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Abstract

We describe and analyze by elementary means some simple models for disease transmiss
vaccination. In particular, we give conditions for the existence of multiple endemic equilibria and
backward bifurcations. We extend the results to include models in which the parameters may
on the level of infection.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

In compartmental models for the transmission of communicable diseases there is u
ally a basic reproductive numberR0, representing the mean number of secondary infect
caused by a single infective introduced into a susceptible population. IfR0 < 1, there is
a disease-free equilibrium which is asymptotically stable, and the infection dies out.
R0 > 1, the usual situation is that there is an endemic equilibrium which is asymptot
stable, and the infection persists. Even if the endemic equilibrium is unstable, the
bility commonly arises from a Hopf bifurcation and the infection still persists but in
oscillatory manner. More precisely, asR0 increases through 1 there is an exchange of
bility between the disease-free equilibrium and the endemic equilibrium (which is negativ
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Fig. 1. Forward bifurcation.

as well as unstable and thus biologically meaningless ifR0 < 1). There is a bifurcation, o
change in equilibrium behavior, atR0 = 1 but the equilibrium infective population siz
depends continuously onR0. Such a transition is called a forward, or transcritical, bifur
tion.

The behavior at a bifurcation may be described graphically by the bifurcation c
which is the graph of equilibrium infective population sizeI as a function of the basi
reproductive numberR0. For a forward bifurcation, the bifurcation curve is as shown
Fig. 1.

It has been noted [4–6,11] that in epidemicmodels with multiple groups and asymme
between groups or multiple interaction mechanisms it is possible to have a very diffe
bifurcation behavior atR0 = 1. There may be multiple positive endemic equilibria for v
ues ofR0 < 1 and a backward bifurcation atR0 = 1. This means that the bifurcation cur
has the form shown in Fig. 2 with a broken curve denoting an unstable endemic equil
that separates the domains of attraction of asymptotically stable equilibria.

The qualitative behavior of an epidemic system with a backward bifurcation d
from that of a system with a forward bifurcation in at least three important ways. If
is a forward bifurcation atR0 = 1 it is not possible for a disease to invade a popula
if R0 < 1 because the system will returnto the disease-free equilibriumI = 0 if some
infectives are introduced into the population. On the other hand, if there is a bac
bifurcation atR0 = 1 and enough infectives are introduced into the population to pu
initial state of the system above the unstable endemic equilibrium withR0 < 1, the system
will approach the asymptotically stable endemic equilibrium.
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Fig. 2. Backward bifurcation.

Other differences are observed if the parameters of the system change to produc
change inR0. With a forward bifurcation atR0 = 1 the equilibrium infective populatio
remains zero so long asR0 < 1 and then increases continuously asR0 increases. With
a backward bifurcation atR0 = 1, the equilibrium infective population size also rema
zero so long asR0 < 1 but then jumps to the positive endemic equilibrium asR0 increases
through 1. In the other direction, if a disease is being controlled by means which de
R0 it is sufficient to decreaseR0 to 1 if there is a forward bifurcation atR0 = 1 but it is
necessary to bringR0 well below 1 if there is a backward bifurcation.

These behavior differences are important in planning how to control a disease; a
ward bifurcation atR0 = 1 makes control more difficult. One control measure often u
is the reduction of susceptibilityto infection produced by vaccination. By vaccination
mean either an inoculation which reduces susceptibility to infection or an educatio
gram such as encouragement of better hygiene or avoidance of risky behavior for s
transmitted diseases. Whether vaccination is inoculation or education, typically it re
only a fraction of the susceptible population and is not perfectly effective. In an app
paradox, models with vaccination may exhibit backward bifurcations, making the behav
of the model more complicated than the corresponding model withoutvaccination. It has
been argued [1] that a partially effective vaccination program applied to only part of th
population at risk may increase the severity of outbreaks of such diseases as HIV/A

We will give a complete qualitative analysis of the two-dimensional model exam
in [11] where there is a possibility of a backward bifurcation. In [11] the local stab
analysis was carried out using the center manifold theorem and examination of n
forms [10]. We are able to obtain the resultsby an elementary approach and avoid
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center manifold theorem. Also, we extend them to models in which the parameter
depend on the level of infection. However, the center manifold approach remains es
for more complicated models because of the technical complications of an elementa
approach.

