-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

ournal gf°
sc.ENce@mecr» MATHEMATICAL
5] ANALYSIS AND
ELSEVIER J. Math. Anal. Appl. 298 (2004) 418-431 w

www.elsevier.com/locate/jmaa

Backward bifurcations in simple
vaccination models

Fred Brauer

Department of Mathematics, University of British Columbia, Vancouver, BC V6T 122, Canada
Received 23 July 2003

Submitted by G.F. Webb

Abstract

We describe and analyze by elementary means some simple models for disease transmission with
vaccination. In particular, weige conditions for the existence multiple endemic equilibria and
backward bifurcations. We extend the results to include models in which the parameters may depend
on the level of infection.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

In compartmental models for the transmssiof communicable diseases there is usu-
ally a basic reproductive numbgp, representing the mean number of secondary infections
caused by a single infective introduced into a susceptible populatidty. ¥ 1, there is
a disease-free equilibrium which is asymptatly stable, and the infection dies out. If
Ro > 1, the usual situation is that there is an endemic equilibrium which is asymptotically
stable, and the infection persists. Even if the endemic equilibrium is unstable, the insta-
bility commonly arises from a Hopf bifurcation and the infection still persists but in an
oscillatory manner. More precisely, & increases through 1 there is an exchange of sta-
bility between the disease-free equilibrium ahd €ndemic equilibrium (which is negative
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Fig. 1. Forward bifurcation.

as well as unstable and thus biologically meaningle®g ik 1). There is a bifurcation, or
change in equilibrium behavior, @y =1 but the equilibrium infective population size
depends continuously aRg. Such a transition is called a forward, or transcritical, bifurca-
tion.

The behavior at a bifurcation may be described graphically by the bifurcation curve,
which is the graph of equilibuim infective population sizé as a function of the basic
reproductive numbeRy. For a forward bifurcation, the bifurcation curve is as shown in
Fig. 1.

It has been noted [4-6,11] that in epidemiodels with multiple groups and asymmetry
between groups or multiple inetion mechanisms it is possible to have a very different
bifurcation behavior aRp = 1. There may be multiple positive endemic equilibria for val-
ues ofRg < 1 and a backward bifurcation & = 1. This means that the bifurcation curve
has the form shown in Fig. 2 with a broken curve denoting an unstable endemic equilibrium
that separates the domains of attraction of asymptotically stable equilibria.

The qualitative behavior of an epidemic system with a backward bifurcation differs
from that of a system with a forward bifurcation in at least three important ways. If there
is a forward bifurcation aig = 1 it is not possible for a disease to invade a population
if Ro <1 because the system will retuta the disease-free equilibriuth=0 if some
infectives are introduced into the population. On the other hand, if there is a backward
bifurcation atRgp = 1 and enough infectives are introduced into the population to put the
initial state of the system above the unstable endemic equilibriumRyith 1, the system
will approach the asymptotically stable endemic equilibrium.
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Fig. 2. Backward bifurcation.

Other differences are observed if thergmaeters of the system change to produce a
change inRg. With a forward bifurcation akp = 1 the equilibrium infective population
remains zero so long aBp < 1 and then increases continuously Bg increases. With
a backward bifurcation aRg = 1, the equilibrium infective population size also remains
zero so long a®Rp < 1 but then jumps to the positive endemic equilibriumRgsncreases
through 1. In the other direction, if a disease is being controlled by means which decrease
Ry it is sufficient to decreas®g to 1 if there is a forward bifurcation &g = 1 but it is
necessary to brin@o well below 1 if there is a backward bifurcation.

These behavior differences are important in planning how to control a disease; a back-
ward bifurcation atRg = 1 makes control more difficult. One control measure often used
is the reduction of susceptibility infection produced by vaccination. By vaccination we
mean either an inoculation which reduces susceptibility to infection or an education pro-
gram such as encouragement of better hygiene or avoidance of risky behavior for sexually
transmitted diseases. Whether vaccination is inoculation or education, typically it reaches
only a fraction of the susceptible population and is not perfectly effective. In an apparent
paradox, models with vaccination may exhibaidkward bifurcations, making the behavior
of the model more complicated than themsponding model withowaccination. It has
been argued [1] that a partially effective vazaiion program applied to only part of the
population at risk may increase the severity of outbreaks of such diseases as HIV/AIDS.

