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1. Introduction

Our notation and terminology are standard as in [11], and all spaces are assumed to be T1. Let X be a topological space,
U and V collections of subsets of X , and A a subset of X . Then we write V < U to denote that V is inscribed in U , i.e. for
each V ∈ V there is U ∈ U such that V ⊂ U ; when U is a cover of X , V may be but need not be a cover of X . The symbol
St(A, U ) denotes the star of A with respect to U , i.e. the union of all elements from U intersecting A. For A = {x}, x ∈ X ,
we write St(x, U ) instead of St({x}, U ).

In 1997, M.V. Matveev [22] introduced (a)-spaces and spaces with property (pp). On the other hand, Kočinac defined star
selection principles, in particular star-Menger and strongly star-Menger spaces and their relatives in [17] (see also [6] for
similar star selection properties). Also, in [20] Kočinac considered absolute versions of star selection principles. We follow
these lines of investigation and define and study selective versions of (a)-spaces and (pp)-spaces following also some ideas
from [12].

Selective versions of some classical covering topological properties have been already considered in the literature (see
[2–4]).

Let X be a topological space and let U and V denote collections of some open covers of X . According to [4] the symbol
Sl f (U,V) denotes the following statement:

For each sequence (Un: n ∈ N) of elements of U there is a sequence (Vn: n ∈ N) such that for each n ∈ N, Vn is a locally
finite family of open sets with Vn < Un and

⋃
n∈N

Vn ∈ V.

If in this definition we replace “Vn is a locally finite family” by “Vn is a point-finite family” (resp. “Vn is a disjoint family”)
we obtain the selection property Spf (U,V) [3] (resp. Sc(U,V) [2], and also [1,15]).
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In particular, if X satisfies Sl f (O, O) (Spf (O, O), Sc(O, O)) we say that X is selectively paracompact [4] (selectively
metacompact [3], selectively screenable [2] or that X has property C [1,15]). Notice that a space X is selectively paracompact
if and only if it is paracompact [4].

Here O denotes the collection of open covers of a space X . We use also symbols Ω , K, Γ and Γk to denote the
collections of ω-covers, k-covers, γ -covers and γk-covers of a space. Recall that an open cover U of a space X is said to be
an ω-cover (a k-cover) if for each finite (compact) set A ⊂ X there is an element U in U containing A, and U is called a
γ -cover (a γk-cover) of X if it is infinite and each finite (compact) subset of X is contained in all but finitely many elements
of U .

Recall now definitions of star selection principles from [17].
Let U and V be collections of open covers of a space X and let P be a family of subsets of X . Then we say that X

belongs to the class SS∗
P (U,V) if X satisfies the following selection hypothesis: for each sequence (Un: n ∈ N) of elements

of U there exists a sequence (Pn: n ∈ N) of elements of P such that {St(Pn, Un): n ∈ N} ∈ V. When P is the collection
of all one-point [resp., finite, compact] subspaces of X we write SS∗

1(U,V) [resp., SS∗
fin(U,V), SS∗

comp(U,V)] instead of
SS∗

P (U,V).
In particular, a space X is:

SSR (strongly star-Rothberger) if X satisfies SS∗
1(O, O);

SSM (strongly star-Menger) if it satisfies SS∗
fin(O, O);

SSH (strongly star-Hurewicz) if it satisfies SS∗
fin(O,Γ ).

For more details regarding selection principles theory we refer the reader to the survey papers [18,19,26,30], and for star
covering properties to the papers [23,10].

2. Selectively (a)-spaces

As we mentioned above, in [22] Matveev introduced the following property: a space X is said to be an (a)-space if for
each open cover U of X and each dense subset D of X there is a closed discrete (in X ) set A ⊂ D such that St(A, U ) = X .
He also defined the class of (wa)-spaces replacing in the previous definition “closed discrete” by “discrete”. These spaces
were studied in a number of papers [13,14,16,24,25].

We give now the following general selective version of the notion of (a)-spaces.

Definition 2.1. Let X be a space. Denote by U and V collections of some open covers of X , and by P a collection of subsets
of X . Then X is said to be a selectively (U,V)-(a)P -space, denoted by X ∈ Sel(U,V)-(a)P , if for each sequence (Un: n ∈ N)

of elements of U and each dense subset D of X there is a sequence (An: n ∈ N) of elements of P such that each An is a
subset of D and {St(An, Un): n ∈ N} ∈ V.

To avoid trivial situations we always assume throughout this section that U is the collection O of open covers of the
space.

