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a b s t r a c t

The transmission of a vertex in a connected graph is the sum of all distances from
that vertex to the others. It is said to be normalized if divided by n − 1, where n
denotes the order of the graph. The proximity of a graph is the minimum normalized
transmission, while the remoteness is the maximum normalized transmission. In this
paper, we give Nordhaus–Gaddum-type inequalities for proximity and remoteness in
graphs. The extremal graphs are also characterized for each case.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, G = (V , E) denotes a simple connected graph, with vertex set V and edge set E, on n = |V | vertices and
m = |E| edges. The degree of a vertex v ∈ V is denoted by dG(v), or d(v) when no confusion is possible. The minimum,
average and maximum degrees are denoted by δ, d and ∆, respectively. The distance between two vertices u and v in G,
denoted by d(u, v), is the length of a shortest path between u and v. The average distance between all pairs of vertices in G
is denoted by l. The eccentricity e(v) of a vertex v in G is the largest distance from v to another vertex of G. The minimum
eccentricity in G, denoted by r , is the radius of G. The maximum eccentricity of G, denoted by D, is the diameter of G. The
average eccentricity of G is denoted by ecc. That is,

r = min
v∈V
e(v), D = max

v∈V
e(v) and ecc =

1
n

∑
v∈V

e(v).

It is trivial that r ≤ ecc ≤ D and l ≤ ecc. The transmission t(v) of a vertex v is the sum of the distances from v to all other
vertices in G. It is said to be normalized, and then denoted t̃(v), when divided by n − 1. The proximity π and remoteness
ρ [1,2] of G are, respectively, the minimum and the maximum normalized transmission in G. That is,

π = min
v∈V
t̃(v) and ρ = max

v∈V
t̃(v).

Note that, by definition,

π ≤ r ≤ ecc ≤ D, π ≤ l ≤ ρ ≤ D and l =
1
n

∑
v∈V

t̃(v).

Thus normalizing t(v) helps in comparing graph invariants. Sharp bounds, proved in [3], on the proximity and the
remoteness of a graph G on n vertices are
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1 ≤ π ≤


n+ 1
4

if n is odd,
n
4
+

n
4(n− 1)

if n is even
and 1 ≤ ρ ≤

n
2
.

The lower bound on π is reached if and only if G contains a dominating vertex, i.e. ∆ = n − 1; the upper bound on π is
attained if and only if G is either the cycle Cn or the path Pn; the lower bound on ρ is reached if and only if G is the complete
graph Kn; the upper bound on ρ is attained if and only if G is the path Pn.
Let G be a graph and G its complement. If I is an invariant of G, we denote by I the same invariant but in G.

Nordhaus–Gaddum relations for the graph invariant I are inequalities of the following form:

L1(n) ≤ I + I ≤ U1(n) and L2(n) ≤ I · I ≤ U2(n),

where L1(n) and L2(n) are lower bounding functions of the order n, and U1(n) and U2(n) upper bounding functions of the
order n. Note that sometimes, in addition to the order n, other graph invariants are used in the bounds. These types of relation
are named after Nordhaus and Gaddum [4], who were the first authors to give such relations, namely

2
√
n ≤ χ + χ ≤ n+ 1 and n ≤ χ · χ ≤

(
n+ 1
2

)2
, (1)

where χ is the chromatic number of a graph. Finck [5] characterized the extremal graphs for the inequalities in (1). Since
thenmany graph theorists have been interested in finding such relations for various graph invariants. See [6] for a review of
early results of Nordhaus–Gaddum type. A variety of more recent papers devoted to such results can be found in the graph
theory literature, e.g. [7–14].
In order to get conjectures on the bounds in the Nordhaus–Gaddum-type inequalities for proximity and remoteness