We will give a complete gqualitative analysis of the two-dimensional model examined
in [11] where there is a possibility of a backward bifurcation. In [11] the local stability
analysis was carried out using the center manifold theorem and examination of normal
forms [10]. We are able to obtain the resuitg an elementary approach and avoid the
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center manifold theorem. Also, we extend them to models in which the parameters may
depend on the level of infection. However, the center manifold approach remains essential
for more complicated models because of tiechnical complications of an elementary
approach.

2. Thevaccination model

The model we will study adds vaccination to the simple SIS model

S'=A—-BSI —uS+ylI,
I'=BSI—(u+y)l. 1)

This model is just the basic model of Kermack and McKendrick [9] with the incorpora-
tion of a constant birth rate in the susceptible class and a proportional natural death rate
u in each class and no disease deaths.

In (1) the total population sizev =S+ 17 andN' =S8 +1'=A — uN. Then
lim,— - N(t) = K = A/u for every choice of initial values and the system (1) is as-
ymptotically autonomous. The theory of asymptotically autonomous systems [12-14]
implies that we may replacd by K and reduce the dimension of the system by using
S =N — 1 =K — I to give the single differential equation

I'=BI(K—1)— (u+y)I. )
This is easily analyzed copletely. There is a disease-free equilibridm= 0 which is
globally asymptotically stable if

K

Ro= LK

m+y

If Ro > 1 the disease-free equilibrium is unisa but there is an endemic equilibrium
I = K(1— 1/Rp) > 0 which is globally asymptotically stable.

According to the theory of asymptotically autonomous systems, this result extends to
the system

<1

§"=A(N) —B(N)SI —uS+vyl,
I'=8SI — (n+y)I, )

where the population carrying capaciky is now defined byA(K) = uK, A'(K) <
and the contact rat@(N) is now a function of total population size witig(N) non-
decreasing and(N) non-increasing.

To the model (3) we add the assumption that in unit time a fraetiohthe susceptible
class is vaccinated. The vaccination may reduce but not completely eliminate susceptibility
to infection. We model this by including a factet, 0 < o < 1, in the infection rate of
vaccinated members with = 0 meaning that the vaccine is perfectly effective ang 1
meaning that the vaccine has no effect. We assalso that the vaccination loses effect at
a proportional rat@. We describe the new model by including a vaccinated dfgssith
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§'=AN) = B(N)SI —(u+P)S+yI+0V,

I"'=BN)SI+B(N)VI — (u+y)l,

V' =¢S —oB(N)VI—(u+6)V, (4)
andN =S+ 1+ V.Again,N'= A(N) — uN and lim_, o, N(¢t) = K for every choice of

initial values and by the theory of asymfitally autonomous systems we may replace
by K andS by K — I — V to give the qualitatively equivalent system

I'=B[K—1-QQ-0)V]I—(u+ ),
Vi=¢plK—I1—0BVI—(u+6+¢)V, (5)

with 8 = B(K). The system (5) is the basic vaccination model which we will analyze. We
remark that if the vaccine isompletely ineffectiveg = 1, then (5) is equivalent to the SIS
model (2). If there is no loss of effectiveness of vaccthe; 0, and if all susceptibles are
vaccinated immediately (formallg, — oo), the model (5) is equivalent to

I'=0BI(K—-1)—(u+y)I
which is the same as (2) with replaced by 8 and has basic reproductive number

Ry =2PX _ ko< ko
n+ty
We will think of the parameterg, v, 6, ¢ ando as fixed and will views as variable.
In practice, the parameter is the one most easily controlled, and later we will express
our results in terms of an uncontrolled model with paramegers, y, 6, ando fixed
and examine the effect of varyirfg With this interpretation in mind, we will usg(¢) to
denote the basic reproductive numbéthe model (5), and we will see that

Ry < R(¢) < Ro.

