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A b s t r a c t - - T h i s  paper deals with radial displacement fields in solid and liquid parts of a liquid- 
saturated porous medium with cylindrical cavity subjected to an arbitrary time dependent force. 
The Laplace transform technique is used to solve the problem. A particular ease of impulsive force 
is discussed and closed form solutions are obtained. As a special case, results of classical elasticity 
are derived. (~) 1999 Elsevier Science Ltd. All rights reserved. 
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i .  I N T R O D U C T I O N  

The problem of the disturbance in an elastic medium containing a cavity due to arbi t rary  stresses 

on the cavity is of great  importance,  particularly as a model of an ear thquake source. On the 
other hand, the propagat ion of elastic waves in a liquid-saturated porous medium has been a 
subject  of continued interest due to its importance in seismology and geophysics. Chakrabor ty  [1] 

studied the problem of the disturbance in an isotropic elastic infinite slab of finite thickness 
due to forces applied on the inner surface of a cylindrical cavity. Vodicka [2] discussed the 
problem of radial vibrations of an infinite medium with a cylindrical cavity. Thiruvenkatachar  
and Viswanathan [3] investigated the dynamic response of an elastic half-space with cylindrical 
cavity to t ime dependent  surface tractions over the boundary  of the cavity. In this paper,  we 

consider the problem of radial displacement of an unbounded liquid-saturated porous medium 
due to a cylindrical cavity whose boundary is subjected to an arbi t rary t ime dependent force. A 
particular case of impulsive force is discussed with the closed form solution. Results of classical 

elasticity are derived as a special case. 
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2. B A S I C  E Q U A T I O N S  

In the absence of dissipation, the field equations for the liquid-saturated porous solid, are given 
by Biot [4,5], 

02 
NV2u 4- grad{(D + N)e 4- Q~} = ~-'~ (pllU 4- p12U), (2.1) 

82 
grad{Qe + P~} = ~-~(pl2u 4- p22U), (2.2) 

where D, N, Q,and R are the elastic constants for the solid-liquid aggregate: Pn, Pn, P22 are 
dynamical coefficients, u and U are the displacements in the solid and liquid parts, respectively, 
and the corresponding dilatations are given by 

e -- divU, e = divU. (2.3a,b) 

The stresses in the solid ~ij and in the liquid a are given by 

c;ij = (De + Q~)~i~j + 2N~j, (2.4) 

= Qe + R~, (2.5) 

where 6~j is the Kronecker delta, and 

si, = ~ \azj  + az~ 1" (2.6) 

3. F O R M U L A T I O N  A N D  S O L U T I O N  OF T H E  P R O B L E M  

We consider an isotropic, homogeneous, liquid-saturated porous medium of infinite extent 
with a cavity of the form of circular cylinder of radius a. The surface of the cylindrical cavity 
is assumed to be acted upon by time-dependent pressure f(t).  We take the cylindrical polar 
coordinates (r, 8, z), with origin on the axis of cylinder and z-axis coinciding with it. We consider 
the case of radio/symmetry, and assume that all quantities depend upon the radial coordinate r 
and t only. Therefore, the displacements in the solid and liquid parts can be written as 

u = u ( r ,  t )~r ,  (3.1) 
U = U(r, t)~r. (3.2) 

With the help of equations (3.1) and (3.2), equations (2.1) and (2.2), reduce to 

02 
pV~u + QV~U = ~-~(pllU + p12U), (3.3) 

82 
QV2u 4-/~V2U -- ~"~(P12 u 4- P22U), (3.4) 

where 
0 2 1 0 1 

V~ = ~ + (3.5) 
r Or r 2" 

We assume that the initial displacements and their corresponding velocities are zero throughout 
the medium, that is, 

u(r,O) = u t ( r , 0 ) = ; }  
U(r, O) Ut(r, 0) for r > a. (3.6) 

The radiation condition imply that 

lira u(r, t) = lim U(r, t) = 0, for all t > 0. (3.7) 
~'--*OO r - - ~ O O  
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We define the potentials ¢(r, t) and ¢(r, t) by 

0¢ 0¢ (3.Sa,b) u = - ~  and U =  ~ .  