Remark 2.2. If V and P are as in the above definition it would be natural to define and investigate (O,V)-(a)P -spaces for
V ∈ {O,Ω, K,Γ,Γk}: a space X has property (O,V)-(a)P if for each open cover U of X and each dense D ⊂ X there is a
set A ⊂ D such that A ∈ P and {St(a, U ): a ∈ A} ∈ V. Spaces of this kind have been already studied for V = O and several
classes P : when P is the family of finite (resp. countable, Lindelöf) subspaces of X , the corresponding classes of spaces are
called absolutely countably compact [21] (resp. absolutely star-Lindelöf [23,28], absolutely L-starcompact [27]).

Note that certain selectively (U,V)-(a)P spaces were investigated in the literature: selectively (U,V)-(a)finite-spaces
are exactly absolutely SS∗

fin(U,V) spaces [20]. In particular, selectively (O, O)-(a)finite spaces coincide with aSSM-spaces
(absolutely strongly star-Menger spaces) which form a subclass of SSM-spaces. Similarly, Sel(O,Γ )-(a)finite = aSSH ⊂ SSH,
and Sel(O, O)-(a)singleton = aSSR ⊂ SSR.

For a space X satisfying Sel(O, O)-(a)closed discrete we say that X is a selectively (a)-space. This is a direct generalization
of the notion of (a)-spaces.

Evidently, every (a)-space is selectively (a).
So, every monotonically normal space, in particular every G O -space, is selectively (a), being an (a)-space (see [24,

Theorem 1]). For the same reason every selectively paracompact space is selectively (a).
Also, every countably compact selectively (O, O)-(a)closed discrete space (resp. selectively (O,Γ )-(a)closed discrete space) is

SSM (resp. SSH).
By small changes in the proof of Lemma 1 and its corollary in [22] one can prove:
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Proposition 2.3. Let X be a separable space. Then:

(1) If X is selectively (a), then every closed discrete subset of X has cardinality < 2ω;
(2) If X contains a discrete subspace having cardinality � 2ω , then X2 is not hereditarily selectively (a).

Example 2.4. If a space X is a countable union of open (a)-spaces Xn , n ∈ N, then X is selectively (a).

Let D be a dense subset of X and let (Un: n ∈ N) be a sequence of open covers of X . For each n ∈ N the intersection
Dn = D ∩ Xn is a dense subset of Xn , and Un is an open cover of Xn . As Xn is an (a)-space, there is a closed discrete set
An ⊂ Dn ⊂ D such that St(An, Un) ⊃ Xn . Thus

⋃
n∈N

St(An, Un) = X .
It is shown in [25, Theorem 3] that there are Ψ -spaces (see [5,11,25] for more information about these spaces) which are

(a)-spaces, hence selectively (a), and those which are not (a)-spaces. The next example shows that there are also Ψ -spaces
which are not selectively (a). We use below the well-known small cardinals b and d.

Example 2.5. There are Ψ -spaces which are not selectively (a), as well as which are not selectively (O,Γ )-(a)-spaces.

Take an almost disjoint family A of infinite subsets of N such that |A| � d. Then Ψ (A) cannot be selectively (a). Indeed,
let (Un: n ∈ N) be a sequence of open covers of Ψ (A) and let N be a dense subset of Ψ (A). Each closed discrete subset
of N ⊂ Ψ (A) is finite. Thus by the result of Matveev stating that Ψ (A) is SSM if and only if |A| < d (see [17,5]), for any
choice of closed discrete subsets An in N,

⋃
n∈N

St(An, Un) �= X .
Similarly, if we take A with cardinality � b, then by [5, Proposition 3], Ψ (A) is not SSH and so it cannot be selectively

(O,Γ )-(a).
The following results show the behaviour of selectively (a)-type spaces under mappings and operations with spaces.

Theorem 2.6. A closed-and-open image Y = f (X) of a selectively (a)-space X is also selectively (a).

Proof. Let (Un: n ∈ N) be a sequence of open covers of Y and D a dense subset of Y . First note that f ←(D) is a dense subset
of X because f is open. The sequence ( f ←(Un): n ∈ N) is a sequence of open covers of X . The space X is selectively (a);
let (An: n ∈ N) be a sequence of closed discrete (in X ) subsets of D witnessing for ( f ←(Un): n ∈ N) this fact. For each n
let Bn = f (An). We claim that the sequence (Bn: n ∈ N) witnesses that Y is selectively (a).

