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1. INTRODUCTION 

The celebrated Hahn-Banach extension theorem for linear functionals 
has been generalized in many different directions. In particular, extension 
theorems for linear transformations rather than linear functionals have 
been developed. One of the earliest results concerning extensions of 
positive linear transformations was suggested by an extension theorem 
of L. V. Kantorovitch [5] for positive linear functionals. In its generalized 
form the theorem of Kantorovitch can be formulated as follows: 

(1.1) THEOREM. (L. V. Kantorovitch). Let K be a Riesx space and let 
L be a linear subspace of K majorking K (i.e., for each f E K there exists 
an element 0 G g E L such that [f / g g). Then every positive linear trans- 
formation T de$ned on L with values in a Dedekind complete Riesz space 
M can be extended to a positive linear transformation of K into H. 

It is not too hard to see that this result is a direct generalization of 
the classical Hahn-Banach theorem. Indeed, the Dedekind complete Riesz 
space N takes over the role of the real number system for the values 
of the linear transformation and the majorizing property of L replaces 
the role of the sublinear functional in the Hahn-Banach extension theorem. 

* Work on this paper was supported in part by NSF Grant MCS 76-2228%A01 to 
the California Institute of Technology, Pasadena, California. 
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For a proof of Kantorovitch’s theorem we refer to [lo] Theorem X.3.1. 
The purpose of the present paper is to answer the following question. 

If in Kantorovitch’s theorem L is a Riesz space and T is a Riesz homo- 
morphism (= linear lattice homomorphism) of L into M does there exist 
among the positive linear extensions of T to K an extension which also 
preserves the lattice operations of K 1 In other words, can every Riesz 
homomorphism be extended to a Riesz homomorphism in the setting of 
Kantorovitch’s theorem. The somewhat surprising answer to this question 
turns out to be affirmative. In fact, we shall show that the Riesz homo- 
morphic extensions are precisely the extreme points of the convex set 
of all the positive linear extensions whose existence are guaranteed by 
the theorem of Kantorovitch. 

The reader who is familiar with the theory of Boolean algebras will 
immediately observe that the extension theorem for Riesz homomorphisms 
generalizes the well-known Sikorski extension theorem for Boolean homo- 
morphisms. For Sikorski’s theorem we refer the reader to [8], [5], and [l] 
(Chapter V.9, Theorem 2 page 113). 

The proof of the extension theorem for Riesz homomorphisms presented 
in this paper will not be along the lines followed in the proofs of the Hahn- 
Banach theorem and the Sikorski extension theorem. The reason for this 
is that the process of extending a Riesz homomorphism from a Riesz 
subspace to the Riesz subspace generated by it and an additional element 
presents unsurmountable problems. Instead we shall deduce the extension 
theorem from the intermediate result that every Dedekind complete Riesz 
space is a retract of the Riesz spaces it majorizes. This in turn will follow 
from a property of the Dedekind completion of an Archimedean Riesz 
space which is of independent interest and can be formulated in the 
following way. The Dedekind completion of an ArchimedeanRiesz space 
is a retract of the Dedekind complete Riesz spaces it majorizes. 

For this reason the next section is devoted to proving the above result 
about the Dedekind completion of an Archimedean Riesz space. The 
extension theorem for Riesz homomorphisms will be derived in section 3 
of the paper and in section 4 we characterize the Riesz homomorphic 
extensions as the extreme points of the convex set of all positive linear 
extensions. For terminology concerning Riesz spaces and Boolean algebras 
not explained in this paper we refer the reader to [l], [7] and [lo]. 

2. A PROPERTY OF THE DEDEKIND COM-PLETION OF AN ARCHIMEDEAN 

RIESZ SPACE 

In this section we shall first prove a new result concerning the Dedekind 
completion of an Archimedean Riesz space referred to in the introduction 
and which in a sense is the key result in establishing the extension principle 
for Riesz homomorphisms. 

We shall begin with a few lemmas which are of independent interest. 
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Let L be a Riesz subspace of a Riesz space K and let I C K be an ideal 
satisfying L n I= (0). 