Substituting equations (3.Sa,b), in equations (3.3) and (3.4), we obtain the coupled equations 

{ 0 2  1 ~ _ }  { 0 2  1 0 )  02¢ 02¢ 
P ~ r  2 +- r  ¢ + Q ~ r  2 +-r  ~r  ¢ - - P n - ~ + P 1 2  0t 2, (3.9) 

Q ~ + - r ~ r  ¢ + R  ~ + - r ~ r r  =P12~-T+P22 &2.  

If ¢ or ¢ is eliminated from these equations, both ¢ and ¢ satisfy the same equation 

{ o, o.} 
AV 4 - B ~-~ V 2 + C ~-~ (¢, ¢) = 0, (3.11a,b) 

where 
02 1 02 

V2 = ~r 2 + r -~ '  A = P i t  - Q2, B = Pp22 + Rp11 - 2Qp12, (3.12) 

C -- pllp22 - p22, and P = D + 2N. 

Application of the Laplace transform to equations (3.11a,b) with respect to t gives the solutions 
of the transformed equations satisfying the radiation condition 

-¢ = A1Ko(pslr) + A2Ko(ps2r), (3.13) 

= E1go(pslr)  + E2go(ps2r), (3.14) 

where Ko(z) are the modified Bessel functions and p is the Laplace transform variable, and 

1 B - ~/B 2 - 4AC 1 1 B + ~/B 2 - 4AC (3.1ha,b) 
: = 2 A  , = = = ' 

and al ,  a2 are the velocities of fast P (or PI) wave and slow P (or Ps) wave respectively; A1, 
A2, El, and E2 are arbitrary constants. 

Application of the Laplace transform to equation (3.9) and (3.10), and the use of equations 
(3.13) and (3.14) yields 

Ej = m j A j ,  (j = 1,2), (3.16) 

where 
P$32" - -  P l l  Q832" - -  P12 

mj = P12 - -  Q 82 ---- P22 -- Rs2, (j = 1, 2). (3.17) 

With the help of equations (3.Sa,b), (3.13), (3.14) and (3.16), we obtain the Laplace transformed 
solutions 

~(r, p) = - [Axpsx K1 (pslr) + a2ps2Kx (ps2r)], (3.18) 

-U(r,p) = - [ m l  Alps l  g l  (pslr) + rn2A2ps2gl (ps2r)]. (3.19) 
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4. BOUNDARY CONDITIONS 

Deresiewicz and Skalak [6] formulated the boundary conditions appropriate for the boundaries 

of liquid-saturated porous solid. 
The boundary conditions for the present problem are given by 

(i) a r r = - f ( t ) ,  r - - a ,  t > O ,  (4.1) 

(ii) a = O ,  r = a ,  t > O ,  (4.2) 

where 

arr = P ~r + D - + ~r  + ' (4.3) 

a = Q  + + R ~ - ~ +  . (4.4) 

Applying Laplace transform to the boundary conditions (4.1) and (4.4), and making use of 
equations (3.18) and (3.19), we get the following equations: 

{(P + Q,~l)p2s~aKo(ps,a) + 2NpsiKl(pSla)} A,  
(4.5) 

+ {(P + Qm2)p2s~aKo(ps2a) + 2Nps2Kl(ps2a)} A2 = -a-](p), 

{ (Q + Rml)p2s~aKo(psla) } A1 + { (Q + Rm2)p2s~Ko(ps2a) } A2 = O. (4.6) 

Solving equations (4.5) and (4.6) gives 

1 
A1 = - - ~  {a-](p)(Q + rn2R)p2s~} go(pas2), (4.7) 

1 
A2 = ~ {a-](p)(Q + mlR)p2s 2} Ko(pas,), (4.8) 

where 
A = sis2 (Blp 4 + B2pS), 

B1 = asls2Ko(psla)Ko(ps2a)A(m2 - ml), (4.9) 

B2 = 2N[Q( s2Ko(ps2a)Kl (pSla) - Sl Ko(psl a)Kl (ps2a) } 

+ R{m2s2Ko(Ps2a)Kl(psla) - mlSlKo(psla)Kl(ps2a)}]. 