1. For each n ∈ N, Bn ⊂ D , and Bn is a closed discrete set in Y because f is closed and open.
2.

⋃
n∈N

St(Bn, Un) = Y .
Let y ∈ Y and let x be a point of X such that f (x) = y. There are m ∈ N and an element f ←(U ) ∈ f ←(Um) such that

Am ∩ f ←(U ) �= ∅ and x ∈ f ←(U ). It follows y ∈ U ∈ Um and Bm ∩ U �= ∅, i.e. y ∈ St(Bm, Um). �
The product of two selectively (a)-spaces need not be selectively (a); the Sorgenfrey line S and its square S2 can serve as

an example (by Proposition 2.3 S2 is not selectively (a)). It would be interesting to answer the following question (compare
with [16, Theorem 16]):

Question 2.7. Is the product of a selectively (a)-space X and a metrizable compact space Y selectively (a)?

We have the following

Theorem 2.8. If the product X × Y of spaces X and Y is selectively (a) and the projection p X : X × Y → X is closed, then X is
selectively (O, O)-(a)closed .

Proof. Let (Un: n ∈ N) be a sequence of open covers of X and D a dense subset of X . For each n ∈ N, Wn := {U ×Y : U ∈ Un}
is an open cover of X × Y . Since X × Y is a selectively (a)-space, and D × Y a dense subset of X × Y , there is a sequence
(Fn: n ∈ N) of closed discrete subsets of X × Y such that for each n, Fn ⊂ D and {St(Fn, Wn): n ∈ N} is an open cover of
X × Y . The sets p X (Fn), n ∈ N, are closed in X and each is contained in D . We claim that {St(p X (Fn), Un): n ∈ N} is an open
cover of X . Let x ∈ X and let (x, y) be a point in X × Y . There are m ∈ N, Fm ⊂ D and U ∈ Um such that (x, y) ∈ U × Y and
Fm ∩ (U × Y ) �= ∅; pick a point (p,q) ∈ Fm ∩ (U × Y ). Then p ∈ U ∩ p X (Fm) and thus x ∈ St(p X (Fm), Um). �

Clearly, the previous theorem is true for a space X and a compact space Y .
In what follows we need a well-known construction. Let (X, τ ) be a topological space. The Alexandroff duplicate of X

(see [11,8]) is the set AD(X) := X × {0,1} equipped with the following topology. For each U ∈ τ let Û = U × {0,1}. Define
a base for a topology on AD(X) by B = B0 ∪ B1, where B0 is the family of all sets Û \ (F × {1}) ⊂ AD(X), with U ∈ τ and F
a finite subset of X , and B1 = {{(x,1)}: x ∈ X}. For every x ∈ X put τx = {U ∈ τ : x ∈ U } and B(x,0) = {Û \ {(x,1)}: U ∈ τx},
and B(x,1) = {{(x,1)}}. Then, if X is a T1-space, B(x,0) is a local base at each (x,0) ∈ AD(X), and B′ = ⋃

x∈X (B(x,0) ∪ B(x,1))
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is a base in AD(X) such that B′ ⊂ B. If U is a family of open sets in X , then we say that the family U ∗ := {Û \ (F × {1}):
U ∈ U , F a finite subset of X} of open subsets of AD(X) is associated to U and vice versa.

For many topological properties P the space AD(X) has P if X has P (see, for example, [8]). Such properties are, for
instance, complete regularity, normality, compactness, Lindelöfness, (hereditary) paracompactness. We investigate similar
questions in connection with properties studied in this paper.

In what follows denote by I X the set of isolated points of a space X , and by e(X) the extent of X , the supremum of
cardinalities of closed discrete subsets of X .

Theorem 2.9. If X ∈ Sel(O, O)-(a)discrete and e(AD(X)) < ω1 , then AD(X) is also in Sel(O, O)-(a)discrete .

Proof. Let (Un: n ∈ N) be a sequence of open covers of AD(X) and D a dense subset of AD(X). Note that each dense
subset of AD(X) contains the set (I X × {0}) ∪ (X × {1}), so we suppose that D = (D∗ × {0}) ∪ (X × {1}) for some dense
subset D∗ ⊂ X containing I X . For each x ∈ X and each n ∈ N there is Un ∈ Un with (x,0) ∈ Un and hence there is a
set W (n)

x = V̂ (n)
x \ {(x,1)} ∈ B(x,0) , with V (n)

x a neighbourhood of x in X , such that W (n)
x ⊂ Un . For each n ∈ N the set

Vn = {V (n)
x : x ∈ X} is an open cover of X . Since X belongs to Sel(O, O)-(a)discrete there is a sequence (An: n ∈ N) of subsets

of D∗ such that each An is discrete in X and
⋃

n∈N
St(An, Vn) = X . For every x ∈ An \ I X pick a point yx ∈ V (n)

x \ {x}. By

definition of W (n)
x we have (x,0) ∈ W (n)

x and (yx,1) ∈ W (n)
x . For each n set

Bn = (
An × {1}) ∪ {

(yx,1): x ∈ An \ I X
} ∪ (

(An ∩ I X ) × {0}).
Hence for each n ∈ N, Bn ⊂ D and Bn is discrete in AD(X). We claim that

X × {0} ⊂
⋃
n∈N

St(Bn, Un).