2. The vaccination model

The model we will study adds vaccination to the simple SIS model

S′ = Λ − βSI − µS + γ I,

I ′ = βSI − (µ + γ )I. (1)

This model is just the basic model of Kermack and McKendrick [9] with the incorp
tion of a constant birth rateΛ in the susceptible class and a proportional natural death
µ in each class and no disease deaths.

In (1) the total population sizeN = S + I and N ′ = S′ + I ′ = Λ − µN . Then
limt→∞ N(t) = K = Λ/µ for every choice of initial values and the system (1) is
ymptotically autonomous. The theory of asymptotically autonomous systems [1
implies that we may replaceN by K and reduce the dimension of the system by us
S = N − I = K − I to give the single differential equation

I ′ = βI (K − I) − (µ + γ )I. (2)

This is easily analyzed completely. There is a disease-free equilibriumI = 0 which is
globally asymptotically stable if

R0 = βK

µ + γ
< 1.

If R0 > 1 the disease-free equilibrium is unstable but there is an endemic equilibriu
I = K(1− 1/R0) > 0 which is globally asymptotically stable.

According to the theory of asymptotically autonomous systems, this result exten
the system

S′ = Λ(N) − β(N)SI − µS + γ I,

I ′ = βSI − (µ + γ )I, (3)

where the population carrying capacityK is now defined byΛ(K) = µK, Λ′(K) < µ

and the contact rateβ(N) is now a function of total population size withNβ(N) non-
decreasing andβ(N) non-increasing.

To the model (3) we add the assumption that in unit time a fractionφ of the susceptible
class is vaccinated. The vaccination may reduce but not completely eliminate suscep
to infection. We model this by including a factorσ , 0 � σ � 1, in the infection rate o
vaccinated members withσ = 0 meaning that the vaccine is perfectly effective andσ = 1
meaning that the vaccine has no effect. We assume also that the vaccination loses effec
a proportional rateθ . We describe the new model by including a vaccinated classV , with
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S′ = Λ(N) − β(N)SI − (µ + φ)S + γ I + θV,

I ′ = β(N)SI + σβ(N)V I − (µ + γ )I,

V ′ = φS − σβ(N)V I − (µ + θ)V, (4)

andN = S + I + V . Again,N ′ = Λ(N) − µN and limt→∞ N(t) = K for every choice of
initial values and by the theory of asymptotically autonomous systems we may replaceN

by K andS by K − I − V to give the qualitatively equivalent system

I ′ = β
[
K − I − (1− σ)V

]
I − (µ + γ )I,

V ′ = φ[K − I ] − σβV I − (µ + θ + φ)V, (5)

with β = β(K). The system (5) is the basic vaccination model which we will analyze
remark that if the vaccine iscompletely ineffective,σ = 1, then (5) is equivalent to the SI
model (2). If there is no loss of effectiveness of vaccine,θ = 0, and if all susceptibles ar
vaccinated immediately (formally,φ → ∞), the model (5) is equivalent to

I ′ = σβI (K − I) − (µ + γ )I

which is the same as (2) withβ replaced byσβ and has basic reproductive number

R∗
0 = σβK

µ + γ
= σR0 � R0.

We will think of the parametersµ, γ , θ , φ andσ as fixed and will viewβ as variable.
In practice, the parameterφ is the one most easily controlled, and later we will expr
our results in terms of an uncontrolled model with parametersβ , µ, γ , θ , andσ fixed
and examine the effect of varyingφ. With this interpretation in mind, we will useR(φ) to
denote the basic reproductive number of the model (5), and we will see that

R∗
0 � R(φ) � R0.

Equilibria of the model (5) are solutions of

βI
[
K − I − (1− σ)V

] = (µ + γ )I, (6)

φ[K − I ] = σβV I + (µ + θ + φ)V . (7)

If I = 0 then (6) is satisfied and (7) leads to

V = φ

µ + θ + φ
K.

