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Abstract

We give conditions assuring that the given section in a surface bundle over the circle is hyperbolic in terms of the “projection”
in the fiber surface according to the Nielsen–Thurston types of the monodromies.
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1. Introduction

As usual, we mean by a knot an embedding of the circle S1 or its image in a 3-manifold. By the well-known
Thurston’s Uniformization Theorem [12,10] the exterior of a knot is canonically decomposed into geometric pieces.
Thus the knots are classified into some classes with respect to the decompositions and the geometric structures admit-
ted by the exteriors.

It is widely believed that the most interesting and richest class is that of hyperbolic knots; the knots with the
complements admitting a complete hyperbolic metric of finite volume. See [4] for a survey. Thus it seems natural to
ask: How to recognize whether the given knot is hyperbolic or not?

In the present paper, we focus on knots appearing as sections of surface bundles over the circle, and give an answer
to the above question.

Let F be an orientable, closed surface with negative Euler characteristic and f an automorphism of F which
fixes a specified point x0 ∈ F . (For later convenience, we assume that the condition “f (x0) = x0” implies also that
“f (D0) = D0” for some small diskal neighborhood D0 of x0.) Then the manifold Mf obtained from F × [0,1] by
identifying (x,0) ∈ F × {0} with (f (x),1) ∈ F × {1} is a fiber bundle over S1 with fiber F . We call f a monodromy
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Fig. 1. Section and its projection.

of Mf . Let t be a monotone arc in F ×[0,1] connecting (x0,0) and (x0,1); t is oriented from (x0,0) to (x0,1). Then
t defines a section s in Mf . Projecting t ⊂ F × [0,1] into F , we obtain a closed oriented curve c based at x0, which
represents an element in π1(F, x0), see Fig. 1. We call c a projection of the section s.

Conversely for a given oriented closed curve c based at x0, we have a section s whose projection is c, uniquely up
to level preserving isotopy. Henceforth we denote such a section by sc. Furthermore, if [c1] = [c2] ∈ π1(F, x0), then
sc1 and sc2 are (level preservingly) isotopic in Mf .

We say that a section sc is hyperbolic (respectively atoroidal or Seifert fibered) if its exterior is hyperbolic (respec-
tively atoroidal or Seifert fibered). Precisely we can formulate the above question in the following:

Question 1. Can we detect the hyperbolicity of such sections by their projections?

In [6], Kra gave a necessary and sufficient condition for a given section being hyperbolic in terms of their projec-
tions in the case where f is the identity map.

Extending this result, in the present paper, we will give an answer to Question according to the Nielsen–Thurston
types of monodromies. An automorphism f (i.e., an orientation preserving self diffeomorphism) of a compact, ori-
entable surface with possibly non-empty boundary is said to be periodic if its some power is equal to the identity map.
We say that f is reducible if there is an essential 1-submanifold C ⊂ F (i.e., a union of pairwise disjoint simple closed
curves such that each curve is homotopically non-trivial and not boundary-parallel, and that no two components are
homotopic) so that f (C) is isotopic to C; C is said to be isotopically f -invariant. Throughout this paper, we assume
that an isotopically f -invariant essential 1-submanifold is minimal in the sense that there is no proper subset of C is
isotopically invariant under f . It is known by [13,5,3] that if an automorphism is isotopic to neither a periodic auto-
morphism nor a reducible automorphism, then it is isotopic to a pseudo-Anosov automorphism (i.e., an automorphism
leaving singular foliations invariant) and vice versa; for the precise definition of a pseudo-Anosov automorphism, see
[13], [5, Exposé 11, see also p. 286], [3]. Thus each automorphism is isotopic to an automorphism with (at least) one
of the above three types which we refer to as Nielsen–Thurston types.

Note that the manifold Mf is a hyperbolic 3-manifold, a Seifert fiber space, or a toroidal 3-manifold if and only
if the monodromy map f :F → F is isotopic to a pseudo-Anosov automorphism, a periodic automorphism or a
reducible automorphism [14,11,9].

In Section 2, we will state our results, and give their proofs in Section 3. In Section 4, we will translate the results
in Section 2 into terminologies of surface automorphisms.