Equilibria of the model (5) are solutions of

BI[K —1—(1-o)V]=(u+pl, (6)
OIK —Il=0BVI+(u+0+¢)V. (7)
If 1 =0 then (6) is satisfied and (7) leads to
_ ¢
u+0+¢

This is the disease-free equilibrium.
The matrix of the linearization of (5) at an equilibriugh V) is

|:—2,31—(1—0),3V—(,U«+J/)+,3K —(1-0)BI ]
—(¢p+0oBV) —(u+0+¢p+aopD]
At the disease-free equilibrium this matrix is
[—(1—U)ﬂV—(M+V)+ﬂK 0 }
—(@+0BV) —(u+0+9)
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which has negative eigenvalues, implying #isymptotic stability of the disease-free equi-
librium, if and only if

—1-0)BV —(u+y)+BK <0.
Using the value o¥/ at the disease-free equilibriuthis condition is equivalent to
BK u+0+o0¢ w+6+o¢
R(¢) = : = Ko

w+y wu+6+¢ nw+e+¢

The casep = 0 is that of no vaccination wittR(0) = Rg, and R(¢) < Ro if ¢ > 0. In
fact, it is not difficult to show, using a standard a priori bound argument, thiat # 1 the
disease-free equilibrium is globally aspiotically stable [11]. We note thaj = o Ro =
limg—, 00 R(¢) < Ro.

<1

3. Endemic equilibria

If o =1, meaning that the vaccine has no effect, we have seen that (5) is equivalent to
the SIS model (2) and iRp > 1 there is a unique endemic equilibrium which is globally
asymptotically stable. If & o < 1 endemic equilibria are solutions of the pair of equations

BIK—1-(1-0)V]=n+y,
OK —Il=0BVI+(u+6+9)V. (8)

We eliminateV using the first equation of (8) and substitute into the second equation to
give an equation of the form

AI? +BI4+C=0 9)
with

A=op,

B=(u+0+0¢)+o(n+y)—opk,

C=(M+y)(l;+9+¢)—(u+9+6¢)K. (10)

If o =0, (9)is a linear equation with unique solution

_(M+y)(u+9+¢):K[1_i}
B +0) R@) |

which is positive if and only ifR(¢) > 1. Thus ife = 0 there is a unique endemic equilib-
rium if R(¢) > 1 which approaches zero &¢) — 1+ and there cannot be an endemic
equilibrium if R(¢) < 1. In this case it is not possible to have a backward bifurcation at
R(¢)=1.

We note thatC <0 if R(¢) >1,C=01if R(¢)=1,andC > 0if R(¢p) <1.lf o >0,
so that (9) is quadratic and R(¢) > 1, then there is a unique positive root of (9) and thus
there is a unique endemic equilibrium.R{¢) = 1, thenC = 0 and there is a unique non-
zero solution of (9Y = — B/ A which is positive if and only ifB < 0. If B < 0 whenC =0

I =K
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there is a positive endemic equilibrium fB(¢) = 1. Since equilibria depend continuously
on ¢ there must then be an interval to the leftRfp) = 1 on which there are two positive
equilibria

I —B++/B2—-4AC
o 2A )

This establishes our first main result.

Theorem 1. The system (5) has a backward bifurcation at R(¢) =1 ifandonlyif B <0
when g is chosen to make C = 0.

