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1. Introduction

We consider the incompressible micropolar fluid system in Rt x R3:

du— (X +v)Au+u-Vu+Vr —2xVxw=0,
0w — pAw+u-Vo+4xw—kVdivw —2xV xu=0, (1)
divu =0, .

(U, w)|t=0 = (U, wo).
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Here u(t, x) and w(t, x) denote the linear velocity and the velocity field of rotation of the fluid respec-
tively. The scalar 7 (t,x) denotes the pressure of the fluid. The constants «, x, v, u are the viscosity
coefficients. For simplicity, we take y =v = % and k =p=1.

Micropolar fluid system was firstly developed by Eringen [11]. It is a type of fluids which exhibits
micro-rotational effects and micro-rotational inertia, and can be viewed as a non-Newtonian fluid.
Physically, micropolar fluid may represent fluids that consist of rigid, randomly oriented (or spherical
particles) suspended in a viscous medium, where the deformation of fluid particles is ignored. It can
describe many phenomena that appear in a large number of complex fluids such as the suspensions,
animal blood, liquid crystals which cannot be characterized appropriately by the Navier-Stokes sys-
tem, and that it is important to the scientists working with the hydrodynamic-fluid problems and
phenomena. For more background, we refer to [16] and references therein.

If the microstructure of the fluid is not taken into account, that is to say the effect of the angular
velocity field of the particle’s rotation is omitted, i.e.,, w =0, then Eq. (1.1) reduces to the classical
Navier-Stokes equations.

Due to its importance in mathematics and physics, there is a lot of literature devoted to the math-
ematical theory of the micropolar fluid system. Galdi and Rionero [14] and Lukaszewicz [16] proved
the existence of the weak solution. The existence and uniqueness of strong solutions to the micropolar
flows and the magneto-micropolar flows either local for large data or global for small data are consid-
ered in [2,16,17] and references therein. Recently, inspired by the work of Cannone and Karch [6] on
the compressible Navier-Stokes equations, V.-Roa and Ferreira [12] proved the well-posedness of the
generalized micropolar fluids system in the pseudo-measure space which is denoted by PM“-space.
The elements of this space have Fourier transform that verifies

sup [£[7]f (£)] < o (1.2)
R3

For the well-posedness for the 2D case with full viscosity and partial viscosity one may refer to
[16,10] respectively. For the blow-up criterion of smooth solutions and the regularity criterion for
weak solutions one refers to [19,18] and references therein.

For the incompressible Navier-Stokes equations

oy —VvAu+4+u-vVu+Vp=0,
divu =0, (1.3)
u(x, 0) = up,

Fujita and Kato [13,15] proved the local well-posedness for large initial data and the global well-

posedness for small initial data in the homogeneous Sobolev space H 7 and the Lebesgue space L3
respectively. These spaces are all the critical ones, which are related to the scaling of the Navier-
Stokes equations: if (u, p) solves (1.3), then

(un(t,x), pa(t,x)) aof (Au(kzt, Ax), Azp(kzt, Ax)) (1.4)

is also a solution of (1.3). The so-called critical space is the one such that the associated norm is
invariant under the scaling of (1.4). Recently, Cannone [5] (see also [4]) generalized well-posedness
to Besov spaces with negative index of regularity. More precisely, he showed that if the initial data
satisfies

luoll_,3 <c. p>3

p,o0

for some small constant c, then the Navier-Stokes equations (1.3) are globally well-posed. Let us
emphasize that this result allows to construct global solutions for highly oscillating initial data which

may have a large norm in H? or 13. A typical example is
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uo(x) = sin{ = (=02 (x), 919 (x),0)

where ¢ € S(R?) and ¢ > 0 is small enough. Concerning the compressible Navier-Stokes equations,
we have established the global well-posedness in the framework of the hybrid-Besov space, please
refer to [8].

In this paper we prove the global well-posedness for the 3-D micropolar fluid system in the crit-
ical Besov spaces as the incompressible Navier-Stokes equations (1.3). This result allows to construct
global solutions for a class of highly oscillating initial data of Cannone’s type. Meanwhile, we analyze
the long-time behavior of the solutions and get some decay estimates.

Now let us sketch the main difficulty and the strategy to overcome it.