2. Hyperbolic sections and their projections

2.1. Hyperbolic surface bundles—pseudo-Anosov monodromies

Theorem 1. Let Mf be a hyperbolic surface bundle over S1, i.e., the monodromy f is isotopic to a pseudo-Anosov
automorphism. Then a section sc is hyperbolic for any curve c.
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Note that Mf is hyperbolic if and only if the monodromy is irreducible and not isotopic to a periodic map. Since
a section sc is hyperbolic if and only if its exterior is atoroidal (i.e., contains no essential tori) and not Seifert fibered
[12,10], Theorem 1 follows from the following lemmas.

Lemma 2. Suppose that the monodromy f is irreducible. Then for a tubular neighborhood N(s) of a section s,
Mf − intN(s) is atoroidal.

Proof. Suppose for a contradiction that Mf − intN(s) contains an essential torus T . Then we have a family of disjoint
(monotone) annuli A1, . . . ,An in F × [0,1]. Let C ⊂ F be an essential 1-submanifold p((F × {0}) ∩ ⋃n

i=1 Ai), for
the natural projection p :F ×[0,1] → F . Then f (C) = p((F ×{1})∩⋃n

i=1 Ai). The annuli give an isotopy between
C and f (C), thus f would not be irreducible. �
Lemma 3. Suppose that the monodromy f is not isotopic to a periodic automorphism. Then for any section s, Mf −
intN(s) is not Seifert fibered.

Proof. Suppose for a contradiction that Mf − intN(sc) is Seifert fibered.
The claim below shows that we extend the Seifert fibration to that of Mf so that sc is a Seifert fiber. Thus f would

be isotopic to a periodic automorphism [9], contradicting the assumption. �
Claim 4. Let M be an irreducible 3-manifold and k a knot in M . If M − intN(k) is Seifert fibered, then M admits
a Seifert fibration in which k is a fiber.

Proof. If the meridian of k is not a fiber in the Seifert fibration of M − intN(k), then we can extend it to a Seifert
fibration of M so that k is a fiber in the Seifert fibration. Thus in the following we assume that the meridian of k is a
fiber.

Let B be the base orbifold of M − intN(k). If B is a disk or a disk with one singular point, then M − intN(k) is
homeomorphic to S1 × D2. Then by choosing a suitable Seifert fibration of M − intN(k) so that the meridian of k is
not a regular fiber, we can reduce to the first situation. Otherwise, there exists an essential arc properly embedded in
the orbifold B , i.e., a properly embedded arc which does not cut off a disk without cone points. This implies that M

is reducible. This contradicts the assumption. �
2.2. Seifert fibered surface bundles—periodic monodromies

This case was studied in [8].
First we assume that the monodromy f :F → F is irreducible.

Theorem 5. [8] Let F be a closed, orientable surface of genus � 2 and f an irreducible, periodic automorphism
of period p with f (x0) = x0. Let sc be a section in Mf containing (x0,0) = (x0,1) whose projection is c. Then the
following three conditions are equivalent.

(1) sc is hyperbolic.
(2) [c]f∗([c]) · · ·f p−1∗ ([c]) �= 1 ∈ π1(F, x0), where f∗ denotes the induced isomorphism of π1(F, x0).
(3) [c] �= [γ̄ ∗ (f ◦ γ )] in π1(F, x0) for any path γ from xi to x0, where xi is a fixed point of f .

Remark 6. If Fix(f ) = {x0}, the last condition is simplified as: [c] �= α−1f∗(α) for any α ∈ π1(F, x0).

Next we assume that the monodromy f :F → F is reducible.
An element α ∈ π1(F, x0) is said to be filling if any representative of α intersects every essential simple closed

curve in F .

Theorem 7. [8] Let F be a closed, orientable surface of genus � 2 and f a reducible, periodic automorphism of
period p with f (x0) = x0. Let sc be a section in Mf containing (x0,0) = (x0,1) whose projection is c. Then the
following two conditions are equivalent.
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Fig. 2. Well-terminated curve.

(1) sc is hyperbolic.
(2) [c]f∗([c]) · · ·f p−1∗ ([c]) ∈ π1(F, x0) is filling.

2.3. Toroidal surface bundles—reducible monodromies

A reducible automorphism f is said to be reduced if there is a system of essential 1-submanifolds C1, . . . ,Cn such
that f (Ci) = Ci , f (N(Ci)) = N(Ci) for some small tubular neighborhood N(Ci) and any isotopically f -invariant
essential 1-submanifold C can be isotoped into N(Ci) for some i. We call {C1, . . . ,Cn} a reducing system of f and
denote it by Cf . Here we assume that {C1, . . . ,Cn} is a finite set.