This is the disease-free equilibrium.
The matrix of the linearization of (5) at an equilibrium(I,V ) is[−2βI − (1− σ)βV − (µ + γ ) + βK −(1− σ)βI

−(φ + σβV ) −(µ + θ + φ + σβI)

]
.

At the disease-free equilibrium this matrix is[−(1− σ)βV − (µ + γ ) + βK 0
]

−(φ + σβV ) −(µ + θ + φ)
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which has negative eigenvalues, implying the asymptotic stability of the disease-free eq
librium, if and only if

−(1− σ)βV − (µ + γ ) + βK < 0.

Using the value ofV at the disease-free equilibriumthis condition is equivalent to

R(φ) = βK

µ + γ
· µ + θ + σφ

µ + θ + φ
= R0

µ + θ + σφ

µ + θ + φ
< 1.

The caseφ = 0 is that of no vaccination withR(0) = R0, andR(φ) < R0 if φ > 0. In
fact, it is not difficult to show, using a standard a priori bound argument, that ifR0 < 1 the
disease-free equilibrium is globally asymptotically stable [11]. We note thatR∗

0 = σR0 =
limφ→∞ R(φ) < R0.

3. Endemic equilibria

If σ = 1, meaning that the vaccine has no effect, we have seen that (5) is equiva
the SIS model (2) and ifR0 > 1 there is a unique endemic equilibrium which is globa
asymptotically stable. If 0� σ < 1 endemic equilibria are solutions of the pair of equati

β
[
K − I − (1− σ)V

] = µ + γ,

φ[K − I ] = σβV I + (µ + θ + φ)V . (8)

We eliminateV using the first equation of (8) and substitute into the second equati
give an equation of the form

AI2 + BI + C = 0 (9)

with

A = σβ,

B = (µ + θ + σφ) + σ(µ + γ ) − σβK,

C = (µ + γ )(µ + θ + φ)

β
− (µ + θ + σφ)K. (10)

If σ = 0, (9) is a linear equation with unique solution

I = K − (µ + γ )(µ + θ + φ)

β(µ + θ)
= K

[
1− 1

R(φ)

]
,

which is positive if and only ifR(φ) > 1. Thus ifσ = 0 there is a unique endemic equili
rium if R(φ) > 1 which approaches zero asR(φ) → 1+ and there cannot be an endem
equilibrium if R(φ) < 1. In this case it is not possible to have a backward bifurcatio
R(φ) = 1.

We note thatC < 0 if R(φ) > 1, C = 0 if R(φ) = 1, andC > 0 if R(φ) < 1. If σ > 0,
so that (9) is quadratic and ifR(φ) > 1, then there is a unique positive root of (9) and th
there is a unique endemic equilibrium. IfR(φ) = 1, thenC = 0 and there is a unique no
zero solution of (9)I = −B/A which is positive if and only ifB < 0. If B < 0 whenC = 0
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there is a positive endemic equilibrium forR(φ) = 1. Since equilibria depend continuous
onφ there must then be an interval to the left ofR(φ) = 1 on which there are two positiv
equilibria

I = −B ± √
B2 − 4AC

2A
.

This establishes our first main result.

Theorem 1. The system (5) has a backward bifurcation at R(φ) = 1 if and only if B < 0
when β is chosen to make C = 0.

We can give an explicit criterion in terms of the parametersµ, γ , θ , φ, σ for the exis-
tence of a backward bifurcation atR(φ) = 1. WhenR(φ) = 1, C = 0 so that

(µ + θ + σφ)βK = (µ + γ )(µ + θ + φ). (11)

The conditionB < 0 is

(µ + θ + σφ) + σ(µ + γ ) < σβK

with βK determined by (11), or

σ(µ + γ )(µ + θ + φ) > (µ + θ + σφ)
[
(µ + θ + σφ) + σ(µ + γ )

]
which reduces to

σ(1− σ)(µ + γ )φ > (µ + θ + σφ)2. (12)

A backward bifurcation occurs atR(φ) = 1, with βK given by (11) if and only if (12) is
satisfied. We point out that for an SI model, whereγ = 0, the condition (12) becomes

σ(1− σ)µφ > (µ + θ + σφ)2.