To show this take (x,0) ∈ X × {0}. Clearly, x ∈ ⋃
n∈N

St(An, Vn) and so there are m ∈ N and Vm ∈ Vm such that x ∈ Vm
and Vm ∩ Am �= ∅. Consider three possible cases:

Case 1: x ∈ Am ∩ I X .
Then Vm ∩ Am = {x} and thus (x,0) ∈ W (m)

x ∩ Bm �= ∅, and since W (m)
x is contained in some Um ∈ Um we obtain

Um ∩ Bm �= ∅, hence (x,0) ∈ St(Bm, Um).
Case 2: x ∈ Am \ I X .
There exists yx �= x such that (yx,1) ∈ W (m)

x ∩ Bm �= ∅. Therefore, (x,0) ∈ St(Bm, Um).
Case 3: x /∈ Am .
Let z ∈ Vm ∩ Am . Then (z,1) ∈ W (m)

x ∩ Bm , so that (x,0) ∈ St(Bm, Um).
So, we have proved X × {0} ⊂ ⋃

n∈N
St(Bn, Un).

Let E = AD(X) \ ⋃
n∈N

St(Bn, Un). Since E ⊂ X × {1} is closed and discrete in AD(X) and e(AD(X)) < ω1, E is countable.
Enumerate E bijectively as E = {pn: n ∈ N} and let for each n ∈ N

Cn = Bn ∪ {pn} ⊂ D.

For each n, Cn is discrete in AD(X) and
⋃

n∈N
St(Cn, Un) = AD(X). �

Remark 2.10. Notice that the previous theorem remains true if “selectively (O, O)-(a)discrete” is replaced by
“(O, O)-(a)discrete”.

Question 2.11. Is a space X selectively (a) provided the space AD(X) is selectively (a)? What about the selectively
(O, O)-(a)discrete property?

The following result is related to Theorem 2.9. The property selectively (O, O)-(a)countable in the next theorem is a
selective version of absolute star-Lindelöfness (see [23,28]).

Theorem 2.12. If the Alexandroff duplicate AD(X) of a space X is selectively (O, O)-(a)countable , then e(X) < ω1 .

Proof. Suppose to the contrary that there is a closed discrete subset B of X having cardinality � ω1. The set B × {1} is
closed and open in AD(X). For each n ∈ N let An = (B × {1}) \ (Cn × {1}), where each Cn is a countable subset of B . Every
An is a closed (discrete) subset of AD(X). For each n define Un = {AD(X) \ An} ∪ {{(x,1)}: (x,1) ∈ An}. We claim that the
sequence (Un: n ∈ N) of open covers of AD(X) and the dense set D = (I X × {0}) ∪ (X × {1}) ⊂ AD(X) witness that AD(X) is
not selectively (O, O)-(a)countable. Indeed, if (Fn: n ∈ N) is a sequence of countable subsets of D , then there is a point b ∈ B
such that (b,1) /∈ ⋃

n∈N
Fn . Since (b,1) is an isolated point in AD(X), the set {(b,1)} is the only element of every Un that

contains (b,1), and (b,1) /∈ St(Fn, Un) for each n ∈ N. This contradicts the assumption on AD(X). �
In [28] it was proved: the Alexandroff duplicate of a (T1) space X is absolutely star-Lindelöf if and only if e(X) < ω1. So,

we have the following corollary.
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Corollary 2.13. The Alexandroff duplicate of a space X is absolutely star-Lindelöf if and only if it is selectively (O, O)-(a)countable .

A natural question is to know when subspaces of the Alexandroff duplicate AD(X) of a space X have properties of
selectively (a)-type.

Recall the definition of such subspaces (called lines). Let X be a space, A and B disjoint subspaces of X . The subspace
Z = (A × {1}) ∪ (B × {0}) of AD(X) is called a Michael-type line (see [7, Definition 2.6.16], [8, Definition 3.14]).

Theorem 2.14. Let A and B be subspaces of a space X such that A ∩ B = ∅ and Z = (A × {1}) ∪ (B × {0}). If e(Z) < ω1 and B is
selectively (O, O)-(a)discrete , then Z is selectively (O, O)-(a)discrete .