(2.1) LEMMA. The Riesx quotient space L/I is order dense in the Riesz 
quotient space K/I if and only if I is maximal with respect to the property 
L n I=(O). 

PROOF. Assume first that the ideal I C K is maximal w.r.t. the property 
L n I= (0) and that 0 < f E K satisfies f $ L. Then the maximality property 
of I implies that there exists an element 0 <u E I and an element 0 <g E L 
such that 0 <g < f + u. Hence, if p denotes the Riesz homomorphism of K 
onto K/I with kernel I, then O<p(g) <p(f)+p(u) =p(f). Since g 4 L we 
may conclude that p(g) >O, and so L/I in order dense in K/I. 

Conversely, assume that L/I is order dense in K/I and I is not maximal 
w.r.t. the property I n L= (0). The latter implies that there exists an 
element 0 <f E K such that f + I and the ideal I’ generated by I and {f} 
still satisfies L n I’ = (0). Let p and p’ be the Riesz homomorphisms of 
K with kernels I and I’ respectively. By hypothesis, L/I is order dense 
in K/I, and so there exists an element O<g E L such that O<p(g)~p(f). 
Then ICI’ implies that also Orp’(g)<p’(f). But f E I’ implies p’(f)=0 
and 0 <g E L implies p’(g) > 0 and a contradiction is obtained finishing 
the proof. 

For the sake of convenience we recall the following definition. 

(2.2) DEFINITION. A Riesz space L is said to major&e a Riesx space K 
whenever L in a Riesx subspace of K and for each f E K there exists an element 
O<geL such that lfl<g. 

(2.3) LEMMA. If a Riesx space L majorixes an Archimedean Riesz space 
K and if I is an ideal in K maximal w.r.t. the property L n I = {0}, then 
the Riesx quotient space K/I is Archimedean. 

PROOF. By [7] Theorem 60.2, page 427, we have only to show that if 
O<f,g~Kand (nf-g)+EIforalln=l,2,..., thenfEI. Iff#I, then 
the maximality property of I implies that there is an element 0 <u E L 
and an element 0 <v E I such that 0 <u < f + v. Hence, (nu - g)+ G (nf - g)+ + 
+nv EJ for all n= 1, 2, . . . . implies that for all n= 1, 2, . . . we have 
(nu-g)+ E L. From the assumption that L majorizes K it follows that 
there is an element O< w E L such that O<g< w. Then (nu- w)+< 
<(nu-g)+ 6 I (n= 1, 2, . . . ) implies that (mu--w)+ EI for all n= 1, 2, . . . . 
Since (nu- w)+ E L (n= 1, 2, . ..) and L n I= (0) we obtain finally that 
nucw for all n=l, 2, . . . . Since K is Archimedean we may conclude that 
u= 0, contradicting u> 0 finishing the proof. 

We shall need the following definition of a retract of a Riesz space. 
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(2.4) DEFINITION. A Riesx space L is called an order retract (Riesx 
retract) of a Riesx space K whenever there exists a positive linear transfor- 
mation (Riesx homomorphism) T of K into L and a positive linear transfor- 
mation (Riesx homomorphism) S of L into K such that the composition map 
T o S is the identity on L. 

It is obvious that a Riesz retract is always an order retract. 
Concerning retracts we shall need the following result whose counter- 

part in the theory of Boolean algebras is well-known (see [l], Chapter V.9, 
Lemma 1, p. 112). We abbreviate Dedekind complete by D-complete. 

(2.5) THEOREM. If a Riesx space L is an order retract of a D-complete 
Riesx space K, then L is D-complete. 

PROOF. Let A CL be non-empty and bounded above by an element 
f E L. Then, with the notation introduced in (2.4), we have that S(A) C K 
is non-empty and bounded above by Sf E K. Since K is D-complete 
sup S(A) =g exists in K. We shall now prove that sup A exists in L and 
is equal to Tg. To this end, observe that TX(A) = A implies that Tg is 
an upper bound of A. If u is an upperbound of A and u< Tg, then Su 
is an upperbound of S(A), and so, by the definition of g, we have g<Su. 
Nence, Tg< TSu =u, and the proof is complete. 