of a graph and its complement, we used the AutoGraphiX 2 (AGX 2, for short) system [15–18]. This ‘‘discovery system’’ is
described, togetherwith its results, in a series of papers under the common title ‘‘Variable Neighborhood Search for Extremal
Graphs’’; see [16] for references. It is based on the following observation: a large variety of problems in extremal graph
theory can be viewed as parametric combinatorial optimization ones defined on the family of all graphs (or some restriction
thereof) and solved by a generic heuristic. The parameter is usually the order n of the graphs considered (sometimes the
order n and the size m or another graph invariant). The heuristic fits in the Variable Neighborhood Search metaheuristic
framework [17,19,20]. Presumably extremal graphs are found by performing a series of local changes (removal, addition
or rotation of an edge, etc.) until a local optimum is reached, then applying increasingly large perturbations, followed
by new descents; if a graph better than the incumbent one is found, the search is recentered there. After the parametric
family of extremal graphs has been found, relationships between graph invariants may be deduced from them using various
data mining techniques [18]. These include (i) a numerical method based on Principal Component Analysis which yields
a basis of affine relations between the graph invariants considered; (ii) a geometric method which uses a gift-wrapping
algorithm to find the convex hull of extremal graphs viewed as points in the invariants space; facets of this convex hull
give inequality relations; (iii) an algebraic method which recognizes families of graphs then exploits a database of formulae
giving expressions of invariants as functions of n on these families; substitution then leads to linear or nonlinear conjectures.

2. Proximity

In this section, we prove results of Nordhaus–Gaddum type for proximity in a graph and its complement. First, we prove
the lower and upper bounds, and characterize the associated extremal graphs, on the sum π + π .

Theorem 1. For any connected graph G on n ≥ 5 vertices for which G is connected,

2n
n− 1

≤ π + π ≤


n+ 1
4
+
n+ 1
n− 1

if n is odd,
n
4
+

n
4(n− 1)

+
n+ 1
n− 1

if n is even.

The lower bound is attained if and only if ∆(G) = ∆(G) = n− 2. The upper bound is attained if and only if either G or G is the
cycle Cn.

Proof.
Lower bound: Note that, if G is a connected graph such that G is also connected, then∆ ≤ n− 2. So

π ≥
∆+ 2(n−∆− 1)

n− 1
=
2n−∆− 2
n− 1

≥
(n− 2)+ 2
n− 1

=
n
n− 1

. (2)

Thus, the lower bound follows. Moreover, equality in (2) holds if and only if ∆ = n − 2. Then, the lower bound is attained
if and only if∆ = n− 2 and∆ = n− 2 (or equivalently∆ = n− 2 and δ = 1).
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Upper bound: Assume, without loss of generality, that r ≥ r . Since G and G are connected, we have r , r ≥ 2. Thus, we
consider two cases according to the values of r .
Case 1. r ≥ 3. Let v be a vertex in G. Let v′ ∈ V such that dG(v, v′) = eG(v) ≥ r . For any vertex w ∈ V \ {v, v′}, wv 6∈ E

or wv′ 6∈ E. Indeed, wv ∈ E and wv′ ∈ E would imply dG(v, v′) ≤ dG(v,w)+ dG(w, v′) = 2, which contradicts the choice
of v′. Thus, eG(v) = 2 and then r = 2. Therefore,

tG(v) = dG(v)+ 2
(
n− 1− dG(v)

)
= 2(n− 1)− dG(v) = n− 1+ dG(v).

Thus

π = 1+
δ

n− 1
.

Case 1.1. δ ≤ 2. We have

π + π ≤


n+ 1
4
+ 1+

δ

n− 1
if n is odd,

n
4
+

n
4(n− 1)

+ 1+
δ

n− 1
if n is even

≤


n+ 1
4
+ 1+

2
n− 1

if n is odd,
n
4
+

n
4(n− 1)

+ 1+
2
n− 1

if n is even

with equality if and only if G is the cycle Cn.
Case 1.2. δ = 3. Let u be a central vertex in G, i.e., eG(v) = r . Let Si denote the set of vertices u ∈ V such that d(v, u) = i.

In [21], Erdös et al. proved that a graph Gwith radius r contains an induced path of length at least 2r − 1. From the proof of
that result, it is easy to see that Si contains at least two vertices, for i = 2, . . . r − 1. Also, since δ = 3, |S1| ≥ 3. Then

t(v) =
r∑
i=1

i|Si|

≤ 3+ 2
r−1∑
i=2

i+ (n− 2r) · r = 1+ 2
r−1∑
i=1

i+ nr − 2r2

= (n− 1) · r − r2 + 1.

This bound, as a function of r , is increasing (using calculus, for example). On the other hand, Erdös et al. [22] proved that
the radius r of a connected graph with minimum degree δ is at most 3(n − 3)/(2δ + 2) + 5. In our case, δ = 3, so
r ≤ 3(n− 3)/8+ 5 = (3n+ 31)/8. Therefore

t(v) ≤ (n− 1)
(
3n+ 31
8

)
−

(
3n+ 31
8

)2
+ 1 =

15n2 + 38n− 1145
64

.