Applying the Leray projection to the first equation in (1.1), we obtain

ofu—Au+Pu-Vu)—Vxw=0,
ohw—Aw—+u-Vo+2w—Vdivw—V xu=0,
divu =0,

(U, w)|e=0 = (U, wo).

(15)

Obviously, the system has no scaling invariance compared with the incompressible Navier-Stokes

equation. In general there are two ways to achieve the global existence for small data in the criti-
3

cal Besov space as Bpl,:p for general p. The first one is Kato’s semigroup method which was used
in [5], it turns out that the both linear terms V x w and V x u will play bad roles if they are regarded
as the perturbations. The second way is to use the energy method together with the Fourier localiza-
tion technique, but the linear coupling effect of the system (1.5) is too strong to control unless the
coefficients of these two linear terms are sufficiently small, while it is impossible.

To overcome the difficulty from the terms V x w and V x u, we will view them as certain per-
turbation of the Laplacian operator in some sense. More precisely, we will study the following mixed
linear system of Eq. (1.5):

{atu—Au—an)zo, (16)
dw — Aw+2w—Vdivwo —V xu=0, )
and the action of its Green matrix which is denoted by G(x,t). From [12], we have

Gf g, =e"®f (@), (17)
where

|&121 B(§) ]
A =
© [3@ (1€ +2)1+C(®)

with

0 —& & £ E1& £&
B(€)=i[53 0 —sl} and CE)=|&& & &&
-& & 0 £1863 £y 2

It has been shown in [12] that G(x,t) has similar properties in common with the heat kernel, i.e.,

G, 0)| <eclér, (1.8)
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which means that ||G(x,t)f]l;2 is bounded. However, it is not enough to obtain the estimates of
the solution in the Besov space as we wanted. For this purpose, we have to analyze the behavior
of the derivative of 6(%‘, t) to set up the boundedness of G(x,t)f in LP. In fact, we have the better
property that |G(x, t) f||;» has exponential decay estimate for f supported in a ring. But if we directly
calculate its derivatives as well as utilizing the estimate (1.8), we only have the rough estimate for
example when |a| =1,

IDZC(E, 0] <e Pt (1 4 |¢)). (1.9)

Obviously, the above inequality is not enough for us to deduce that for any couple (t, 1) of positive
real numbers and supp f C AC (C is the annulus in Section 2) such that

|G Of |, <Ce™ ™ IIflle, 1<p< oo, (1.10)

except the high frequency case A > 1 and the case p =2 is allowed. As for the well-posedness in the
pseudo-measure space (see [12]), only the estimate (1.8) is required owing to the speciality of the
working space, and its method seems not to work for the derivatives estimate of G(§, t).

Although the second equation of (1.5) presents the smoothing effect, there is negative impact from
V x u and V x w which is the main obstacle to establish the well-posedness of (1.1) for highly

3
oscillating data in the more natural Besov space Bp:p . To this goal, we shall employ sufficiently
the structure properties of the systems. In fact, we find that if we make a suitable transformation
of the solution, then Eq. (1.5) reduces to a new version. More precisely, the vector field velocity
u = (uq, uy, u3) is transformed to an anti-symmetric matrix us with

0 us —UuUp
def
u=(uy,uz,uz)—>ug=\-uz 0O up |,

Uy —uq 0

and decompose @ into wg = A~ divw and wg = A~ curlw, here we denote

A2 71 (1g12)
and the matrix

(curl2)i L (0;2 — 3i2'), ;o (111)

In light of divu =0, the system (1.5) can be rewritten as

dia — Aug — Awg = —(P(u - Vu)) ,,

dhwo — Awg + 2w — Aug=—A"" curl(u - Vo),

dwd — 2Aw4 + 2w = —A" 1 div(u - Vo), (112)
w=A""Vay,— AV divwg, divu=0,

(U, we, wg)lt=0 = (Uo,A, Wo,2, Wo,d),
where (P(u-Vu))y is as follows

0 u;ojus + A72338j(uiaiu]') —ujojuy — Aizazaj(uiaiu]')
—u;ojus — A‘2838j(u,-6,-uj) 0 u;ojuq + A™29, dj(ujdiuj)
uidity + A7209(uidiuj)  —uidiug — A72919;(u;du ;) 0
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Let us observe the associate linear system of Eq. (1.12). Since the third equation of (1.12) is mainly a
heat equation, we focus our attention on the first two equations of (1.12). Let us study the following
coupling linear system:

otua — Aug — Awgp =0,
ohwo — Awgo + 2w — Aug =0, (113)

(ua, we)lt=0 = (Uo,a, Wo,2).