Now let us introduce a notion of a simple closed curve based at x0 being “well-terminated”, which seems to be
artificial. However, as we will see in Section 3, it is crucial to describe a condition which assures a section in a toroidal
surface bundle being hyperbolic in terms of its projection.

Let c be a representative of α ∈ π1(F, x0) intersecting C1 ∪ · · · ∪ Cn transversely, except for a component of Cj

containing x0 (if such a component exists). Then c−1(Ci) consists of finite points in [0,1] with minimum tmin and
maximum tmax. Put τi = c([0, tmin]), τ ′

i = c([tmax,1]); τi is a path from x0 to the first intersection point c(tmin) ∈ Ci ,
and τ ′

i is a path from the last intersection point c(tmax) ∈ Ci to x0. We call τi (respectively τ ′
i ) an ith initial path

(respectively ith terminal path) of c. We say that c is well-terminated if f (τi) is not homotopic to τ ′
i keeping {x0}∪Ci

invariant for each i. See Fig. 2 for example; there Ci consists of three disjoint simple closed curves.
Let c be a minimal representative of α ∈ π1(F, x0) in the sense that |c∩ (C1 ∪· · ·∪Cn)| is minimal among elements

representing α. Here we put a convention: If x0 ∈ Ci and c is tangent to Ci at x0 and lies locally in one side of Ci , then
we do not regard x0 as an intersection point. Then we say that α essentially intersects Cf if a minimal representative
c of α is well-terminated and intersects some component of each Ci (1 � i � n).

Now we can state our main result, whose proof will be given in the next section.

Theorem 8. Let F be a closed, orientable surface of genus � 2 and f an automorphism of F with f (x0) = x0.
Suppose that f is reduced by a reducing system Cf = {C1, . . . ,Cn} and not isotopic to a periodic automorphism.
Then a section sc ⊂ Mf is hyperbolic if [c] ∈ π1(F, x0) essentially intersects Cf .

If each member Ci of Cf is non-separating, i.e., F − Ci is connected, then we have a simpler condition on the
projection c for the corresponding section sc being hyperbolic.

Corollary 9. Let F and f be as above. Suppose that each member Ci of Cf is non-separating. Then a section sc ⊂ Mf

is hyperbolic if |c ∩ Ci | is odd for each i.

3. Proof of Theorem 8

This section is devoted to a proof of Theorem 8 and Corollary 9.
First let us recall from [2] the geometric intersection number.
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Definition 10 (Geometric intersection number). Let c be a closed curve and X a codimension 1-submanifold in a
manifold M ; c intersects X transversely. Let x, y be points in c ∩ X. We say that x and y are equivalent if we
have a continuous map ϕ : [0,1] → M with ϕ(0) = x,ϕ(1) = y and ϕ([0,1]) ⊂ c such that ϕ can be homotoped
ϕ′ : [0,1] → M so that ϕ′([0,1]) ⊂ X relative {x, y}. We call a point x ∈ c ∩ X a trivial intersection if c is homotoped
into X keeping x invariant. Then the geometric intersection number of c and X, denoted by i(c,X), is defined to be
the number of equivalence classes each of which consists of odd non-trivial intersection points.

We remark the following elementary fact.

Lemma 11. Assume that X is two-sided (i.e., bi-collared). If c ∩ X contains a trivial intersection point x, then there
exists another point y ∈ c ∩ X equivalent to x.

Proof. Since x is a trivial intersection point, by definition, we have a continuous map ψ :S1 × [0,1] → M such that
ψ(S1 × {0}) = c, ψ(S1 × {1}) ⊂ X and ψ({a} × [0,1]) = {x}. We may assume that ψ |S1×[0,1) is transverse to X so
that ψ−1(X) consists of some properly embedded arcs connecting two points in S1 ×{0} and some arcs each of which
has one open end in S1 × {1}; {a} × [0,1] ⊂ ψ−1(X).