But

(µ + θ + σφ)2 = µ2 + θ2 + σ 2φ2 + 2µθ + 2σθφ + 2µσφ

> 2µσφ > σ(1− σ)µφ

becauseσ < 1. Thus a backward bifurcation is not possible ifγ = 0, that is, for an SI
model. Likewise, (12) cannot be satisfied ifσ = 0.

If C > 0 and eitherB � 0 orB2 < 4AC, there are no positive solutions of (9) and th
there are no endemic equilibria. Equation (9) has two positive solutions, correspondi
to two endemic equilibria, if and only ifC > 0, or R(φ) < 1, andB < 0, B2 > 4AC, or
B < −2

√
AC < 0. If B = −2

√
AC there is one positive solutionI = −B/2A of (9).

If (12) is satisfied, so that there is a backward bifurcation atR(φ) = 1, there are two
endemic equilibria for an interval of values ofβ from

βK = (µ + γ )(µ + θ + φ)
µ + θ + σφ
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corresponding toR(φ) = 1 to a valueβc defined byB = −2
√

AC. To calculateβc, we let
x = µ+γ −βK, U = µ+θ +σφ to giveB = σx +U , βC = βKU +(µ+γ )(µ+θ +φ).
ThenB2 = 4AC becomes

(σx + U)2 + 4βσKU − 4σ(µ + γ )(µ + θ + φ) = 0

which reduces to

(σx)2 − 2U(σx) + [
U2 + 4σ(1− σ)(µ + γ )φ

] = 0

with roots

σx = U ± 2
√

σ(1− σ)(µ + γ )φ.

For the positive rootB = σx + U > 0, and since we requireB < 0 as well asB2 −
4AC = 0, we obtainβc from σx = U − 2

√
σ(1− σ)(µ + γ )φ so that

σβcK = σ(µ + γ ) + 2
√

σ(1− σ)(µ + γ )φ − (µ + θ + σφ). (13)

Then the critical basic reproductive numberRc is given by

Rc = µ + θ + σφ

µ + θ + φ
· σ(µ + γ ) + 2

√
σ(1− σ)(µ + γ )φ − (µ + θ + σφ)

σ(µ + γ )φ

and it is easy to verify with the aid of (13) thatRc < 1.

4. The bifurcation curve

In drawing the bifurcation curve (the graph ofI as a function ofR(φ)), we think ofβ
as variable with the other parametersµ, γ , σ , Q, φ as constant. ThenR(φ) is a constan
multiple ofβ and we can think ofβ as the independent variable in the bifurcation curv

Implicit differentiation of the equilibrium condition (9) with respect toβ gives

(2AI + B)
dI

dβ
= σI (K − I) + (µ + γ )(µ + θ + φ)

β2
.

It is clear from the first equilibrium condition in (8) thatI � K and this implies that the
bifurcation curve has positive slope at equilibrium values with 2AI + B > 0 and negative
slope at equilibrium values with 2AI + B < 0. If there is not a backward bifurcation
R(φ) = 1, then the unique endemic equilibrium forR(φ) > 1 satisfies

2AI + B =
√

B2 − 4AC > 0

and the bifurcation curve has positive slope at all points whereI > 0. Thus the bifurcation
curve is as shown in Fig. 1.

If there is a backward bifurcation atR(φ) = 1, then there is an interval on which the
are two endemic equilibria given by

2AI + B = ±
√

B2 − 4AC.

The bifurcation curve has negative slope at the smaller of these and positive slope
larger of these. Thus the bifurcation curve is as shown in Fig. 2.
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The condition 2AI + B > 0 is also significant in the local stability analysis of endem
equilibria.

Theorem 2. An endemic equilibrium of (5) is (locally) asymptotically stable if and only if
it corresponds to a point on the bifurcation curve at which the curve is increasing.

Proof. The matrix of the linearization of (5) at an equilibrium(I,V ) is[−2βI − (1− σ)βV − (µ + γ ) + βK −(1− σ)βI

−(φ + σβV ) −(µ + θ + φ + σβI)

]
.