We can give an explicit criterion in terms of the parametery, 6, ¢, o for the exis-
tence of a backward bifurcation &1(¢) = 1. WhenR(¢) = 1, C =0 so that

(uW+0+0P)BK =(u+y)(n+6+e). (11)
The conditionB < 0 is

mw+0+o0p)+o(u+y)<oBK
with 8K determined by (11), or

o+ y)u+0+¢) > (u+0+oP)[(L+6+09)+o(u+y)]

which reduces to
c(L—o)u+y)p > (u+6+0¢)> (12)

A backward bifurcation occurs d(¢) = 1, with 8K given by (11) if and only if (12) is
satisfied. We point out that for an SI model, where- 0, the condition (12) becomes

oc(l—o)up > (u+6+0d)>.
But

(L+0+0¢)°=u?+ 0%+ 02p% + 210 + 200¢ + 2o ¢
>2uo¢p >o(l—o)up

becauser < 1. Thus a backward bifurcation is not possibleyit= 0, that is, for an Sl
model. Likewise, (12) cannot be satisfiedrit= 0.

If C >0 and eitheB > 0 or B2 < 4AC, there are no positive solutions of (9) and thus
there are no endemic equilibria. Equati®) fas two positive solutions, corresponding
to two endemic equilibria, if and only i€ > 0, or R(¢) < 1, andB < 0, B® > 4AC, or
B < —2JAC <0.1f B=—-2AC there is one positive solutioh= —B/2A of (9).

If (12) is satisfied, so that there is a backward bifurcatio® @) = 1, there are two
endemic equilibria for an interval of values gffrom

_(u+y)(n+6+9)
 p+6+o¢

BK
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corresponding t&R (¢) = 1 to a values, defined byB = —2+/ AC. To calculates,., we let
x=u+y—BK,U=u+0+0c¢ptogiveB=ox+U,BC=BKU+(u+y)(u+0+4¢).
ThenB? = 4AC becomes

(0x +U)?+4B0KU — 4o (u+y)(u+6 +¢) =0
which reduces to

(0x)2 —2U(0x) +[U? +45(1— o) (u+ )] =0
with roots

ox=U£2/o(1—0)(u+y)o.

For the positive rootB = ox + U > 0, and since we requird < 0 as well asB? —
4AC =0, we obtain8, fromox =U — 2/oc(1—0)(u + y)¢ so that

oK =0(u+y)+2/0(L—0)(u+y)¢ — (u+6+0¢). (13)
Then the critical basic reproductive numirris given by
_HhFO0+0¢ o(uty)+2J/o(d—0)(u+y)¢—(n+6+09)

T outo+¢ o(n+y)¢
and it is easy to verify with the aid of (13) th&t < 1.

4. Thebifurcation curve

In drawing the bifurcation curve (the graph bfas a function ofR(¢)), we think of 8
as variable with the other parametersy, o, Q, ¢ as constant. TheR(¢) is a constant
multiple of 8 and we can think oB as the independent variable in the bifurcation curve.

Implicit differentiation of the eqilibrium condition (9) with respect t@ gives

(u+y)(u+6+9)

B2 '
It is clear from the first eqlibrium condition in (8) that/ < K and this implies that the
bifurcation curve has positive slope at equilibrium values wit 2- B > 0 and negative
slope at equilibrium values with#2l + B < 0. If there is not a backward bifurcation at
R(¢) = 1, then the unique endemic equilibrium fB(¢) > 1 satisfies

2A1 + B=+/B2—4AC >0

and the bifurcation curve has positive slope at all points wiierd. Thus the bifurcation
curve is as shown in Fig. 1.

If there is a backward bifurcation #&(¢) = 1, then there is an interval on which there
are two endemic equilibria given by

2AI + B=++v B2 —4AC.

The bifurcation curve has negative slope at the smaller of these and positive slope at the
larger of these. Thus the bifurcation curve is as shown in Fig. 2.

Al + B o1k — D+
ag = °
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The condition 47 + B > 0 is also significant in the local stability analysis of endemic
equilibria.

Theorem 2. An endemic equilibriumof (5) is (locally) asymptotically stable if and only if
it correspondsto a point on the bifurcation curve at which the curve is increasing.