Since X is two-sided and c is homotoped into X, the algebraic intersection number of c and X is zero. Thus the
cardinality of c ∩ X is even. Hence c ∩ X has odd number of points other than x. This then implies that we have an
arc γ which has one end (b,0) ∈ S1 × {0} and one open end in S1 × {1}. Then {a} × [0,1] and γ̄ (the closure of γ in
S1 × [0,1]) cobound a disk Δ. Thus ψ |Δ shows that x and y = ψ(b,0) are equivalent. �

Now let us turn to the proof of Theorem 8.
Recall that the monodromy f is a reduced automorphism with a reducing system Cf = {C1, . . . ,Cn} and that [c]

essentially intersects Cf .
We assume hereafter that c is transverse to C1 ∪· · ·∪Cn except for at x0 and |c∩ (C1 ∪· · ·∪Cn)| and |c∩∂N(C1 ∪

· · · ∪ Cn)| is minimal among the representatives of the (relative) homotopy class [c].
Since the monodromy f is not isotopic to a periodic automorphism, Lemma 3 shows that Mf − intN(sc) is not

Seifert fibered. So to prove Theorem 8, it is sufficient to that Mf − intN(sc) is atoroidal.
Suppose for a contradiction that Mf − intN(sc) contains an essential torus T .
Let tc be a monotone arc in F × [0,1] used to define the section sc. Since F × [0,1] − intN(tc) is level preserv-

ingly diffeomorphic to (F − intD0) × [0,1], which contains no essential tori, T cannot be isotoped to be disjoint
from F × {0} − intN(sc)(= F × {1} − intN(sc)). Furthermore, since F × {0} − intN(sc)(= F × {1} − intN(sc))

is incompressible in Mf − intN(sc), by an isotopy, we assume that the intersection T ∩ (F × {0} − intN(sc)) con-
sists of non-empty circles each of which is essential in both T and F × {0}, and that the number of components
of T ∩ (F × {0} − intN(sc)) is minimal. Cut open Mf (respectively Mf − intN(sc)) along F × {0} (respectively
F × {0} − intN(sc)) to obtain F × [0,1] (respectively F × [0,1] − intN(tc)). Then the torus T cut into incompress-
ible annuli A1, . . . ,Am ⊂ F × [0,1] − intN(tc) ∼= (F − intD0) × [0,1]. If both components of ∂Aj is contained in
F × {0} − intN(tc) or F × {1} − intN(tc) for some Aj , then by [15, Corollary 3.2] Aj is boundary parallel, contra-
dicting the minimality of the number of components of T ∩ (F × {0} − intN(sc)). Hence for each Ai (i = 1, . . . ,m),
one boundary component is in F × {0} − intN(tc) and the other is in F × {1} − intN(tc). If Aj is compressible in
F × [0,1] for some Aj , then Claim 12 below shows that Aj is parallel to the frontier of N(tc). This then implies that
m = 1 and the original torus T would be boundary-parallel, a contradiction. It follows that each Ai (i = 1, . . . ,m) is
incompressible in F × [0,1].

Claim 12. Let F be a closed orientable surface and t a monotone arc in F × [0,1] connecting (x0,0) and (x0,1) for
some point x0 ∈ F . Let A be an incompressible annulus in E(t) = F ×[0,1]− intN(t) with one boundary component
in F × {0} − intN(t) and the other in F × {1} − intN(t). If A is compressible in F × [0,1], then A is parallel to the
frontier of N(t) in F × [0,1].

Proof. Let ci be the simple closed curve ∂A ∩ (F × {i}) for i = 0,1. Suppose that A is compressible in F × [0,1].
Then by the incompressibility of F × {i} in F × [0,1], ci bounds a disk Di in F × {i} for i = 0,1. The union of
A∪D0 ∪D1 gives a 2-sphere S embedded in F ×[0,1]. By the irreducibility of F ×[0,1], S bounds a 3-ball B . Note
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that each Di intersects t at exactly one point for i = 0,1, since A is incompressible in E(t). Since t is monotone, t is
unknotted in B and hence A is parallel to the frontier of N(t) in F × [0,1]. �

By an isotopy of F × [0,1] which is the identity on F × {0,1}, we may assume that each Aj is monotone in the
sense that there is no local minima and maxima.

Since Aj is incompressible in F × [0,1], each component of C = (
⋃m

j=1 Aj) ∩ (F × {0}) is homotopically non-
trivial in F . The monotone annuli Ai give an isotopy from C = p((

⋃m
j=1 Aj) ∩ (F × {0})) on F and f (C) =

p((
⋃m

j=1 Aj) ∩ (F × {1})) on F for a natural projection p :F × [0,1] → F ; i.e., f (C) is isotopic to C on F .

Claim 13. The curves C are isotopic to some Ci ∈ Cf or ∂N(Ci).