Substituting the values of A1,A2 from equations (4.7) and (4.8) in equations (3.18) and (3.19) 
gives 

= a [7(P) w, (r, p) - 7(P) E2 (r, p)], (4.10) 

= a[m 17(P) El (r, p) - m2-](p) E2 (r, p)], (4.11) 

where 

(Q + m2R)s2Ko(Ps2a) K,(pslr), (4.12) 
~l(r,  p) = Blp + B2 

(Q + mlR)s,Ko(psla) Kl(ps2r). (4.13) 
E2 (r, p) = Blp + B2 

Making use of the convolution theorem of the Laplace transform, we obtain from (4.10) and (4.11) 

u(r, t) = a[f(t) * w, (r, t) - f(t) * w2(t, r)], (4.14) 

U(r, t) = a[m,.f(t) * ~O, (r, t) -- m2/(t) * w2(r, t)], (4.15) 

where * denotes the convolution operation and wj(r, t), (j = 1, 2) are the functions whose trans- 
forms are •(r ,p) ,  (j = I, 2), respectively. 

The solutions u(r,t), U(r,t) given by (4.14) and (4.15) are known if wl(r,t) and w2(r,t) are 
known. Thus, the problem reduces to the determination of w1(r, t) and w2(r, t). 
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5. EVALUATION OF wl(r,t) AND w2(r,t) 
Applying the inverse Laplace t ransform to equation (4.12) gives 

1 [.~+ioo 
wl(r , t )  = ~ i  J'y-ioo e~t w l ( r 'p )  dp' (5.1) 

and with the help of asymptot ic  relation, we get 

a ((~JrEf2R)8 2 (a/r) 1/2 { ( r - - a ) )  
e~'~l(r,p)~ 2N { ( q + m ~ ) ; ~ : ( - ~ - ~ m l n ) S l }  ( ~ p + l )  exp p t ~ , 

where 
a Sls2A(m2 - -  m l )  

~l  = 2N {(Q + m2R)s2 - (Q + m l R ) S l } "  

Therefore, we have two different expressions for wl ( r , t )  corresponding to the cases, t < 

(r - a ) / a t  and t > (r - a ) /a l .  

G [ F--q 1 C" 

Figure 1. 

If  t < (r -- a ) /~ l ,  we have by Cauchy's  theorem (see Figure 1) 

r - a  
wl( r , t )  -- 0, t < , (5.2) 

(~1 

since the integral over B C ' A  vanishes as R --* o~. 

For the case of t > (r - a ) / a l ,  we take the contour A B C D E F G A  of Figure 1. The integrals 
over the arcs BC,  GA  and D E F  tend to zero as R --, oo, ~ ~ 0 and there are no poles of the 
integrand within the contour. Consequently, 

;+'- [/o ], = e p t  - -  . ePt~l (r ,p)  dp lim ePt~l (r ,p)  dp - wl ( r ,p )  dp (5.3) 
J -f - ioo C G 

the limit being taken for R --* oo and e ~ 0. 



122 R. KUMAR et al. 

On DC and FG, we put p = ~le i'~ and p = Cte -i~, respectively, and equation (5.3) becomes 

/ ~t+ioo ~ ~0oo 
e P t w l ( r , p ) d p  e - ( ' t  {Wl (r,¢l e-i~r) - W l  (r,¢lei~r)} gel, 

(5.4) 

where Ira(z) denotes the imaginary part. 
In equations (4.12) and (4.13), we make use of the following results: 

Ko(se -i~) = Ko(S) + i~rlo(s), (5.5a,b) 
Kl(Se -i'~) = -Kl(S) + ilrh(s). 