Proof. The matrix of the linearization of (5) at an equilibriuth V) is

=21 —(1-0)BV —(n+v)+BK —-(1-0)B1
[ —(@+0BV) —(u+9+¢+aﬁl>]
Because of the equilibrium conditions)(8he matrix at an endemic equilibriuca, V) is
—BI —(1—-0)BI
[—(¢+oﬁV) —(u+9+¢+0ﬁ1)]

This has negative trace, and its determinant is

o(BD?+BI(+6+¢) — L—0)pBI — (L—0)BV - ol
=BI[20B1 + (1 +6 +0¢) +o(u+y) —opK]=pI[2A] + BI.

If 2A1 + B > 0, that is, if the bifurcation curve has positive slope, then the determinant
is positive and the equilibrium is asymptotically stable. #2+ B < 0 the determinant

is negative and the equilibrium is unstable. In fact, it is a saddle point and its stable sepa-
ratrices in the(l, V) plane separate the domains of attraction of the other (asymptotically
stable) endemic equilibrium anle disease-free equilibrium.c

5. Global behavior

In order to examine the global behavior of solutions of the system (5), we begin by
showing that every solution witli(0) > 0, V(0) > 0 remains bounded for atl> 0. To
show this we first show that the triangular regibe: 0, V =0, I + V < K is an invariant
set. If I =0 thenI’ = 0 and a solution which reachds= 0 must remain o/ = 0. If
V =0 andl < K thenV’ > 0 and a solution which reach&s= 0 cannot cross into the
regionV <0.f I+ V=Kthen(I+V)=K'+V' =—(u+y)I — (u+6)V <0and
a solution for which/ + V reaches cannot cross into the regidr+ V > K. This shows
that once a solution enters the regibz 0, V > 0, I + V < K it remains in this region.

If 1(0)+ V(0) > K, since(/ +V) <0solongad + V > K the solution must cross the
line I +V = K and enter the regioh=0,V =0, I + V < K. Thus every solution with
1(0) >0,V (0) >0 is bounded for & ¢ < 00.

The next step is to show that there are no periodic solutions of the system (5), which we

do by means of the Dulac criterion [3] using the Dulac functioh V) = 1/1V. Because

|:,3[K—I—(1—0)V]I—(,u—|—y)1i| +[¢(K—1)—GﬁV1—(M+9+¢)V}
I v

1v 1v

B oK o _ B _9K-D
vV Iv2 y2 vy V2 ’

provided O< I < K, V > 0, there is no periodic solution of (5) in this region.
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To complete the analysis we now use the Poincaré—Bendixson theorem to conclude that
every solution of (5) approaches an equilibrium. Since we know the possible equilibria and
their domains of attraction if there is more than one equilibrium we now have a complete
understanding of the behavior of atibns of the vaccination model (5).

6. Dependence on vaccination rate

In applications of the model (5) it may be useful to think of the parameiess, 1,

o, K, andé as fixed andp as a control parameter. The paramejerand K are proper-
ties of the population being studied but the paramgteray change as this population’s
behavior evolves. While it may be possible to chaagandé by improving the vaccine
andy by improving treatment, thehoice of vaccination raig is at the discretion of those
attempting to use a vaccinationggram to control the infection.

If Ro <1 a vaccination program may control thédntion more rapidly but the infec-
tion will die out even without vaccination. IR = o Ro > 1, a vaccination program will
decrease the number of infectives but will not by itself be able to wipe out the infection.
Thus from a public health point of view the interesting casgjs< 1 < Ro for which there
is a valuepg which will decrease the basic reproductive number to 1, namely

BK — (u+v) Ro—1
¢0_(M+9)M+y—6,31( —(u+9)1_RS.
Vaccination at a rateg is necessary to control the infection. This is also the interesting case
from a mathematical point of view becauséhere is a backward bifurcation &(¢) =1
then control of the infection would require a further reduction of the basic reproductive
number meaning a greater vaccination rate eXplore this question we re-examine the
analysis of Section 3 viewing as fixed and as variable.