Because of the equilibrium conditions (8), the matrix at an endemic equilibrium(I,V ) is[ −βI −(1− σ)βI

−(φ + σβV ) −(µ + θ + φ + σβI)

]
.

This has negative trace, and its determinant is

σ(βI)2 + βI (µ + θ + φ) − (1− σ)φβI − (1− σ)βV · σβI

= βI
[
2σβI + (µ + θ + σφ) + σ(µ + γ ) − σβK

] = βI [2AI + B].
If 2AI + B > 0, that is, if the bifurcation curve has positive slope, then the determ
is positive and the equilibrium is asymptotically stable. If 2AI + B < 0 the determinan
is negative and the equilibrium is unstable. In fact, it is a saddle point and its stable
ratrices in the(I,V ) plane separate the domains of attraction of the other (asymptot
stable) endemic equilibrium and the disease-free equilibrium.�

5. Global behavior

In order to examine the global behavior of solutions of the system (5), we beg
showing that every solution withI (0) � 0, V (0) � 0 remains bounded for allt � 0. To
show this we first show that the triangular regionI � 0, V = 0, I + V � K is an invariant
set. If I = 0 thenI ′ = 0 and a solution which reachesI = 0 must remain onI = 0. If
V = 0 andI < K thenV ′ > 0 and a solution which reachesV = 0 cannot cross into th
regionV < 0. If I + V = K then(I + V )′ = K ′ + V ′ = −(µ + γ )I − (µ + θ)V < 0 and
a solution for whichI + V reachesK cannot cross into the regionI + V > K. This shows
that once a solution enters the regionI � 0, V � 0, I + V � K it remains in this region
If I (0) + V (0) > K, since(I + V )′ < 0 so long asI + V > K the solution must cross th
line I + V = K and enter the regionI = 0, V = 0, I + V � K. Thus every solution with
I (0) � 0, V (0) � 0 is bounded for 0� t < ∞.

The next step is to show that there are no periodic solutions of the system (5), wh
do by means of the Dulac criterion [3] using the Dulac functionh(I,V ) = 1/IV . Because[

β[K − I − (1− σ)V ]I − (µ + γ )I

IV

]
I

+
[
φ(K − I) − σβV I − (µ + θ + φ)V

IV

]
V

= − β

V
− φK

IV 2 + φ

V 2 = − β

V
− φ(K − I)

IV 2 < 0,

provided 0< I < K, V > 0, there is no periodic solution of (5) in this region.
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To complete the analysis we now use the Poincaré–Bendixson theorem to conclu
every solution of (5) approaches an equilibrium. Since we know the possible equilibr
their domains of attraction if there is more than one equilibrium we now have a com
understanding of the behavior of solutions of the vaccination model (5).

6. Dependence on vaccination rate

In applications of the model (5) it may be useful to think of the parametersβ , γ , µ,
σ , K, andθ as fixed andφ as a control parameter. The parametersµ andK are proper-
ties of the population being studied but the parameterβ may change as this population
behavior evolves. While it may be possible to changeσ andθ by improving the vaccine
andγ by improving treatment, thechoice of vaccination rateφ is at the discretion of thos
attempting to use a vaccination program to control the infection.

If R0 < 1 a vaccination program may control the infection more rapidly but the infec
tion will die out even without vaccination. IfR∗

0 = σR0 > 1, a vaccination program wi
decrease the number of infectives but will not by itself be able to wipe out the infec
Thus from a public health point of view the interesting case isR∗

0 < 1< R0 for which there
is a valueφ0 which will decrease the basic reproductive number to 1, namely

φ0 = (µ + θ)
βK − (µ + γ )

µ + γ − σβK
= (µ + θ)

R0 − 1

1− R∗
0
. (14)

Vaccination at a rateφ0 is necessary to control the infection. This is also the interesting
from a mathematical point of view becauseif there is a backward bifurcation atR(φ) = 1
then control of the infection would require a further reduction of the basic reprodu
number meaning a greater vaccination rate. Toexplore this question we re-examine t
analysis of Section 3 viewingβ as fixed andφ as variable.

