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Abstract

Traffic management centers take advantage of various data collection systems ranging from stationary sensors e.g. automated

vehicle identification systems to mobile sensors e.g. fleet management systems. Each type of data collection system has its own

advantages and disadvantages. Stationary sensors has less measurement noise than mobile sensors but their network coverage is

limited. On the other hand, mobile sensors cover expand areas of road networks but they have less penetration rate and frequency

of reports. Traffic state estimation can benefit from fusion of data from various sources as they complement each other. This

paper introduces a route travel time estimation method that aggregates data from two traffic data sources, automated number plate

recognition system and floating car data.
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1. Introduction

In light of increasing congestion in urban areas, monitoring and providing information about traffic conditions is

critical for traffic management and effective transport policy. Travel time data may be collected from stationary auto-

matic vehicle identification (AVI) sensors (automatic number plate recognition (ANPR) cameras, Bluetooth devices,

etc.). AVI systems provide direct measurements of route travel times, but the spatial coverage is typically small and

may not be representative of the network as a whole. Meanwhile, floating car data (FCD) collected from GPS devices

installed in vehicle fleets or smart phones provide information from the entire network. Travel time estimation from

FCD is often challenging because of low penetration rate, which means that the number of available FCD observations

from vehicles traveling along the route of interest may be low if it is not a common one.

AVI and FCD have complementary strengths as FCD provides network coverage while AVI provides accurate

measurements on specific route segments. The combination of AVI data and FCD has not been studied much in the

literature, however. A data fusion methodology for freeway traffic state estimation based on loop detector data, AVI

and FCD has been proposed1. For the arterial network, research on travel time estimation based on FCD has largely

focused on links2,3.

∗ Corresponding author. Tel.: +46-8-790-8301 ; fax: +46-8-21-2899.

E-mail address: mahmoodr@kth.se

© 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Program Chairs of EUSPN-2014 and ICTH 2014.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82226053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.08.058&domain=pdf


391 Mahmood Rahmani et al.  /  Procedia Computer Science   37  ( 2014 )  390 – 395 

The aim of this paper is to utilize the complementary benefits of ANPR and FCD by integrating the two data

sources in the estimation of arterial route travel times. The paper proposes a computationally efficient, non-parametric

method for route travel time estimation using both ANPR data and low-frequency FCD. The approach estimates route

travel time distributions directly from ANPR and FCD measurements partially covering the route, incorporating all

information available from the data. The methodology extends ideas from kernel-based estimation4 and is developed

considering the particular features of network routes and ANPR and FCD observations. No assumptions are made

regarding the form of the distribution. This flexibility is highly valuable whenever the variability of travel times is of

interest, e.g., for monitoring of travel time reliability.

The paper is organized as follows: Section 2 describes the methodology, Section 3 presents a case study for

Stockholm, Sweden, and Section 4 concludes the paper.

2. Methodology

2.1. Preliminaries

A network route is defined as an acyclic path π = (ks, k′, . . . , k′′, ke) connecting the beginning and end links ks and

ke, and two distances os and oe marking the two offsets on ks and ke respectively. The fraction of link k covered by

the network route, denoted αk, is the length of overlap between the route and the link divided by the link length. The

route travel time is denoted by T = T (s) and varies stochastically between trips and as a function of the route entry

time s. The aim of this research is to estimate the distribution of T (s) from ANPR and FCD measurements.

Automatic number plate recognition (ANPR) data. ANPR data are collected from ordered pairs of cameras which

identify vehicles based on optical recognition of license numbers. An ANPR route is defined as the path between the

locations of the first and the second camera (more precisely, the locations where vehicles are detected); it is assumed

that there is a single reasonable route between the two locations. A data record is created whenever the same vehicle

is identified sequentially by both cameras. A record is a triplet (h, s, e), where h is a unique ANPR route identifier,

and s and e are the timestamps of the detection of the vehicle at the first and the second camera, respectively.

Floating car data (FCD). FCD consist of sequences of reports, or probes, from vehicles traveling on the network.

Each probe is a triplet (q, s, < x, y >), where q is a unique vehicle identifier, s is a timestamp and < x, y > are the GPS

coordinates of the vehicle location at that time. Low-frequency FCD require preprocessing to be useful for travel time

estimation. Most importantly, reported positions must be matched to the model of the road network and the paths

taken by the vehicles between probes must be inferred5,6.