From this perspective, Theorem 1 tells that there is a backwd bifurcation at
R(¢) =1if and only if B, given by (10) is negative fap = ¢g. Thus there is a backward
bifurcation atR(¢) =1 if and only if

(14)

u+60+opo+o(u+y)—opK <0.
Using (14), we may reduce this condition to

L-a)u+y)(u+6) <o[BK — (u+y)][(n+y) —opK],
or

(1-0)(n+6) <o(Ro—1)(1—R5) (1 +p). (15)

Since this cannot be satisfied when= 0 there cannot be a backward bifurcatiowiis
sufficiently small.

The maximum value, of ¢ such that there are two endemic equilibriaif (15) is satisfied
is given by B = —2/AC, or B2 = 4AC, B < 0. The condition (13), now viewed as an
equation forp instead of as an equation f@ris a quadratic equation /2. Then/¢. is
the smaller root of

o(vV$): =2/l =)+ 1)Vh + [ +6 +0{BK — (u+7)}]=0. (16)
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After solving for ¢, we may then calculate the corresponding critical basic reproductive
numberR,. = R(¢.). If there is a backward bifurcation &(¢) = 1 thenR, is the basic
reproductive number which must be achievgd/hccination in order to control the infec-
tion. The calculation of. and R, in terms of the model parameters is technically messy
but is easily done numerically for any given set of parameter values.

For example, with the parameter valyg& =50, 4 =0.1,y =12,6 =0.5,06 = 0.2
we haveRp = 4.13, R = 0.83 and¢o = 10.83. SinceB < 0 when¢ = 3.0 there is a
backward bifurcation aik(¢) = 1. We find from (16) thatp. = 17.8 and thence that
R, = 0.93. Thus while it is possible to bring the basic reproductive number down to 1
with a vaccination rate of 3.0, a much highexceination rate of 17.8 is needed to bring
the infective population size down to zero. We could also find the valug. dfy simu-
lations of the system (5) with a range of values of the parangetén doing this, if we
are not careful to take the initial conditions the domain of attraction of the endemic
equilibrium we may be misled into thinking that the endemic equilibrium has disappeared.
However, this process will indicate that for parameter values close to but more ttiae
approach to the disease-free equilibrium ispgow, warning that in practice one should
choose a vaccination rate substantially larger than the critical rate. Another way to deter-
mine ¢. would be to simulate using a bifurcation program such as AUTO or LOCBIF.
We would find that with the given parametéing critical vaccination rate is 17.795, corre-
sponding to an equilibriund = 8.55, V = 36.68. Yue Xian Li has pointed out that there
is also a Hopf bifurcation leading to periodic solutions goe 2.425, corresponding to an
equilibrium’ = —2.52, V =50.53. This equilibrium, of course has no biological signifi-
cance.

7. Dependence of parameterson infective population size

We have studied the model (5) with parameters which are constant, or which perhaps
may drift in response to external effects. However, it would be natural to expect that in the
presence of infection individuals might decrease the number of contacts they make in unit
time. Thus we might se® = Boh (1), whereh(0) = 1 andh’ (1) < 0 and replace the model
(5) by the model

I'=Boh(D[K =1 —A—=o)V]I — (u+ )1,

V' =¢[K — I1—oBoh(DVI — (u+6 +¢)V. (17)
Itis easy to calculate that the basic reproductive number of the model (17) is
BoK Nl 0+o¢
ut+y wpn+o+¢

Our goals are to obtain a necessary and sufficient condition for the existence of a
backward bifurcation and to determine the stability properties of equilibria for this gen-
eralization of the original model (5). We write the model (17) in the form

R(¢) =

I'=I1f1,V.p), V=g, V,B)
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with

fUV.B)=B[K -1 -A=0)V]=(u+y),
g, V.B)=¢lK —I]1—0BVI—(u+6+¢)V,
andg = Boh(I). The determinant of the matrix

A_|:1f1 + Bofplh' (1) va}
g1+ Bofph'(I)  gv
of the linearization of (17) at an endemic equilibrigim V) is

I[ frgv — fvgr + Boh' (D (fsgv — frgp)]-

If this determinant is negative the equilibrium is a saddle point.
The bifurcation curve for the model (17) is given by

f1.V, Boh(D)] =0, g[1. V. Boh(I)] =0. (18)

Since R(¢) is a constant multiple oBp, we can obtain the sign of the slope of the bi-
furcation curve by calculating!/dBo. Implicit differentiation of (18) with respect tgp
gives

detd- L _ h(D(fras — fagv]
d,BO_ V& B8V 1.