From this perspective, Theorem 1 tells usthat there is a backward bifurcation at
R(φ) = 1 if and only if B, given by (10) is negative forφ = φ0. Thus there is a backwar
bifurcation atR(φ) = 1 if and only if

µ + θ + σφ0 + σ(µ + γ ) − σβK < 0.

Using (14), we may reduce this condition to

(1− σ)(µ + γ )(µ + θ) < σ
[
βK − (µ + γ )

][
(µ + γ ) − σβK

]
,

or

(1− σ)(µ + θ) < σ(R0 − 1)
(
1− R∗

0

)
(µ + γ ). (15)

Since this cannot be satisfied whenσ = 0 there cannot be a backward bifurcation ifσ is
sufficiently small.

The maximum valueφc of φ such that there are two endemic equilibria if (15) is satis
is given byB = −2

√
AC, or B2 = 4AC, B < 0. The condition (13), now viewed as a

equation forφ instead of as an equation forβ is a quadratic equation inφ1/2. Then
√

φc is
the smaller root of

σ
(√

φ
)2 − 2

√
σ(1− σ)(µ + γ )

√
φ + [

µ + θ + σ
{
βK − (µ + γ )

}] = 0. (16)
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After solving forφc we may then calculate the corresponding critical basic reprodu
numberRc = R(φc). If there is a backward bifurcation atR(φ) = 1 thenRc is the basic
reproductive number which must be achieved by vaccination in order to control the infec
tion. The calculation ofφc andRc in terms of the model parameters is technically me
but is easily done numerically for any given set of parameter values.

For example, with the parameter valuesβK = 50, µ = 0.1, γ = 12, θ = 0.5, σ = 0.2
we haveR0 = 4.13, R∗

0 = 0.83 andφ0 = 10.83. SinceB < 0 whenφ = 3.0 there is a
backward bifurcation atR(φ) = 1. We find from (16) thatφc = 17.8 and thence tha
Rc = 0.93. Thus while it is possible to bring the basic reproductive number down
with a vaccination rate of 3.0, a much higher vaccination rate of 17.8 is needed to bri
the infective population size down to zero. We could also find the value ofφc by simu-
lations of the system (5) with a range of values of the parameterφ. In doing this, if we
are not careful to take the initial conditionsin the domain of attraction of the endem
equilibrium we may be misled into thinking that the endemic equilibrium has disappe
However, this process will indicate that for parameter values close to but more thanφc the
approach to the disease-free equilibrium is very slow, warning that in practice one shou
choose a vaccination rate substantially larger than the critical rate. Another way to
mine φc would be to simulate using a bifurcation program such as AUTO or LOC
We would find that with the given parametersthe critical vaccination rate is 17.795, corr
sponding to an equilibriumI = 8.55, V = 36.68. Yue Xian Li has pointed out that the
is also a Hopf bifurcation leading to periodic solutions forφ = 2.425, corresponding to a
equilibriumI = −2.52, V = 50.53. This equilibrium, of course has no biological sign
cance.

7. Dependence of parameters on infective population size

We have studied the model (5) with parameters which are constant, or which pe
may drift in response to external effects. However, it would be natural to expect that
presence of infection individuals might decrease the number of contacts they make
time. Thus we might setβ = β0h(I), whereh(0) = 1 andh′(I) � 0 and replace the mode
(5) by the model

I ′ = β0h(I)
[
K − I − (1− σ)V

]
I − (µ + γ )I,

V ′ = φ[K − I ] − σβ0h(I)V I − (µ + θ + φ)V . (17)

It is easy to calculate that the basic reproductive number of the model (17) is

R(φ) = β0K

µ + γ
· µ + θ + σφ

µ + θ + φ
.

Our goals are to obtain a necessary and sufficient condition for the existenc
backward bifurcation and to determine the stability properties of equilibria for this
eralization of the original model (5). We write the model (17) in the form

I ′ = If (I,V ,β), V ′ = g(I,V,β)
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f (I,V,β) = β
[
K − I − (1− σ)V

] − (µ + γ ),

g(I,V ,β) = φ[K − I ] − σβV I − (µ + θ + φ)V,

andβ = β0h(I). The determinant of the matrix

A =
[

IfI + β0fβIh′(I) IfV

gI + β0fβh′(I) gV

]

of the linearization of (17) at an endemic equilibrium(I,V ) is

I
[
fI gV − fV gI + β0h

′(I)(fβgV − fV gβ)
]
.