Thus

π ≤ t̃(v) ≤
15n+ 53
64

−
273

16(n− 1)
.

Now, applying to the sum π + π , we have

π + π ≤
15n+ 53
64

−
273

16(n− 1)
+ 1+

3
n− 1

=
15n+ 117
64

−
225

16(n− 1)

<


n+ 1
4
+
n+ 1
n− 1

if n is odd,
n
4
+

n
4(n− 1)

+
n+ 1
n− 1

if n is even

for all n ≥ 5.
Case 1.3. δ ≥ 4. It is proved in [23] that l ≤ (n− 1)/δ. So, as π ≤ l,

π + π ≤
n− 1
δ
+ 1+

δ

n− 1
.
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This bound, considered as a function of δ, is decreasing for 4 ≤ δ ≤ n− 1, and therefore it reaches its maximum for δ = 4.
Thus

π + π ≤
n− 1
4
+ 1+

4
n− 1

<


n+ 1
4
+ 1+

2
n− 1

if n is odd,
n
4
+

n
4(n− 1)

+ 1+
2
n− 1

if n is even,

for all n ≥ 6. Note that, since G and G are connected, and δ ≥ 4, the number of vertices is at least 7.
Case 2. r = 2. Let u1 (resp. u2) be a central vertex in G (resp. G). We have

π ≤ t̃G(u1) = 2−
d1
n− 1

and π ≤ t̃G(u2) = 1+
d2
n− 1

,

where d1 and d2 are, respectively, the degrees of u1 and u2 in G. Thus

π + π ≤ 2−
d1
n− 1

+ 1+
d2
n− 1

= 3+
d2 − d1
n− 1

.

Note that a center in a graph cannot be a pending vertex. So 2 ≤ d1, d2 ≤ n−3, and therefore d2−d1 ≤ n−5 with equality
if and only if d1 = 2 and d2 = n− 3.
Case 2.1. d1 = 2 and d2 = n− 3.

π + π ≤ t̃G(u2)+ t̃G(u1) =
n− 3+ 2× 2
n− 1

+
n− 3+ 2× 2
n− 1

=
2n+ 2
n− 1

= 2+
4
n− 1

<


n+ 1
4
+
n+ 1
n− 1

if n is odd,
n
4
+

n
4(n− 1)

+
n+ 1
n− 1

if n is even,

for all n ≥ 6.
If n = 5, then each of G and G contains a vertex of degree 3. Each of these two vertices has a normalized transmission of

at most 5/4. So π + π ≤ 5/2, which is less than the desired bound.
Case 2.2. d2 − d1 ≤ n− 6. We have

π + π ≤ 3+
n− 6
n− 1

= 4−
5
n− 1

<


n+ 1
4
+
n+ 1
n− 1

if n is odd,
n
4
+

n
4(n− 1)

+
n+ 1
n− 1

if n is even,

for all n ≥ 5. This completes the proof. �

Now, we turn to the bounds on the product π · π .

Theorem 2. For any connected graph G on n ≥ 5 vertices for which G is connected,

n2

(n− 1)2
≤ π · π ≤


(n+ 1)2

4(n− 1)
if n is odd,

n(n+ 1)
4(n− 1)

+
n(n+ 1)
4(n− 1)2

if n is even.

The lower bound is attained if and only if ∆(G) = ∆(G) = n− 2. The upper bound is attained if and only if either G or G is the
cycle Cn.

The proof is similar to that of Theorem 1, and is omitted here.

3. Remoteness

In the following theorem, we state and prove the lower and upper bounds on the sum ρ + ρ. The extremal graphs are
also characterized.
Recall that a comet Con,∆ is obtained froma star S∆+1 by appending a path Pn−∆−1 to one of its pending vertices.Moreover,

a path-complete graph PKn,m on n vertices and m edges is the graph obtained from a path Pk, k ≥ 1, and a clique Kn−k by
adding at least one edge between one endpoint of the path and the vertices of Kn−k, where (n− k)(n− k− 1)/2+ k ≤ m ≤
(n− k+ 1)(n− k)/2+ k− 1. One can verify that there is exactly one path-complete graph PKn,m for all n andm such that
1 ≤ n− 1 ≤ m ≤ n(n− 1)/2.
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Fig. 1. Graphs with D = 3 that maximize ρ + ρ for n = 6.