Proof. Let (Un: n ∈ N) be a sequence of open covers of Z and D a dense subset of Z . One may suppose that D = (E ×{0})∪
(A × {1}), where E is a dense subset of B \ A′ because every dense subset of Z contains the set D (see [7, Lemma 2.2.9], [8,
Lemma 2.17]). So, E is dense in B . It remains to repeat the proof of Theorem 2.12 with appropriate changes. �
3. Selectively (pp)-spaces

In this section we introduce and investigate selective versions of (pp)-spaces introduced first in [22] (and in a more
general form in [12]): a space X is said to be a (pp)-space if for each open cover U of X there is an open refinement V
of U such that if xV ∈ V for each V ∈ V , then the set {xV : V ∈ V } is closed and discrete in X . For investigation of these
spaces see [9,12–14].

The next definition is exactly a general selective version of the (pp)QP property [12, Definition 1].

Definition 3.1. Let U and V be collections of some open covers of a space X , P a collection of subsets of X , and Q a
collection of families of subsets of X . Then X is said to be selectively (U,V)-(pp)QP , denoted by X ∈ Sel(U,V)-(pp)QP , if for
each sequence (Un: n ∈ N) of elements of U there is a sequence (Vn: n ∈ N) such that:

(a) for each n, Vn < Un;
(b) V = ⋃

n∈N
Vn ∈ V;

(c) if W V ⊂ V and W V ∈ P for each V ∈ Vn , n ∈ N, then the set {W V : V ∈ Vn} belongs to Q.

Remark 3.2. There is an infinitely long two-person game played on X associated to this selection principle. Players ONE and
TWO play a round for each n ∈ N. In the n-th round ONE chooses a cover Un ∈ U, and then TWO responds by choosing a
partial open refinement Vn of Un . TWO wins a play U1, V1; U2, V2; . . . if

⋃
n∈N

Vn ∈ V, and for each n ∈ N and any choice
W V ⊂ V , W V ∈ P for each V ∈ Vn , the set {W V : V ∈ Vn} is in Q.

If TWO has a winning strategy in this game, then the selection principle holds. Call a space X strongly selectively (U,V)-
(pp)QP if TWO has a winning strategy in the game described above.

Conjecture 3.3. The class of strongly selectively (U,V)-(pp)QP spaces is a proper subclass of the class of selectively (U,V)-(pp)QP
spaces.

Sel(O, O)-(pp)closed discrete
singleton spaces are called simply selectively (pp)-spaces. They are a generalization of (pp)-spaces as

defined in [22].
Notice that σ -(pp)-spaces are selectively (pp), and that selectively (pp)-spaces are selectively (a). Selectively paracom-

pact (= paracompact) spaces are selectively (pp).
For some U, V, P and Q from Definition 3.1 the class Sel(U,V)-(pp)QP is trivially equivalent to a known class of

spaces. For instance, Sel(O, O)-(pp)
locally finite
open = Sel(Ω, O)-(pp)

locally finite
open = Spf (O, O), while Sel(Ω,Ω)-(pp)

locally finite
open =

Sel(Ω,Ω)-(pp)finite
open = the class of spaces having the Menger covering property in all finite powers.

Example 3.4. Let R be endowed with the countable complement extension topology τ , also known as open-minus-countable
topology [29]: a set U is open in τ if and only if U = O \ C , O open in the usual metric topology on R and C ⊂ R countable.
For each n, the space [−n,n] is Lindelöf. If (Un: n ∈ N) is a sequence of open covers, then countably many elements from
Un cover [−n,n], so for every choice of elements from U , U ∈ Un , we get a countable set. But countable sets in this space
are closed and discrete. Thus the space is selectively (pp).

Theorem 3.5. For a space X the following are equivalent:

(1) X belongs to the class Sel(U,V)-(pp)closed discrete
singleton ;

(2) X belongs to the class Sel(U,V)-(pp)closed
singleton .
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Proof. We have to prove (2) implies (1). Let (Un: n ∈ N) be a sequence of elements of U and let (Vn: n ∈ N) be a sequence
witnessing that X belongs to Sel(U,V)-(pp)closed

singleton. We prove that for each n the set {xV : V ∈ Vn} is discrete. Suppose not.
There are n ∈ N and V ∗ ∈ Vn such that each neighbourhood of xV ∗ intersects {xV : V ∈ Vn} in a point different from xV ∗ .
Then take for each V ∈ Vn a point yV in the following way:{

yV = xV , if xV �= xV ∗ ;
yV ∈ V ∗ \ {xV ∗ } arbitrary , if xV = xV ∗ .