Proof. If no two components of C are homotopic, then C is an isotopically f -invariant, essential 1-submanifold.
Hence C is isotoped into N(Ci) for some Ci ∈ Cf ; actually C is isotoped to Ci .

Suppose that C has two mutually homotopic curves. We may assume, after changing indices if necessary, that
{c1 . . . , ck} (k � 2) be a maximal family of parallel curves and that these curves appear in this order; no other curve
is parallel to a member of this family. Suppose that k � 3. Then since F is not a torus, we can take a unique annulus
Fc1,...,ck

⊂ F so that its boundary consists of c1 and ck and it contains c2, . . . , ck−1 in its interior. Note that each
maximal family of parallel curves has such an annulus in F and that f (Fc1,...,ck

) is an annulus cobounded by f (c1)

and f (ck). Then there are two possibilities: f (c1) = p(A1 ∩ (F × {1})), f (ck) = p(Ak ∩ (F × {1})), or f (c1) =
p(Ak ∩ (F ×{1})), f (ck) = p(A1 ∩ (F ×{1})). In either case, considering how to join A1,A2, . . . ,Ak (k � 3) at their
boundaries, we see that A1 and A2 cannot be contained in the same torus. This contradicts that A1 ∪ A2 ∪ · · · ∪ Am

gives a single torus in Mf . Hence at most two curves can be parallel each other. Furthermore, we observe that C

consists of m
2 pairs of mutually parallel curves; in particular m is even. Let c′

1, . . . , c
′
m
2

be closed curves each of

which lies between each parallel pair. Then we see that C′ = c′
1 ∪ · · · ∪ c′

m
2

is an isotopically f -invariant, essential

1-submanifold. Hence C′ is isotoped into N(Ci) for some Ci ∈ Cf , and in fact, C′ can be isotoped to Ci . This then
implies that C is also isotoped into N(Ci); precisely, C can be isotoped to ∂N(Ci). �

In the following, let ci,1 ∪ · · · ∪ ci,m denote Ci or ∂N(Ci).
Now let us consider two families of annuli; one is A1 ∪· · ·∪Am, and, the other is (ci,1 ×[0,1])∪· · ·∪(ci,m×[0,1]).

From the former one, the essential torus T is obtained by identifying (A1 ∪· · ·∪Am)∩(F ×{0}) and (A1 ∪· · ·∪Am)∩
(F × {1}) by f , and, from the latter one, also an essential torus Ti is obtained by identifying (ci,1 ∪ · · · ∪ ci,m) × {0}
and (ci,1 ∪ · · · ∪ ci,m) × {1} by f .

Claim 14. There is a level preserving isotopy Φs :F × [0,1] → F × [0,1] satisfying the following property:

(1) Φ0 = id,
(2) Φ1(C,0) = (Ci,0), Φ1(f (C),1) = (Ci,1), and
(3) f -equivariant condition: f ◦ Φs |F×{0} = Φs |F×{1} ◦ f , where we identify F × {t} with F in a natural way.

Proof. We give a proof in the case where C is isotopic to Ci ; the same argument works for the case where C is
isotopic to ∂N(Ci).

Since C is isotopic to Ci in F , we have an isotopy ψt (0 � t � 1) of F such that ψ0 = id and ψ1(C) = Ci . Define
Φs :F × [0,1] → F × [0,1] as

Φs(x, t) =
{

(ψs(1−2t)(x), t) if 0 � t � 1
2 ,

(f ◦ ψs(2t−1) ◦ f −1(x), t) if 1
2 � t � 1.

Then it is straightforward to check that Φs is the required isotopy of F × [0,1]. �
Let us denote essential annuli Φ1(Aj ) by A′

j (j = 1, . . . ,m). Then (
⋃m

j=1 A′
j )∩(F ×{0}) = (ci,1 ∪· · ·∪ci,m)×{0}

and (
⋃m

A′ ) ∩ (F × {1}) = (ci,1 ∪ · · · ∪ ci,m) × {1}.
j=1 j
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Claim 15. A′
j ∩ (F × {0}) = ci,j × {0}, A′

j ∩ (F × {1}) = ci,j × {1} (after changing indices if necessary) and the
union of annuli A′

1 ∪ · · · ∪ A′
m can be isotoped to the union of vertical annuli (ci,1 × [0,1]) ∪ · · · ∪ (ci,m × [0,1]) by

an isotopy which is the identity on F × {0,1}.