The reader may observe that other Riesz space properties such as the 
Archimedean property and the countable sup property are preserved 
under retracts. 

In the proof of the main theorem we shall use the following result 
which follows from Theorem 32.6, [7], page 195. 

(2.6) LEMMA. If a Riesz space L majorizes an Archimedean Riesx space 
K and L is order dense in K, then for each f E K we have 

sup(g:g~L and g<f)=f= inf(g’:g’EL and f<g’), 
where the sup and inf exist in K. 

We are now in a position to prove the main theorem of this section. 

(2.7) THEOREM. Let L be a Riesz space majorking a D-complete Riesx 
space K and let I be an ideal in K maximal w.r.t. the property L n I=(O). 
Then the quotient Riesx space K/I is D-complete and Riesz isomorphic to 
the D-completion of L. 

PROOF. Let p be the Riesz homomorphism of K onto K/I with kernel I. 
Then L n I = (0) implies that the restriction of p to L is a Riesz iso- 
morphism of L onto p(L) = L/I. Let q be the inverse mapping of p. Then 
q is a Riesz isomorphism of L/I onto L C K. Since K is D-complete and 
L/I majorizes K/I it follows from the extension theorem (1.1) of Kantoro- 
vitch that q can be extended to a positive linear transformation T of 
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K/I into K. Prom the definition of q it follows that the composition map 
p o q is the identity on L/I. We shall now show that also the composition 
map p o T is the identity on K/I. To this end, observe that the maximality 
property of I implies, using (2.1) and (2.3), that L/I majorizes and is 
order dense in the Archimedean Riesz space K/I. Now f E K/I and 
g, g’ E L/I and g <f <g’ implies that q(g) G Tf < q(g’), and so, by applying p, 
we obtain g =p(q(g)) <p(Tf) <p(q(g’)) = g’ for arbitrary g, g’ E L/I satisfying 
gcf Gg’. Hence, by (2.6), f=p(Tf) for all f E K/I. This shows that T is 
a Riesz homomorphism and that K/I is a Riesz retract of K. K being 
D-complete implies, using Theorem 2.5, that K/I is D-complete. Since 
L is Riesz isomorphic to L/I and L/I majorizes K/I and is order dense 
in the D-complete Riesz space K/I it follows finally that K/I is Riesz 
isomorphic to the Dedekind completion of L. This completes the proof 
of the theorem. 

The proof of Theorem 2.7 shows a little more, namely that K/I is a 
Riesz retract of K. This observation leads immediately to the following 
corollary. 

(2.8) COROLLARY. The D-completion of an Archimedean Riesz space is 
Riesz isomorphic to a Riesx retract of every D-complete Riesz space it ma- 
jorizes. 

By specialization in (2.7) we obtain the following result due to A. I. 
Veksler [9], who derived the result in quite a different way. 

(2.9) THEOREM. Let L be a Riesz subspace of a D-complete Riesz space 
K. Then there exists a Riesx subspace L’ of K containing L as a Riesx 
subspace and a Riesx isomorphism of L’ onto the D-completion of L which 
leaves every element of L fixed. 

PROOF. Let K’ be the ideal in K generated by L. With the notation 
used in the proof of (2.7) it is easy to see that the Riesz subspace 
L’=T(K’/I) of K satisfies all the required properties. 

(2.10) REMARKS. (i) The proof of (2.9) shows a little more than 
Veksler’s in that L’ is also a Riesz retract of the D-complete Riesz space 
K’/I. 

(ii) The purpose of this remark is to indicate that in the theory of 
Boolean algebras there are results analogous to (2.1) and (2.9). Indeed, 
the following theorem about Boolean algebras holds. 