2.2. Travel time estimation

A computationally efficient non-parametric method for route travel time estimation from FCD has recently been

developed7. This paper extends the method to combine FCD with available ANPR data overlapping the route. A

common observation model, consisting of a route and a travel time measurement, is used to represent both ANPR

data and FCD. For ANPR observations the route is given by the fixed camera locations and the intermediate route,

and the travel time measurement τ = e − s is obtained from the difference between the detection timestamps. For

FCD observations the route is given by the inferred path between two consecutive probes from the same vehicle, and

the travel time measurement τ = s2 − s1 is obtained from the difference between the corresponding timestamps. The

framework is illustrated in Figure 1.

In general, observation i from either ANPR or FCD is represented by a travel time τi, a path pi = (ki,1, k′, . . . , k′′, ki,2)

and two distances oi,1 and oi,2 marking the two offsets on ki,1 and ki,2 respectively. The fraction of link k traversed by

measurement i is denoted by ρik. The part of the observation route overlapping with the network route is referred to

as the overlap route for short. The fraction of the overlap in relation to the length of the link is denoted by βik.

ANPR and FCD observations are processed together in three steps: transformation, weighting, and aggregation.
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Figure 1. Observations from ANPR and FCD overlapping the network route.

Transformation. Each observation partially covering the route is transformed into an observation of the actual route

travel time. The step consists of four sub-parts: concatenation, allocation, scaling, and route entry time estimation.

Concatenation applies to FCD and sequences of ANPR cameras, where a vehicle may generate multiple data records

along the route. It is reasonable, however, to consider one passage of a vehicle on the route as one travel time obser-

vation. Consecutive observations from the same vehicle are thus concatenated into a single travel time observation.

For each observation i, the observed travel time τi is then allocated between the network route and the adjacent

network. The allocation is based on prior link travel times t0
k and the distance traversed on each link. The assumption

is that the fraction of time spent on the overlap route in relation to the whole FCD route, φi, is the same as for the prior

travel times on the same sections. The travel time allocated to the network route is then τ′i = φiτi, where the allocation

factor φi is φi =
∑

k βikt0
k/
∑

k ρikt0
k .

The travel time observations are then scaled up to the entire route. Similar to the allocation, the assumption is that

the ratio between the travel time on the overlap route and on the entire network route is the same as for the prior travel

time estimates on the same sections. The scaled route travel time observation is then Ti = τ
′
i/ηi, where ηi is the scaling

factor ηi =
∑

k βikt0
k/
∑

k αkt0
k .

The time that each observed vehicle passes the beginning of the network route is the basis for grouping observations

to time intervals and aggregating, but is in general not observed. For each observation the route entry time s′, real or

hypothetical, is estimated based on the prior travel times along the same lines as the allocation and the scaling.

Weighting. Each observation Ti is assigned a weight ωi that determines its influence in the estimation of route travel

time statistics. Observations are weighted for three distinct reasons: to reflect the representativeness in relation to

the network route; to correct for sampling bias due to uneven route coverage; and to reflect the relative reliability of

FCD and ANPR measurements. The final weight is the product of the representativeness weight νi, the sampling bias

weight λi and the source reliability weight γi, i.e., ωi = νiλiγi. In this paper γi is set to 1 for both ANPR and FCD

observations.

Less overlap with the network route means that the representativeness as a network route observation is lower and

that the potential for error in allocation and scaling is higher. Observations are thus weighted based on the allocation

and scaling factors, νi = φ
1/θ1
i η1/θ2

i . The parameters θ1 and θ2 control how fast the weight function decays as the overlap

with the adjacent networks increases, and the overlap with the network route decreases, respectively. Both parameters

are set to 1 in this paper. If ground-truth travel time data were available, they can be selected using cross-validation

techniques.

Route coverage is evaluated at the link level. Let Nk be the number of observations covering link k. The weight λi

is then the inverse of the weighted average coverage for the traversed part of the route, λi =
∑

k βikt0
k/
∑

k βikt0
k Nk.

Aggregation. Statistics of the route travel time distribution are calculated from the observations Ti and the associated

weights ωi. The statistics are aggregated based on the route entry time of each observation. For example, the mean

route travel time estimator is μ̂T =
∑

i ωiTi/
∑

i ωi. Other statistics of the travel time distribution such as variance and

percentiles are also straightforward to calculate7.
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Figure 2. The study area with 4 ANPR routes (51, 34, 52, and 54 ), and 2 combined routes, 111 and 112.

3. Application

The proposed travel time estimation method is applied on two routes in the arterial network of Stockholm, Sweden.