Theorem 3. For any connected graph G on n ≥ 6 vertices for which G is connected,

3 ≤ ρ + ρ ≤
n+ 2
2
+

2
n− 1

.

The lower bound is attained if and only if n ≥ 8, G is regular and D = D = 2. The upper bound is attained if and only if G or G
is the path Pn, the comet Con,3 or the path-complete graph PKn,n when n ≥ 7, and if and only if G or G is the path P6, the comet
Co6,3, the path-complete graph PK6,6 or one of the graphs in Fig. 1.

Proof.
Lower bound: For a vertex v in a connected graph G,

t̃(v) ≥
d(v)+ 2(n− d(v)− 1)

n− 1
= 2−

d(v)
n− 1

.

So

ρ ≥ 2−
δ

n− 1
,

with equality if and only if the diameter of G is 2.
Applying this to both G and G,

ρ + ρ ≥ 4−
δ + δ

n− 1
= 3+

∆− δ

n− 1
≥ 3.

Thus the lower bound follows. Moreover, it is attained if and only if G is regular and D = D = 2. Note that such pair of
graphs does not exist if n = 6 or n = 7. Indeed, a connected regular graph G on six vertices, for which G is connected, is the
cycle C6 or its complement. In this case we have ρ + ρ = 3.2. Also, a connected regular graph on seven vertices, for which
G is connected, is the cycle C7 or its complement. In this case we have ρ + ρ = 10/3.

Upper bound: According to the fact that if the diameter of G is at least 4, then the diameter of G is 2, and assuming, without
loss of generality, that D ≥ D, we will consider three cases. (i) D = 2 and D ≥ 3. In this case,

ρ =
δ + 2(n− δ − 1)

n− 1
= 2−

δ

n− 1
= 1+

∆

n− 1
,

where δ denotes theminimum degree in G and∆ denotes themaximumdegree in G. In addition, for a connected graphwith
diameter D, it is easy to see that the remoteness ρ is bounded as follows:

ρ ≤
1+ 2+ · · · + (D− 1)+ D · (n− D)

n− 1
=
(2n− 1)D− D2

2(n− 1)
.

Now, using the inequality∆ ≤ n− D+ 1 for connected graphs, we get

ρ + ρ ≤
(2n− 1)D− D2

2(n− 1)
+ 1+

∆

n− 1

≤
(2n− 1)D− D2

2(n− 1)
+ 1+

n− D+ 1
n− 1

=
(2n− 3)D− D2

2(n− 1)
+ 2+

2
n− 1

.

It is easy to see that the last expression is maximum if and only if D = n− 1 or D = n− 2. Therefore, replacing D by n− 2
or n− 1,

ρ + ρ ≤
n+ 2
2
+

2
n− 1
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with equality if and only if D = n− 1 or D = n− 2. If D = n− 1, the corresponding graph is the path Pn. If D = n− 2 and
under the condition that ρ is maximum, the corresponding graphs are the comet Con,3 and the path-complete graph PKn,n.
(ii) D = 2 and D = 2. In this case we have

ρ + ρ = 2−
δ

n− 1
+ 2−

δ

n− 1
= 3−

δ

n− 1
+

∆

n− 1
= 3+

∆− δ

n− 1
.

Note that, if D = D = 2, then∆ ≤ n− 2 and δ ≥ 2. Thus

ρ + ρ ≤ 3+
n− 4
n− 1

<
n+ 2
2
+

2
n− 1

for all n ≥ 6.
(iii) D = D = 3. In this case, we have

ρ ≤
1+ 2+ 3(n− 3)

n− 1
=
3n− 6
n− 1

and ρ ≤
3n− 6
n− 1

. (3)

First, assume that both inequalities in (3) are strict, so

ρ + ρ ≤ 2 ·
1+ 4+ 3(n− 4)

n− 1
= 6−

8
n− 1

≤
n+ 2
2
+

2
n− 1

for all n ≥ 6. The inequality being strict whenever n ≥ 7.
Now assume that one of the inequalities in (3) is an equality, without loss of generality, say

ρ =
1+ 2+ 3(n− 3)

n− 1
=
3n− 6
n− 1

.