Evidently, the set {yV : V ∈ Vn} is not closed because xV ∗ ∈ {yV : V ∈ Vn} \ {yV : V ∈ Vn}, a contradiction. �
A natural question for selectively (pp)-spaces is when they are (selectively) paracompact. Also, because paracompact

spaces are both selectively (pp) and selectively metacompact, it is reasonable to ask what about relations between the
latter two classes of spaces.

In [9] it was shown that every separable (pp)-space is Lindelöf, and so every regular separable (pp)-space is paracom-
pact. With slight modifications in the proof from [9] it is not difficult to prove

Theorem 3.6. Every regular separable selectively (pp)-space is selectively paracompact, and so paracompact.

The following three theorems establish relations between the selective (pp) property and selective metacompactness.

Theorem 3.7. A selectively (pp)-space X with χ(x, X) = ω for each x ∈ X is selectively metacompact.

Proof. Let (Un: n ∈ N) be a sequence of open covers of X and let (Vn: n ∈ N) be a sequence witnessing (for (Un: n ∈ N))
that X is selectively (pp); by Theorem 3.5 one may assume that the set {xV : V ∈ Vn} is closed for each n ∈ N. We claim
that each Vn is point-finite. Suppose not and let x be a point in X such that for some n ∈ N the set V ∗

n = {V ∈ Vn: x ∈ V } is
infinite, say V ∗

n = {Vn, j: j ∈ N}. Pick a countable base {B1, B2, · · ·} at x. As χ(x, X) = ω, for each i ∈ N and each V ∈ V ∗
n , the

intersection V ∩ (Bi \ {x}) is not empty. Associate to each V ∈ Vn a point xV ∈ X as follows:

(i) if V = Vn,i , then xV ∈ Vn,i ∩ (Bi \ {x});
(ii) if V ∈ Vn \ V ∗

n , then xV is an arbitrary point in V \ {x}.

It is clear that x ∈ {xV : V ∈ Vn} \ {xV : V ∈ Vn}. We have a contradiction, and so X is selectively metacompact. �
It is worth observing that this result can be extended in such a way that the condition “χ(x, X) = ω” can be replaced by

“the q-character of X is countable” (compare with [12]).
In [9, Lemma 2.6] it was shown that a (pp)

locally finite
finite refinement is point-finite. A similar proof works for the selective

version of this result, and using it we can prove the following assertion.

Theorem 3.8. Every selectively (O, O)-(pp)
locally finite
finite space is selectively metacompact.

Theorem 3.9. If the product X × Y of a space X and an infinite countably compact space Y is selectively (pp), then X is selectively
metacompact.

Proof. Let (Un: n ∈ N) be a sequence of open covers of X . For each n set Wn = {U × Y : U ∈ Un}. Apply the assumption
on X × Y to the sequence (Wn: n ∈ N) of open covers of X × Y and choose for each n ∈ N a partial refinement Hn

of Wn such that
⋃

n∈N
Hn is an open cover of X × Y and for any choice zH ∈ H , H ∈ Hn , the set {zH : H ∈ Hn} is closed

discrete in X × Y . Since Y is infinite and countably compact there is a non-isolated point y0 ∈ Y . For each n ∈ N let
Gn = {H ∩ (X × y0): H ∈ Hn} and Vn = {p X (G): G ∈ Gn}, where p X : X × Y → X is the projection. Then Vn is a partial
refinement of Un and V = ⋃

n∈N
Vn is an open cover of X .

We prove that each Vn is point-finite and so the sequence (Vn; n ∈ N) testifies to X being selectively metacompact.
Suppose there is m ∈ N such that Vm is not point-finite. Let p ∈ X be a point belonging to infinitely many (distinct) ele-
ments V i , i ∈ N, of Vm . For each i let Gi be the element from Gm such that p X (Gi) = V i . Then (p, y0) belongs to infinitely
many distinct elements Gi , i ∈ N. Pick points (p, yi) ∈ Gi , i ∈ N, in such a way that yi �= y j whenever i �= j. We get an
infinite closed, discrete set {(p, yi): i ∈ N} ⊂ {p} × Y , (p, yi) ∈ H ∈ Hm , contradicting {p} × Y being a countably compact
space. �
Example 3.10. The selective (pp) property is not finitely productive.

The Sorgenfrey line S is selectively (pp) being paracompact, but its square S2 does not have this property. Otherwise, by
Theorem 3.7, S2 would be selectively metacompact, but it is known [3] that it is not the case.

