40).
The European Association of Cardiovascular Imaging–
American Society of Echocardiography Industry Task
Force therefore initiated a standardization process,
which initially focused on standardization of LS. In
their recent report, LS measurements using software
packages from 7 different ultrasound machine ven-
dors and 2 software-only vendors were comparable
and had better reproducibility than EF (41). The cur-
rent study similarly shows that manually measured
LS is more robust and less variable than manually
traced and visual EF. Our study also confirms the
feasibility of the automated measurement of LS
(42,43), which has the distinct advantage of having no
interobserver and intraobserver variability.
STUDY LIMITATIONS. First, studies have reported
better estimation of LV function using 3D echocar-
diography (44). There are also 3D tracking methods
that apply automated algorithms (5,19,25,26,45), and
3D strain is a feasible method that can provide both
global and regional evaluations with 1 analysis (45).
The 3D techniques were not evaluated in this study
and may have the potential for more accurate as-
sessments (45). Second, in the present study, the
interinstitutional variability of EF was evaluated;
however, the variability of LS was only assessed at
the reference center because the automated LS
assessment protocol has not been approved for
clinical use by the Food and Drug Administration
and, therefore, could not be implemented at all
centers. Third, because visual estimations of EF
were done in the same settings as the manual as-
sessments at local centers, it is possible that visual
EF might have been biased by the manual mea-
surements. However, the evaluation of intraobserver
and interobserver variability was completely blinded
and no adjustment was possible, as the measured EF
was not displayed when the investigators tracked
the images manually. Similarly, at the central labo-
ratory, visual assessment was performed without
knowledge of the Simpson measurement. Fourth,
patients with atrial fibrillation and other arrhythmias
were excluded from the study. Thus, the perfor-
mance of the software in patients with arrhythmias
and irregular heartbeats remains to be tested in
further studies.

Finally, although intraobserver, interobserver, and
beat-to-beat variability were measured, normal
interstudy variability was not addressed in the cur-
rent study, and thus, future studies should take this
into consideration.



PERSPECTIVES

COMPETENCY IN SYSTEMS-BASED PRACTICE: Echocar-

diographic assessment of LVEF and longitudinal strain may be

useful to guide clinical management, but manual measure-

ments are time-consuming and variable. The development of

automated methods to assess LV function could standardize

these measurements to facilitate clinical research and enhance

patient care.

TRANSLATIONAL OUTLOOK: Future studies should

evaluate whether automated LV assessments in longitudinal

patient care and clinical trials of therapeutic interventions

improve the consistency and value of serial echocardiographic

assessments compared with visual assessment and manual

measurements.
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CONCLUSIONS

Machine learning-enabled echocardiography image
analysis for fully automated assessment of LV vol-
umes and EF is feasible and gives precise results
within seconds that are comparable to manual deter-
mination. Furthermore, this new technique provides
additional information on quantitative variables, such
as LS, which provide further incremental assessment
of LV systolic function beyond EF.
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