Then, we have 

~l(r, 6e-'D = k ; - ~ 7 / '  

where 

= -a(Q + m2R)s2 {Ko(6s~a)Kl(6Slr) + ~2iO(¢ls~a)Ii(6s,r)}, 

d = alr(Q + m2R)s2 { g o ( ~ l s 2 a ) I i ( ~ l S l r  ) - Io(~ls2a)Kl(¢lSlr)} ,  

e : -as182A(m2 -- ml)~l {Ko(~lsla)Ko(8182 a) -- lr2Io(¢lsla)Io(~ls2a)} 

- 2N(Q + m2R)s2 {Ko(¢ls2a)Kl(¢ lSla)  + lr2Io(~ls2a)Ii(( ls la)}  

+ 2N(Q + mlR)S l  {Ko(¢ l s la )K l ( ( l s2a )  + lr2Io(¢1sla)Ii(¢ls2a)},  

f = - a ~ s l s 2 A ( m 2  - ml)¢ l  {KO(¢lSla)Io(¢lS2a) + KO(¢lS2a)Io(¢ls la)}  

+ 2Nlr(Q + m2R)s2 {Ko(~ls2a)It(~lSla) - Io(¢ls2a)Kl(~lsla)} 

- 2Nlr(Q + mlR)S l  {Ko((ls la)I i(~ls2a) - Io(~lsta)Kl(~ls2a)}.  

Therefore, 
Zl(r '  ¢1) (5.6) 

Im[@l (r ,<le-i ' )]  = NI(<I) ' 

where 
Zl(r ,  ~1) = de - cf,  NI(;1) = e 2 + f2. (5.7a,b) 

Substituting (5.4) in (5.1) and making use of equation (5.6) gives 

~0 r - - a  1 oo Zl(r ,  ¢1) d~l, t > ~ (5.8) 
wl(r , t )  = ~ exp(--t~l) NI(¢I) Otl 

With the help of equations (5.2) and (5.8), we obtain the expression for wl(r, t) as 

w l ( r ' t ) = l ' H , r  t exp(-t¢l) NI(¢I----~ 

and H(x) is the Heaviside unit step function. 
Similarly, we obtain the expression for w2(r, t) as 

( r-_2a ) fo °¢ Z2(r,,2) d~2. (5.10) w2(r't) = l " t e-¢2t N2(~2) 
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Substituting equations (5.9) and (5.10), in equations (4.14) and (4.15), and using the convolution 
theorem, we obtain the displacement fields in the integral form 

u(r,t) -- a H t f ( t -  r)d~ e-¢lr  NI(~I) de1 
7r --a)/al 

oo ] (5.11) 
- H ( t  r~2a)~(:_a)/a f ( t - , )d~"  ~ e-"rZ2(r"2)  d,2 

N2(~2) J ' 

U(r,t) = a m i l l  t f ( t - r ) d v  e -¢1r Zl(r'~l---------) d¢l 
. _.)/,~, N1 (¢1) 

t oo (5.12) 

6. S P E C I A L  C A S E  

We consider the disturbance produced by an impulsive force at the boundary r = a as 

f(t) = F6(t), (6.1) 

where ~(t) is the Dirac delta function and F is the constant magnitude of the force and the 
Laplace transform of f(t) is -](p) = F. 

Therefore, equations (4.10) and (4.11) becomes 

~(r,p) = aF [~l(r ,p)  - ~2(r ,p)] ,  (6.2) 

Y(r, p) = a f  [m1~1 (r, p) - m 2 ~  (r, p)]. (6.3) 

Thus, using the inverse wj(r,t), (j = 1,2), of @j(r,p), (j  = 1,2), as given by equations (5.9) 
and (5.10), we obtain the displacement fields as 

'l/,(r,t) = a...F.~71. [H \(t-r - a'~gl ,/'of°° e-'lt Zl(r'~'l).N'l(~'l) d~"l 
(6.4) 

- H ( t  r : a ~  f°Oe_¢, t Z2(r,~2)d~2] 
a2 / J o  N2(¢2) ' 

U(r,t)= a~F mlH t e -¢~t d;1 
lr N1(~1) ' °° '  

In the limit as Q/R --* O, p12/p22 --* O, we obtain the expressions for displacement in the solid 
part, u(r, t) due to [6], whereas displacement in liquid part, U(r, t) vanishes. 
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