We consider now which spaces are preserving factors for the selectively (pp)-like properties.
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First we need to define a game which is a modification of the game defined in Remark 3.2. Given a space X define
the following infinite game G(X) on X played between two players ONE and TWO; they play a round for each natural
number n. In the n-th round ONE chooses an open cover Un of X , and TWO must then respond by choosing a point-finite
family Vn of open subsets of X such that Vn < Un . TWO wins a play U1, V1; U2, V2; . . . if

⋃
n∈N

Vn covers X and for each
n ∈ N and each choice F V ∈ [V ]<ω , V ∈ Vn , the set

⋃
V ∈Vn

F V is closed and discrete. A similar game G∗(X × Y ) is played on
the product X × Y , but in the n-th round TWO chooses Vn < Un (not necessarily point-finite). TWO wins if

⋃
n∈N

Vn covers
X × Y and for each n ∈ N and each choice zV ∈ V , V ∈ Vn , the set {zV : V ∈ Vn} is discrete.

Theorem 3.11. If TWO has a winning strategy in the game G(X), then TWO has a winning strategy in the game G∗(X × Y ) for every
compact space Y .

Proof. Let σ be a winning strategy for TWO in G(X). Define a strategy Σ for TWO in the game G∗(X × Y ) for a compact
space Y .

Let W1 be an open cover of X ×Y chosen by ONE in the first round of the game G∗(X ×Y ). Without loss of generality one
may assume that all elements of all Wn are rectangular sets of the form U (n) × V (n) , U (n) open in X , V (n) open in Y . TWO
looks at the open cover pY (W1) of Y , and argues as follows. For each x ∈ X there are finitely many elements U (1)

xi
× V (1)

xi
,

i � k(1)
x covering {x} × Y ; let O (1)

x = ⋂
i�k(1)

x
U (1)

xi
. Then O1 := {O (1)

x : x ∈ X} is an open cover of X , and the move O1 is a

legal move for ONE in the game G(X). Let the response of TWO in G(X) be σ(O1) = G1, with G1 a point-finite partial open
refinement of O1. For each G ∈ G1 there is O (1)

xG = ⋂
i�k(1)

xG
U (1)

xi
∈ O1, with G ⊂ O (1)

xG . Let H1 = {G × V (1)
xi

: i � k(1)
xG , G ∈ G1}.

Then H1 is an open partial refinement of W1. TWO plays Σ(W1) = H1 (in the game G∗(X × Y )).
Let W2 be the second move of ONE in G∗(X × Y ). TWO argues as in the first round and plays Σ(W1, W2) = H2. And so

on.
We use the fact that TWO wins a play

O1,σ (O1) = G1; O2; σ(O1, O2) = G2; . . .

in the game G(X), and prove that the play

W1,Σ(W1) = H1; W2,Σ(W1, W2) = H2; . . .

is won by TWO in G∗(X × Y ).
1.

⋃
n∈N

Hn is an open cover of X × Y .

Let (x, y) ∈ X × Y . For each n ∈ N there is U (n)
xi

× V (n)
xi

, i � k(n)
x , containing (x, y), hence (x, y) ∈ O (n)

x × V (n)
xi

, where

O (n)
x ∈ On . But

⋃
n∈N

Gn is an open cover of X , and it follows there exist n0 ∈ N and G ∈ Gn0 such that x ∈ G . Thus (x, y) ∈
G × V (n0)

xi
∈ Hn0 .

2. For each G ∈ Gn and each i � k(n)
xG pick a point (α

(n)
i , β

(n)
i ) ∈ G × V (n)

i ∈ Hn . We claim that for each n the set Tn of
points chosen in this way is discrete in X × Y .

For each G ∈ Gn , the set AG = {α(n)
i : i � k(n)

xG } is a finite subset of G and consequently An = ⋃{AG : G ∈ Gn} is closed and
discrete in X since TWO won in G(X).

Let (p,q) ∈ X × Y . Consider two possible cases.
Case 1: p /∈ An . There is a neighbourhood M p of p such that M p ∩ An = ∅, and thus (p,q) ∈ M p × Y and (α

(n)
i , β

(n)
i ) /∈

M p × Y for each i � k(n)
xG and each G ∈ Gn .

Case 2: p ∈ An . There is a neighbourhood S p of p such that S p ∩ An = {p}; it follows that S p × Y contains only points

(α
(n)
i , β

(n)
i ) with α

(n)
i = p. Since Gn is point-finite there are finitely many (p, β

(n)
i1

), · · · (p, β
(n)
is

) in S p × Y . The set (S p × Y ) \
{(p, β

(n)
i1

), · · · (p, β
(n)
is

)} is also a neighbourhood of (p,q) and intersects the set Tn only in (p,q), i.e. Tn is discrete. �
In a similar way one can prove the following theorem.