In this case, Gmust contain a vertex (of maximum transmission) v1 of degree 1, its unique neighbor v2 of degree 2, a unique
vertex v3 at distance 2 from v1, and n−3 vertices u1, u2, . . . un−3 at distance 3 from v1, such that uivj 6∈ E for i = 1, . . . n−3
and j = 1, 2. Under these conditions, we have in G,

t̃G(v1) =
(n− 2)+ 2
n− 1

= 1+
1
n− 1

,

t̃G(v2) =
(n− 3)+ 2+ 3

n− 1
= 1+

3
n− 1

,

t̃G(v3) =
1+ 2(n− 3)+ 3

n− 1
= 2,

t̃G(ui) ≤
2+ 2(n− 3)
n− 1

= 2−
2
n− 1

, for i = 1, . . . n− 3.

Therefore, ρ = 2 for all n ≥ 6. Thus

ρ + ρ =
3n− 6
n− 1

+ 2 = 5−
3
n− 1

≤
n+ 2
2
+

2
n− 1

with equality if and only if n = 6.
The extremal graphs for n = 6 are P6, Co6,3 and PK6,6 in the case (i) (as shown above). In addition, it is easy to see that

the bound is reached (for n = 6) for all the graphs given in Fig. 1, and using the graph-generating system Nauty (available
at http://cs.anu.edu.au/~bdm/nauty/), one can easily check that those graphs and their complements are the only ones for
which the bound is reached. �

The following lemma will be used in the proof of the next theorem.

Lemma 4. The function f (t) = t3 − (4n − 1)t2 + (4n2 − 2n)t, for 1 ≤ t ≤ n − 1, where n is an integer, is maximum
for t∗ =

(
4n− 1−

√
4n2 − 2n+ 1

)
/3. Moreover, if t is assumed to be integer, then the function reaches its maximum for

t∗ = 2n/3 if n = 0 (mod 3) , for t∗ = 2(n − 1)/3 and for t∗ = (2n + 1)/3 if n = 1 (mod 3) , and for t∗ = (2n − 1)/3 if
n = 2 (mod 3) .

Proof. It is easy to check that f (t) is maximum for

t∗ =
4n− 1−

√
4n2 − 2n+ 1
3

.

http://cs.anu.edu.au/~bdm/nauty/
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Moreover, we have (2n− 1)/3 < t∗ < 2n/3. So, assuming that t∗ is an integer, we get

2n− 3
3
≤ t∗ ≤

2n
3

if n = 0 (mod 3) ,
2n− 2
3
≤ t∗ ≤

2n+ 1
3

if n = 1 (mod 3) ,
2n− 1
3
≤ t∗ ≤

2n+ 2
3

if n = 2 (mod 3) .

Substitutions show that the maximum value of f (t) is

f
(
2n
3

)
=
(32n+ 40)(n− 1)2 + 48(n− 1)+ 8

27
if n = 0 (mod 3) ,

f
(
2n− 2
3

)
= f

(
2n+ 1
3

)
=
(32n+ 40)(n− 1)2 + 36(n− 1)

27
if n = 1 (mod 3) ,

f
(
2n− 1
3

)
=
(32n+ 40)(n− 1)2 + 48(n− 1)+ 10

27
if n = 2 (mod 3) .

This completes the proof. �

In the following theorem, we prove the upper bound on the product ρ · ρ. Moreover, we show that the bound is sharp
for every value n ≥ 7.

Theorem 5. For any connected graph G on n ≥ 7 vertices for which G is connected,

ρ · ρ ≤



16n+ 20
27

+
8

9(n− 1)
+

4
27(n− 1)2

if n = 0 (mod 3),

16n+ 20
27

+
2

3(n− 1)
if n = 1 (mod 3),

16n+ 20
27

+
8

9(n− 1)
+

5
27(n− 1)2

if n = 2 (mod 3).

The upper bound is the best possible, as shown by the comets Con,d n3e+1, and Con,d n3e if n = 1 (mod3).

Proof. We proceed as in the case of the upper bound in Theorem 3 and consider three cases according to the values of D
and D.
Case D = 2 and D ≥ 3. We have

ρ · ρ ≤

(
2−

D− 2
n− 1

)
·

(
D · (2n− D− 1)
2(n− 1)

)
=
(4n2 − 2n) · D− (4n− 1) · D2 + D3

2(n− 1)2
.

Using Lemma 4, we have

ρ · ρ ≤



16n+ 20
27

+
8

9(n− 1)
+

4
27(n− 1)2

if n = 0 (mod3),

16n+ 20
27

+
2

3(n− 1)
if n = 1 (mod3),

16n+ 20
27

+
8

9(n− 1)
+

5
27(n− 1)2

if n = 2 (mod3).

with equality if and only if D = 2n/3 for n = 0 (mod3), D = 2(n − 1)/3 or D = (2n + 1)/3 for n = 1 (mod3), and
D = (2n− 1)/3 for n = 2 (mod3). In each of these cases, the bound is attained as shown by the comets Con,d n3e+1, and also
Con,d n3e if n = 1 (mod3).