(2.10) THEOREM. Let z?& be a subalgebra of a Boolean algebra 33 and 
let I be an ideal in 97. Then the quotient algebra 930/I is order dense in the 
quotient algebra S/I if and only if I is maximal w.r.t. the property 
99’0 n I = {O]; and in this case, if 93 is in addition complete, then 98/I is 
isomorphic to the minimal completion of go. 
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The proof of (2.10) can be given along the same lines as the proofs of 
(2.1) and (2.9) except that at the point in the proof of (2.9) the extension 
theorem of Kantorovitch is used we may now use Sikorski’s extension 
theorem. 

The theorem in the theory of Boolean algebras which corresponds to 
Veksler’s theorem is a trivial consequence of Sikorski’s extension theorem. 

If we denote by Y”(g) the Stone representation space of a and by 
O(I) the open subset of Y”(g) determined by the ideal I, then it is well- 
known that the closed set J’I= Y(a)\0 I is homeomorphic with the Stone 
space Y’i39/I) of &f/I. If now 9 is complete, then Y(a) is extremely 
disconnected, and if I is maximal w.r.t. ,64& n I= (0} for some sub-algebra 
6% of A?‘, then the closed subset Fr of Y(g) is also extremely disconnected. 
It is not known to the authors whether every closed subset of an extremely 
disconnected Stone space which is extremely disconnected in the induced 
topology can be obtained in this manner. 

The first-named author wishes to thank Professor Ph. Dwinger for many 
valuable discussions concerning the Boolean algebra results of this section, 
and he wishes to mention that Professor Dwinger found the same proof 
of (2.10). 

3. AN EXTENSION THEOREM FOR RIESZ HOMOMORPHISMS 

The main purpose of this section is to prove the following extension 
theorem for Riesz homomorphisms which generalizes Sikorski’s extension 
theorem for Boolean homomorphisms. 

(3.1) THEOREM. Let L be a Riesx space majorizing a Riesx space K 
and let T be a Riesz homomorphism of L into a D-complete Riesx space M. 
Then T can be extended to a Riesx homomorphism of K into M. 

The proof of (3.1) will be divided into several steps. 
First we observe that an immediate consequence of (3.1) is the following 

result. Every D-complete Riesz space is a Riesz retract of every Riesz 
space it majorizes. We shall now show that this consequence of (3.1) 
follows from Theorem 2.7 and its Corollary 2.8. 

(3.2) THEOREM. Every D-complete Riesx space is a Riesx retract of 
every Riesz space it major&es. 

PROOF. Let the Riesz space L be D-complete and majorizing the Riesz 
space K and let K’ be the D-completion of K by cuts. Observe that L 
still majorizes K’. If we can show that L is a Riesz retract of K’ then it 
is obviously also a Riesz retract of K C K’. Hence, there is no loss in 
generality to assume that K is D-complete. Then, by using the notation 
introduced in the proof of (2.7), we observe that since L/I is now D- 
complete it coincides with K/I. Hence, in this case p(L) = K/I and T = q, 
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and so the composition map q o p is the required Riesz retract of K onto 
L, completing the proof. 

(3.3) REMARK. In the theory of Boolean algebras the theorem which 
corresponds to (3.2) states that every complete Boolean algebra is a retract 
of every Boolean algebra it contains. This immediate consequence of 
Sikorski’s theorem was shown in [5] to be logically equivalent to Sikorski’s 
extension theorem. 

In order to be able to derive (3.1) from (3.2) we need two more inter- 
mediate results. The first one is a corollary of (3.2). 

(3.4) COROLLARY. Let L be a D-complete Riesx space majorixing a 
Riesx spac.e K and let T be a Riesz homomorphism of L into a D-complete 
Riesx space M. Then T can be extended to a Riesz homomorphism of K 
into M. 

PROOF. By (3.2), there exists a Riesz retract p of K onto L. Then the 
composition map T o p is a Riesz homomorphism of K into A%? which 
extends T, which finishes the proof. 

The reader should note that for (3.4) to hold M need not be D-complete. 
The next result deals with the extension property of order continuous 

homomorphisms. 