FCD are collected by a GPS-based taxi fleet management system covering about 1500 taxis. Each taxi broadcasts its

location, timestamp, id number, and status (free/hired) once every two minutes on average8. A map-matching and

path inference algorithm is performed on the raw FCD6. The ANPR system in Stockholm measures direct travel time

of many major routes. ANPR data typically have significant amounts of noise and need to be filtered before travel

time statistics are calculated. The method introduced by Kazagli et al. 9 is used for ANPR filtering.

For both FCD and ANPR, data from Mondays through Thursdays between 6 a.m. and 10 p.m. are used, collected

from September 15, 2012 to September 15, 2013. Only FCD with hired status is utilized for travel time estimation.

The prior link travel times t0
k are estimated from FCD by applying the proposed method on each individual link. The

allocation, scaling and weighting of FCD in this step are performed based on the length and free-flow speed (posted

speed limit) of each link.

3.1. Experimental setup

Two network routes are defined for the experiment, denoted as routes 111 and 112 in Figure 2. Route 111 (112)

starts from the beginning of ANPR route 51(52) and ends at the end of ANPR route 34(54). The network routes are

intentionally defined this way to be the combination of the two consecutive ANPR routes for comparison purposes.

Since consecutive ANPR routes r1 and r2 share the same camera at their connection point, direct travel time observa-

tions for the combined route R are available by matching the exit timestamp of r1 with the entry timestamp of r2. The

direct ANPR observations are used as reference for evaluating the travel time estimation.

The mean and the 25th, 50th (median) and 75th percentiles of the travel time distribution of route R is estimated

using FCD and ANPR data considering the following scenarios:

• Only FCD that fully or partially overlap the route R
• Only ANPR of r1

• Only ANPR of r2

• ANPR of r1 and FCD
• ANPR of r2 and FCD

Travel time observations are grouped by route entry timestamp into 15-minute intervals, and the travel time statis-

tics are calculated for each time interval (N = 64 intervals from 6 a.m. to 10 p.m.). The similarity between the

estimated travel time statistic and the reference based on direct observations is evaluated using the root-mean-square

error (RMSE) across all time intervals.

3.2. Results

Figure 3 shows the estimated travel time of the two routes, 111 and 112, under the data availability scenarios

mentioned above. In general, the estimation method capture the trend across the day reasonably well in all scenarios, in
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particular for the mean and median travel time. The RMSE relative to the direct measurements, as well as the number

of observations available for the estimation, are shown in Tables 1 and 2. It can be seen that “only FCD” performs

better than “only ANPR” in some cases but worse in others, and the results of “only ANPR” differ significantly

depending on which ANPR route is used. The estimator fusing ANPR and FCD is always better than the worst of

“only ANPR” and “ only FCD”, and in some cases is better than the best of the two. The results suggest that the

fusion of ANPR and FCD increases the robustness of the estimation.

Table 1. Error of estimated travel time of route 111 by various scenarios against the ”Only ANPR” scenario.

Only FCD111 Only ANPR51 Only ANPR34 ANPR51 and FCD111 ANPR34 and FCD111

mean 0.28 0.46 0.26 0.34 0.23

25th percentile 0.84 0.72 0.73 0.74 0.77

50th percentile 0.49 0.50 0.33 0.46 0.34

75th percentile 0.26 0.29 0.53 0.22 0.45

Total number of observations 84,590 103,423 1,001,696 188,013 1,086,286

Table 2. Error of estimated travel time of route 112 by various scenarios against the ”Only ANPR” scenario.

Only FCD112 Only ANPR52 Only ANPR54 ANPR52 and FCD112 ANPR54 and FCD112

mean 0.30 0.16 0.53 0.16 0.44

25th percentile 0.33 0.22 0.68 0.23 0.60

50th percentile 0.18 0.16 0.28 0.14 0.19

75th percentile 0.37 0.25 0.89 0.25 0.71

Total number of observations 95,944 305,227 768,577 401,171 864,521

4. Conclusion

The paper proposes a non-parametric route travel time estimation method based on fusion of FCD and ANPR data.

The approach combines the network coverage of FCD with the accurate measurements on specific route segments of

ANPR. A common observation model for both sources of data is used to estimate travel time through a sequence of

transformation, weighting and aggregation. Application results suggest that the fusion increases the robustness of the

estimation, meaning that the fused estimate is always better than the worst of the two (FCD or ANPR), and sometimes

better than the best of them. Further research is needed to evaluate the method on a varied set of network routes and

data sources, and to calibrate the parameters of the method to optimize the performance.
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Figure 3. Comparison of estimated mean and percentiles of the travel time of routes 111 and 112 by various scenarios against direct ANPR

observations.