Case D = D = 2. In this case we have

ρ · ρ ≤

(
2−

δ

n− 1

)
·

(
1+

∆

n− 1

)
= 2+

2∆
n− 1

−
δ

n− 1
−

δ∆

(n− 1)2

< 2+
2∆− δ
n− 1

≤ 2+
2(n− 2)− 2
n− 1

≤ 4−
4
n− 1

<
16n+ 20
27

for all n ≥ 7.
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Table 1
Upper bounds on ρ · ρ for possible values of n1, n2, n3 .

(n1, n2, n3) (1, 1, 4) (1, 2, 3) (1, 3, 2) (1, 4, 1) (2, 1, 3)
Upper bound on ρ · ρ 5 4+ 2

3 4+ 25
36 5 4+ 25

36

(n1, n2, n3) (2, 2, 2) (2, 3, 1) (3, 1, 2) (3, 2, 1) (4, 1, 1)
Upper bound on ρ · ρ 4+ 1

3 4+ 5
18 4+ 5

18 3+ 8
9 3+ 3

4

Case D = D = 3. Let v, v′ ∈ V such that ρ = t̃G(v) and ρ = t̃G(v
′). If eG(v) = 2 (similarly eG(v

′) = 2), then

ρ · ρ ≤ 2
(
1+ 2+ 3(n− 3)

n− 1

)
= 2

(
3−

3
n− 1

)
= 6−

6
n− 1

<
16n+ 20
27

for all n ≥ 8. If n = 7, the bound is reached and the corresponding value is 5.
If eG(v) = eG(v

′) = 3 (necessarily v 6= v′), let ni be the number of vertices at distance i from v in G. Note that
n1 + n2 + n3 = n− 1. Thus

ρ =
n1 + 2n2 + 3n3

n− 1
= 1+

n2 + 2n3
n− 1

; (4)

ρ ≤


n3 + 2n1 + 3n2

n− 1
= 1+

n1 + 2n2
n− 1

if dG(v, v′) = 1,
1+ 2(n2 + n3 − 1)+ 3n1

n− 1
= 2+

n1 − 1
n− 1

if dG(v, v′) = 2.
(5)

Note that dG(v, v′) ≤ 2. Indeed, dG(v, v′) = 3 would imply eG(v
′) = 2 6= 3. Now, we consider two subcases according to

the value of dG(v, v′).
If dG(v, v′) = 1, then

ρ · ρ ≤

(
1+

n2 + 2n3
n− 1

)
·

(
1+

n1 + 2n2
n− 1

)
= 1+

n1 + 3n2 + 2n3
n− 1

+
(n2 + 2n3)(n1 + 2n2)

(n− 1)2

= 3+
n2 − n1
n− 1

+
(n− 1+ n3 − n1)(n− 1+ n2 − n3)

(n− 1)2

= 4+
2(n2 − n1)
n− 1

+
(n3 − n1)(n2 − n3)

(n− 1)2

< 4+
2(n− 4)
n− 1

+
(n− 4)2

(n− 1)2
= 7−

12
n− 1

+
9

(n− 1)2
.

Easy computations show that this bound is less than the desired one for all n ≥ 8.
If dG(v, v′) = 2, computations similar to those of the case dG(v, v′) = 1 show that the inequality is strict for all n ≥ 8.
To be done, it remains to prove that the inequality is true for n = 7 in the case D = D and eG(v) = eG(v

′) = 3. We
consider all possible values of n1, n2 and n3 (n1, n2, n3 ≥ 1 and n1+n2+n3 = 6), and for each possibility, the corresponding
bound on ρ ·ρ computed from the bounds (4) and (5). These values, gathered in Table 1, are compared to the value obtained
from the theorem, which is 5. �

Remark. Note that the bound provided in Theorem 5 is not valid for n = 4, 5, 6 (if n ≤ 3, then G and G cannot be connected
simultaneously). For the path P4 (resp. the comets Co5,3 and Co6,4), ρ · ρ = 4 (resp. 9/2 and 24/5) while the corresponding
value provided by Theorem 5 is 10/3 (resp. 63/16 and 112/25).
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