If this determinant is negative the equilibrium is a saddle point.
The bifurcation curve for the model (17) is given by

f
[
I,V ,β0h(I)

] = 0, g
[
I,V ,β0h(I)

] = 0. (18)

SinceR(φ) is a constant multiple ofβ0, we can obtain the sign of the slope of the
furcation curve by calculatingdI/dβ0. Implicit differentiation of (18) with respect toβ0
gives

detA · dI

dβ0
= h(I)[fV gβ − fβgV ].

Since

fV = −β(1− σ) < 0, fβ = K − I − (1− σ)V > 0,

gV = −(µ + θ + φ + σβI) < 0, gβ = −σIV < 0,

we havefV gβ − fβgV > 0 and thusdI/dβ0 and detA have the same sign. This implie
that an equilibrium corresponding to a pointon the bifurcation curve where the slope
negative is a saddle point, just as for the simpler model (5). BecausefI < 0 andgV < 0
it is clear thatA has negative trace and thus every equilibrium for which the slope o
bifurcation curve is positive is asymptotically stable. The model extension of allowin
parameterβ to be a decreasing function ofI cannot destabilize an endemic equilibrium

Another plausible extension would be to adjust the vaccination rateφ in response to the
level of infection, that is to replace the constantφ by an increasing functionφ(I). In addi-
tion, if the vaccination program is an education program designed to influence behavior
susceptibles it would be reasonable to suggest that an increase in the number of in
might decreaseσ , representing a strengthening of the effect of vaccination. Further, an in
crease in the number of infectives might cause a decrease in the rateθ at which vaccination
effects are lost and even an increase in the recovery rateγ by causing more infectives t
seek treatment. It is easy to verify that none of these changes can destabilize an e
equilibrium.

The assumptions that the parameters of the model (17) depend on the size of
fective population is intended to model a situation in which increased levels of infe
influence behavior in order to reduce the risk of becoming infected. Another attem
include this sort of behavior in an SIS model has been the division of the population
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highly active core group and a less active non-core group with recruitment from the
core group into the core group which depends on the size of the infective populatio
It has been shown in [2] that this structure admits the possibility of instability of an
demic equilibrium and oscillatory behavior. The vaccination model (17) does not supp
this possibility. Thus, the notion of a core group, which has been an important idea in
modeling of sexually transmitted diseases [8], is more general than the vaccination
in the sense of the variety of behavior admitted.

8. Conclusions

We have examined the simplest possible vaccination model and have shown by e
tary algebraic means how to analyze the existence of multiple endemic equilibria wh
basic reproductive number is less than 1. An equilibrium corresponding to a point on th
bifurcation curve with negative slope is unstable, and an equilibrium corresponding to
point on the bifurcation curve with positive slope is asymptotically stable. Our model
not admit the possibility of oscillations about an unstable endemic equilibrium, which i
supported by models with core and non-core groups having different contact rates.

We have considered only SIS models with no disease fatalities, which may be f
lated as two-dimensional models when vaccination is included. In order to allow di
fatalities or to consider SIR models we would have to use three-dimensional model
elementary approach used here can be applied to such models to obtain at leas
results.

The models we have examined could also be treated by using center manifold
and normal forms. However, the required preliminary transformations would be at le
complicated technically as our approach. For models with more compartments, the analy
by elementary means becomes hopelessly complicated and a center manifold approa
would be necessary. It would be of considerable interest to determine if the propert
have found in simple examples carry over to more complicated models.

Although the introduction of a vaccination policy may lead to backward bifurcation
we emphasize that it always decreases infective population size. The danger of a vaccin
tion policy is that an unforeseen backward bifurcation may require a larger than exp
vaccination fraction to control a disease. Ifa vaccine can be developed which is comple
effective, this possibility does not arise, and a program which decreases the contact r
also control a disease without leading to backward bifurcations. Nevertheless, a vacc
tion program, even one which is not fully effective, may be a useful approach in contr
infections.
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