(3.5) THEOREM. Let L be a Riesz space majoriaing a Riesx space K 
and let T be an order continuous Riesz homomorphism of L into a D-complete 
Riesz space M. Then T can be extended to a Riesx homomorphism of K 
into M. 

PROOF. Since T is order continuous T extends uniquely by order limits 
to a Riesz homomorphism, which we shall again denote by T, of the 
D-completion L’ of L into M. Let K’ be the D-completion of K. Then 
Veksler’s theorem (2.9) implies that there exists a Riesz homomorphism 
p of L’ onto a Riesz subspace LO of K’ such that L C Lo and p leaves L 
invariant. It is obvious that LO majorizes K’, and so, by (3.4), the Riesz 
homomorphism T op-1 of La into &.I can be extended to a Riesz homo- 
morphism T’ of K’ into M. Since L is invariant under p it follows that 
T’ extends T, and the proof is finished. 

PROOFOFTHEOREM 3.1. Let J be the ideal in K generated by the kernel 
in L of T and let p be the canonical Riesz homomorphism of K onto K/J. 
For every f E L we set To(p(f)) = T(f). Th en it is easy to see that To defines 
a Riesz isomorphism of p(L) = L/J onto the Riesz subspace X=T(L) of 
M. Let X’ be the D-completion of X. Then TO is an order continuous 
Riesz isomorphism of L/J into X’ ([7], Theorem 18.13, p. 104). Since 
L/J majorizes K/J it follows from (3.5) that TO can be extended to a 
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Riesz homomorphism To of K/J into X’. From X C M and iW is D- 
complete it follows from Veksler’s theorem (2.9) that there exists a Riesz 
isomorphism 4 of X’ into a Riesz subspace Y of M such that X C Y and 
4 leaves X invariant. Then for each f E K we set Ti(f) =q(!Z’&(f))). Then 
T1 is a Riesz homomorphism of K into M such that for all f E L we have 

Tl(f)=p(T~(~(f)))=q(Tf)=Tf, i.e., Tl extends T, which finishes the proof. 

(3.6) REMARK. Using the Stone representation theorem for Boolean 
algebras or using Caratheodory’s theory of place functions (see [2]) it 
can readily be shown that the extension theorem (3.5) for Riesz homo- 
morphisms implies Sikorski’s extension theorem for Boolean homomor- 
phisms. 

4. RIESZ HOMOMORPHIC EXTENSIONS AND EXTREME POINTS 

Assume that the Riesz space L majorizes the Riesz space K and assume 
that To is a positive linear transformation of L into a D-complete Riesz 
space N. By .Zb(K, n/r) we shall denote the D-complete Riesz space of 
all order bounded linear transformations of K into M. Then the subset 
E(To) of Y$(K, IM) of all the positive linear transformations which extend 
To is a convex set, which by Kantorovitch’s theorem is non-empty. If To 
is a Riesz homomorphism, then the extension theorem (3.1) implies that 
the convex set E(To) contains certain Riesz homomorphisms of K into M. 
It is a natural question to ask to characterize those elements of E(To) 
which are the Riesz homomorphic extensions of To ? The complete answer 
is contained in the following theorem. 

(4.1) THEOREM. If To is a Riesx homomorphism of L into M, then an 
element T E E(To) is a Riesx homomorphism if and only if T is an extreme 
point of the convex set E(To). 