Proof. This is the assertion of [7, Lemma 2.1]. �
It follows from Claims 14 and 15 that the torus T is isotopic to Ti in the surface bundle Mf .

Claim 16. i(sc, Ti) > 0.

Proof. Recall that c ∩ Ci �= ∅; this also implies that c ∩ ∂N(Ci) �= ∅. Then we have sc ∩ Ti �= ∅.
Suppose to the contrary that i(sc, Ti) = 0. Since Ti is two-sided in Mf , from Lemma 11, we see that there are two

points x and y in sc ∩ Ti which are equivalent. It follows that we have a continuous map ϕ : [0,1] × [0,1] → Mf

such that α = ϕ([0,1] × {0}) ⊂ sc, β = ϕ([0,1] × {1}) ⊂ Ti , ϕ({0} × [0,1]) = x and ϕ({1} × [0,1]) = y. We may
assume that ϕ|(0,1)×[0,1) transverses to Ti . Then (ϕ|(0,1)×[0,1))

−1(Ti) consists of properly embedded arcs, each of
which is parallel into [0,1] × {0}, and some arcs with one open end in [0,1] × {1}. Note that each of these arcs cuts
off a disks from [0,1] × [0,1]. Let us choose an innermost one, say Δ, which gives an innermost equivalent pair.
We rewrite this pair by x, y again and we have a continuous map ϕ as above for this new pair x, y. At this stage
(ϕ|(0,1)×{0})−1(Ti) = ∅.

Now we have two possibilities:

(1) x0 /∈ α = ϕ([0,1] × {0}) ⊂ sc , or
(2) x0 ∈ α = ϕ([0,1] × {0}).

(1) In this case α is entirely in F ×[0,1]. Since α and β are homotopic fixing their endpoints x, y, the union α ∪β

bounds a singular disk. Hence we can assume, by an homotopy if necessary, that β is also entirely in F × [0,1]. For
otherwise, π(α ∪ β) wraps in S1 direction, where π is the bundle projection Mf → S1, and so, it never bounds a
singular disk. Thus p ◦ϕ gives a homotopy from p(α) ⊂ c to p(β) ⊂ Ci fixing p(x) and p(y) for a natural projection
p :F × [0,1] → F . This implies that we can eliminate p(x) and p(y) from c ∩ Ci fixing x0, without creating new
intersection points with C1 ∪ · · · ∪ Cn, contradicting the minimality of c among [c] ∈ π1(F, x0).

(2) We divide this case into two subcases:

(i) x0 �= x, y, see Fig. 3.
(ii) x0 = x or y.

(i) In this case, t0 = (ϕ|[0,1]×{0})−1(x0) is in (0,1) × {0}. Since α and β are homotopic fixing their endpoints
x, y, we may homotope β fixing x, y so that β ∩ (F × {0}) consists of a single point. We may assume further that ϕ

transverses F × {0}. Then ϕ−1(F × {0}) contains an arc γ0 connecting (t0,0) and (t ′0,1) for some t ′0. By incompress-
ibility of F × {0} in Mf , we may assume by a further homotopy that actually ϕ−1(F × {0}) = γ0. This γ0 divides
[0,1] × [0,1] into two rectangles D1 and D2. Denote ϕ(γ0) by γ (respectively f (γ )) when we regard it in F × {0}
(respectively F × {1}).

The composition (p ◦ ϕ)|D2 :D2 → F gives a homotopy from γ to an ith initial path τi = p ◦ ϕ([t0,1] × {0})
keeping {x0} ∪ Ci invariant, and (p ◦ ϕ)|D1 :D1 → F gives a homotopy from f (γ ) to an ith terminal path τ ′

i =
p ◦ ϕ([0, t0] × {0}) keeping {x0} ∪ Ci invariant. Thus f (τi) is homotopic to f (γ ), which is homotopic to τ ′

i keeping
{x0} ∪ Ci invariant. Hence c is not well-terminated, a contradiction.