Since
fv=—-B(1-0) <0, fg=K—-1-—(1-0)V >0,
gv=—(u+0+¢+0BI)<0, gg=—-0lV <0,

we havefy gg — fggv > 0 and thusiI/dpo and detd have the same sign. This implies
that an equilibrium corresponding to a poott the bifurcation curve where the slope is
negative is a saddle point, juss for the simpler model (5). Becauge < 0 andgy <0

it is clear thatA has negative trace and thus every equilibrium for which the slope of the
bifurcation curve is positive is asymptotically stable. The model extension of allowing the
parametep to be a decreasing function éfcannot destabilize an endemic equilibrium.

Another plausible extension walibe to adjust the vaccination ragen response to the
level of infection, that is to replace the constartty an increasing functioa (7). In addi-
tion, if the vaccination program is an educatiorogram designed to influence behavior of
susceptibles it would be reasonable to suggest that an increase in the number of infectives
might decrease, representing a strengthening of thieet of vaccination. Further, an in-
crease in the number of infectives might cause a decrease in titeatatéhich vaccination
effects are lost and even an increase in the recoveryyrdg causing more infectives to
seek treatment. It is easy to verify that none of these changes can destabilize an endemic
equilibrium.

The assumptions that the parameters of the model (17) depend on the size of the in-
fective population is intended to model a situation in which increased levels of infection
influence behavior in order to reduce the risk of becoming infected. Another attempt to
include this sort of behavior in an SIS model has been the division of the population into a
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highly active core group and a less active non-core group with recruitment from the non-
core group into the core group which depends on the size of the infective population [2].
It has been shown in [2] that this structure admits the possibility of instability of an en-
demic equilibrium and oscillatory behavidrhe vaccination model (17) does not support
this possibility. Thus, the notioof a core group, which has been an important idea in the
modeling of sexually transmitted diseases [8], is more general than the vaccination model
in the sense of the variety of behavior admitted.

8. Conclusions

We have examined the simplest possible vaccination model and have shown by elemen-
tary algebraic means how to analyze the existence of multiple endemic equilibria when the
basic reproductive number is less than h équilibrium corresponding to a point on the
bifurcation curve with negative slope is uable, and an equilibrium corresponding to a
point on the bifurcation curve with positive slope is asymptotically stable. Our model does
not admit the poshkility of oscillations about an undtée endemic equilibrium, which is
supported by models with core and non-core groups having different contact rates.

We have considered only SIS models with no disease fatalities, which may be formu-
lated as two-dimensional models when vaccination is included. In order to allow disease
fatalities or to consider SIR models we would have to use three-dimensional models. The
elementary approach used here can be applied to such models to obtain at least partial
results.

The models we have examined could also be treated by using center manifold theory
and normal forms. However, the required preliminary transformations would be at least as
complicated technically as our approach. Fadels with more compartments, the analysis
by elementary means becomes hopelesslyptimated and a center manifold approach
would be necessary. It would be of considerable interest to determine if the properties we
have found in simple examples carry over to more complicated models.

Although the introduction of a vaccination lpry may lead to backward bifurcations,
we emphasize that it always decreases infeqtopulation size. The danger of a vaccina-
tion policy is that an unforeseen backward bifurcation may require a larger than expected
vaccination fraction to control a diseasealWaccine can be developed which is completely
effective, this possibility does not arise, and a program which decreases the contact rate can
also control a disease withowtdding to backward bifurcations. Nevertheless, a vaccina-
tion program, even one which is not fully effective, may be a useful approach in controlling
infections.
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