PROOF. Assume first that T E E(To) is a Riesz homomorphism and 
that T is not an extreme point of Ii’( Then there exist elements 
T1, Tz E E(To) and a constant 0 <1< 1 such that T1# 172 and T =ilTl+ 
+ (1 - A)Tg. The latter implies that ATI G T and (1 -A)172 < T, and so, by 
a theorem of Kutateladze [4] (see also [B], Theorems 4.2 and 4.3 for a 
generalization and direct proof), there exist orthomorphisms xi, 7~s of 1M 
into M such that ATI = rctlT and (1 - A)Tz = n2T. Since T1, Tz are extensions 
of To it follows that for all f EL we have nl(To(f)) =A.Tl(f)=A.To(f) and 
rctz(To(f)))=(l-A)Tz(f)=(l-;Z)Tz(f)=(l-A)To(f). If we denote by I, the 
identity orthomorphism of lb? onto M, then we may conclude now that 
or= AI, and 7~s = (1 -n)1, on T(L). Then, by an important property of 
orthomorphisms (see [6], Theorem 1.6), it follows that ~i=ilI, and 
x2= (l-1)1, on the band {T(L)}&& generated by T(L) in M. From the 
hypothesis that .L majorizes K it follows that (T(L)}da= (T(K)}aa, and 
so for all f E K we have xl(T(f))=il.T(f)=L.Tl(f). Hence, I#0 implies 

152 



that T = T1 and similarly we obtain that T = Tz, contradicting Tlf Tz, 
which shows that T is an extreme point of E(To). 

Conversely assume that T E E(T ) a is an extreme point. According to 
the theorem of Kutateladze referred to above T is Riesz homomorphism 
if for every S E gb+(.U, M) satisfying O<S< T there exists an orthomor- 
phism z of M into M such that S=nT. Now the restriction of T to L 
is the Riesz homomorphism To. Then, by Theorem 4.2 of [6], O<S<T, 
on L implies that there exists an orthomorphism 3t of M into M such 
that 0 <no I, and b’=zT~=nT on L. Then the positive linear transfor- 
mation Si = nT of K into M coincides with S on L. From this fact we may 
conclude that T & (X- Si) E E(To). Furthermore, from the definition of 
& it follows immediately that T + (X-81) = T + (S-3tT) > 0. Hence, 
T being an extreme point of E(To) implies finally that S= Tl=nT, and 
so, by Kutateladze’s theorem, T is a Riesz homomorphism. This completes 
the proof of the theorem. 

(4.2) REMARK It is not without interest to observe that the Riesz 
homomorphic extensions of a Riesz homomorphism are all incomparable 
with respect to the order relation between operators. 

(4.3) ADDENDUM. In the proof of Theorem 3.1 the ideal J in K should 
be chosen in such a way that the kernel I= (f: T(f)= O>= {f: T(\fl) =O), 
of T satisfies I== J n L and the quotient space K/J is Archimedean. For 
this to be true it is in general not enough to take for J the ideal in K 
generated by the kernel I of T as was done in the proof of Theorem 3.1. 
That such an ideal J exists with the above properties is a consequence 
of the fact that I, being the kernel of a Riesz homomorphism, is closed 
in the relative uniform topology of L, i.e., L/I is Archimedean, and the 
following generalization of Lemma 2.3. 

(2.3)’ LEMMA. If the Riesx subspace L of a Riesx space K majorizes 
K and I is an ideal in L such that the quotient space L/I is Archimedean, 
then every ideal J in K maximal w.r.t. the property J n L = I has the property 
that the quotient space K/J is Archimedean. 

We shall not give the proof as it is completely analogous to the proof 
of Lemma 2.3. 

Professor Ph. Dwinger kindly informed the authors that the answer 
to the question raised in the last paragraph of section 2 is no. This can 
be shown by means of the following counterexample. Let 9’ be the 
complete atomic Boolean algebra of all subsets of an ordinal ol>&. Let 
~?(27 be the free Boolean algebra on 2” free generators. Then $(2”) 
satisfies the countable chain condition (see [l], Thm. 24, p. 93), and hence 
the normal completion 9 of $(2”) also satisfies the countable chain 
condition. Since $(27 is free there exists a Boolean homomorphism h 
of j7(2‘7 onto ~$7’. By Sikorski’s extension theorem [S] h can be extended 
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to a homomorphism of98 onto 39”. Since 9” does not satisfy the countable 
chain condition (LX>&) and 9’ does, it follows that 93’ is not a retract 
of 9. But 99’” is isomorphic to a complete quotient space of ~3’. This shows 
that not necessarily every complete quotient space of a complete Boolean 
algebra is of the type introduced at the end of section 2. 
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