(ii) Putting x = x0 (or y = x0), we can apply the argument in (1) so that we have a homotopy from p(α) ⊂ c to
p(β) ⊂ Ci fixing p(x) and p(y). This again implies that we can eliminate p(x) and p(y) from c ∩ Ci fixing x0,
contradicting the minimality of c among [c] ∈ π1(F, x0). Here we adopt our counting rule: If the curve c is tangent to
Ci at x0 and lies locally in one side of Ci , then we do not regard it as their intersection point. �

Since T is isotopic to Ti in Mf , the invariance of geometric intersection numbers under homotopy [2, Lemme
3.1] assures that i(sc, T ) = i(sc, Ti), which is not zero by Claim 16. On the other hand, since T ⊂ Mf − intN(sc),
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Fig. 3.

sc ∩ T = ∅, in particular, i(sc, T ) = 0, a contradiction. It follows that Mf − intN(sc) is atoroidal and the proof of
Theorem 8 is completed.

Proof of Corollary 9. If we show that i(sc, Ti) > 0 for each i, then the argument in the proof of Theorem 8 implies
that sc is hyperbolic in Mf . Suppose for a contradiction that i(sc, Ti) = 0 for some i. Then it turn out that there is a
trivial intersection z in sc ∩ Ti , or there is an equivalent pair x, y in sc ∩ Ti . In the former case, by definition, sc can be
homotoped into Ti . Thus the algebraic intersection number of sc and Ti is zero. This then implies that the algebraic
intersection number of c and Ci is also zero, contradicting the assumption of Corollary 9. If the latter case happens,
then since i(sc, Ti) = 0, each equivalence class of an intersection point consists of even non-trivial intersection points.
Therefore |sc ∩ Ti | is even, and hence |c ∩ Ci | is also even, contradicting the assumption. �
4. Applications to surface-automorphisms

In this final section, we restate Theorems 1, 5, 7 and 8 in terminologies of surface-automorphisms.
Let F be a closed, orientable surface of genus � 2 and f an automorphism of F with f (x0) = x0 for some point

x0. (Recall that the condition “f (x0) = x0” implies f (D0) = D0 for some small diskal neighborhood D0 of x0.) For
another automorphism f ′ of F isotopic to f and satisfying f ′(x0) = x0, by isotoping f ′ to f , we obtain a closed
curve c based at x0 which traces x0 under the isotopy. We call c the sliding curve of f ′ and write f ′ = fc. Let f ′

1
and f ′

2 be automorphisms isotopic to f such that their sliding curves represent the same element of π1(F, x0). Then
following Birman [1, Chapter 4], there is an isotopy between them keeping x0 invariant.

Consider the mapping torus (F × [0,1])/{(x,0) = (fc(x),1)} with the gluing map fc. Since fc is isotopic to f

on F , we can apply a level (t ∈ [0,1]) preserving isotopy to F × [0,1] so that the gluing map becomes f . This
level preserving isotopy deforms the vertical segment {x0} × [0,1] to a monotone arc t whose projection is c; t

gives a section s in Mf by identifying its endpoints. Let us denote F − intD0 by F̂ . Then (F̂ × [0,1])/{(x,0) =
(fc|F̂ (x),1)} ∼= Mfc − intN(s0) ∼= Mf − intN(s). It follows from [14,11] that sc is hyperbolic if and only if the
monodromy map fc|F̂ is isotopic to a pseudo-Anosov automorphism.

Thus Theorems 1, 5, 7 and 8 can be restated as:

Corollary 17. If f is isotopic to a pseudo-Anosov automorphism, then the restriction fc|F̂ is also isotopic to a
pseudo-Anosov automorphism for any curve c.
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Corollary 18. [8] Suppose that f is irreducible and periodic with period p. Then the following three conditions are
equivalent.

(1) The restriction fc|F̂ is isotopic to a pseudo-Anosov automorphism.

(2) [c]f∗([c]) · · ·f p−1∗ ([c]) �= 1 ∈ π1(F, x0).
(3) [c] �= [γ̄ ∗ (f ◦ γ )] in π1(F, x0) for any path γ from xi to x0, where xi is a fixed point of f .

Corollary 19. [8] Suppose that f is reducible and periodic with period p. Then the following two conditions are
equivalent.

(1) The restriction fc|F̂ is isotopic to a pseudo-Anosov automorphism.

(2) [c]f∗([c]) · · ·f p−1∗ ([c]) ∈ π1(F, x0) is filling.

Corollary 20. Suppose that f is reduced by a reducing system Cf = {C1, . . . ,Cn} and not isotopic to a periodic
automorphism. Then the restriction fc|F̂ is isotopic to a pseudo-Anosov automorphism if [c] ∈ π1(F, x0) essentially
intersects Cf .
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