Theorem 3.12. Let X be a selectively (O, O)-(pp)closed discrete
finite space such that all Vn from the definition of selectively (pp)-spaces are

point-finite. Then the product X × Y is selectively (pp)discrete
singleton for every compact space Y .

In the next part of this section we are interested in the question regarding the Alexandroff duplicate and selectively
(pp)-spaces. First we need the following theorem.

Theorem 3.13. A closed irreducible image Y = f (X) of a selectively (pp)-space X is selectively (pp).

Proof. Let (Un: n ∈ N) be a sequence of open covers of Y . X is a selectively (pp)-space, and thus for the sequence
( f ←(Un): n ∈ N) of open covers of X there is a sequence (Wn: n ∈ N) such that Wn < f ←(Un), n ∈ N,

⋃
n∈N

Wn is an
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open cover of X and for each n and each choice xW ∈ W , W ∈ Wn , the set {xW : W ∈ Wn} is closed in X (which is enough
by Theorem 3.5). Since f is closed irreducible, for each n and each W ∈ Wn the set f #(W ) = Y \ f (X \ W ) is non-empty
open subset of Y . Therefore if for each n we put Vn = { f #(W ): W ∈ Wn} we have the sequence (Vn: n ∈ N) which witnesses
that Y is selectively (pp). We have only to prove that for each n and each choice yV , V ∈ Vn , the set Sn = {yV : V ∈ Vn} is
closed. Fix n. For each yV ∈ V ∈ Vn take an element W ∈ Wn and a point xW ∈ W such that f #(W ) = V and f (xW ) = yV .
The set {xW : W ∈ Wn} is closed in X for each n, because X is selectively (pp). Therefore, the set {yV : V ∈ Vn} is closed in
Y because f is a closed mapping. By Theorem 3.5, Y is selectively (pp). �

From Theorem 3.13 we obtain:

Corollary 3.14. If the Alexandroff duplicate AD(X) of a space X is selectively (pp), then X is also selectively (pp).

Proof. In [8, Lemma 1.6] it was shown that the mapping r : AD(X) → X × {0} ∼= X , defined by r � (X × {0}) = id(X×{0}) ,
r(x,1) = (x,0), is a closed retraction, while by [7, Lemma 2.3.8] the mapping r# is open. �

Parallel to Corollary 3.14 we have the following.

Theorem 3.15. If a space X is selectively (O, O)-(pp)discrete
singleton , then AD(X) has the same property.

Proof. Let (Un: n ∈ N) be a sequence of open covers of AD(X). Without loss of generality we may suppose that for each n,
Un ⊂ B, where B = B0 ∪ B1 is the base in AD(X) described above. For each n ∈ N let U ′

n be an open cover of X associated
with Un . Take a sequence (V ′

n: n ∈ N) which witnesses that X is selectively (O, O)-(pp)discrete
singleton: V ′

n < U ′
n ,

⋃
n∈N

V ′
n covers

X , and for each choice pV ∈ V , V ∈ V ′
n , the set P := {pV : V ∈ V ′

n} is discrete in X . For every V ∈ V ′
n pick U (V ) ∈ U ′

n such
that V ⊂ U (V ) and take FU (V ) = F V , where F V is a finite subset of X associated to V . Define for each n ∈ N,

V (0)
n = {

V̂ \ (
F V × {1}): V ∈ V ′

n, F V ∈ [X]<ω
}
, V (1)

n = {{
(x,1)

}
: (x,1) /∈ ∪V (0)

n
}
.

Then V (0)
n < Un ∩ V0, n ∈ N, and X × {0} ⊂ ⋃

n∈N
∪V (0)

n . Define Vn = V (0)
n ∪ V (1)

n , n ∈ N. Then the sequence (Vn: n ∈ N)

testifies to AD(X) being selectively (pp)discrete
singleton.

Clearly, for each n, Vn < Un and AD(X) = ⋃
n∈N

Vn . It remains to prove that for each n and each choice xV ∈ V , V ∈ Vn ,

the set Sn := {xV : V ∈ V (0)
n ∪ V (1)

n } is a discrete subset of AD(X). Consider three cases:
1. xV = (x,0) ∈ AD(X).
Then there is a neighbourhood of xV that meets the set Sn only in xV which follows from the fact that the set {pV : V ∈

V ′
n} is discrete.

2. xV = (x,1) and V ∈ V (1)
n .

Then {(x,1)} is a neighbourhood of xV which intersects the set Sn only in the point xV .
3. xV = (x,1) and V ∈ V (0)

n .
In this case (x,1) ∈ V̂ \ (F V × {1}) for some V ∈ V ′

n , and we use again the fact that the set {pV : V ∈ V ′
n} is discrete. �
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