If G(x,t) denotes by the Green matrix of (1.13), then G(x, t)(uo,a, wo &) is the solution of (1.13). We
have

Gf .0 =e RO f(g), (114)
with

e [1EP el
A= s

Then using the Laplace transform, the derivatives of G (&,t) can be exactly and explicitly represented,
see Section 3, which helps us to deduce the following crucial estimate

~ e
|DEG(&. )| < Ce Bt jg I,

This allows us to obtain that for any couple (t,A) of positive real numbers and suppf C AC, there
holds

16O f]|, <Ce I fllp, 1<p< oo,

here C is a ring away from zero, see Proposition 3.5. Let us emphasize that the above inequality is
essential to the well-posedness in the Besov spaces.

Definition 1.1. Let 1 < p < o0, T > 0. We denote E'TJ by the space of functions such that

lwo) w5, Flao)] s, <o
T [°°(0,T:B) o ) [0, T:B) o)

If T = oo, we denote EX by EP. We refer to Section 2 for the definition of L' (X).

Our main results are stated as follows.

.31
Theorem 1.2. There exist two positive constants 1 and M such that for all (o, wo) € B} o, with

luoll 3, +llewoll 3, <7. (115)

p,00 p,oo
.3
Then for 1 < p < 6, the system (1.1) has a global solution (u, w) € C((0, c0); Bﬁ,oo ) with

|, )| 3y <M(lluoll 3, +llwoll 3_,).
109(0,00: B o B} o Bj oo

Moreover, the uniqueness holds in EP.
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Remark 1.3. If we work in the space L°°(B 7 )ﬁLl (B p 1 ) the borderline case p = 6 can be achieved.
Moreover, the range of p for the ex1stence and the umqueness can be extended to [1,c0) and [1, 6],
respectively. In fact, using the parachfferentlal calculus, it is easy to see that the nonlinear term u - Vu

and u - Vw are bounded in Ll(B’”1 ), i.e,, in light of divu =0,

<Cllull s el

1

, forpell, o00),

lu-Vol| 3, <Clluwl
BP 1

3
BP
p.1 By,

3 3
BP BP
1 By, By,

3 3 3
while uew is not continuous from By o, X B} » t0 By .

Theorem 1.4. If (ug, @) € H? and satisfies (1.15), then the system (1.1) has a unique global solution in
.1
CR*; H2).

Remark 1.5. Here we don’t impose the H% smallness condition on the initial data. Especially, this

allows us to obtain the global well-posedness of (1.1) for the highly oscillating initial velocity (ug, wo).
For example,

uo(X)—Slﬂ(8 )( 90 (x), 219(x),0), wo(X)—sm< >¢(X) ¢ € S(R?),
which satisfies

luoll 3 ;. llwoll 3, K1, forp>3
3 i3

p,o© p.oo

if € > 0 is small enough, see Proposition 2.8.
Finally, we prove that the solution has the following decay estimates.

Theorem 1.6. Let (u, w) be a solution provided by Theorem 1.2. Then for all multi-indices «, we have

(5. Dg@)] 5, < Cot™ %, t>0, (116)

p,oo
where Cy is a constant depending on the initial data.

31 -1
Remark 1.7. As a direct consequence of the estimate (1.16) and Sobolev embedding Bp1 0 &> 355 00

with pq < p2, one knows that for t > 0, the solution (u, ) € C*®(R3). In fact, for 3 < p < 6, one easily
sees that

[DPullgo  =>_la;(0"u)] =3 4;(D7u) |, + 3] A;(DPu)

jet j>0 j<0
:sz%”Aj(Dﬂu) Hooz_j% +sz(%_l)HAj(Dﬂu) Hooz—j(%_])
j=0 j<O0
SIp%ull 5 +IDu 5 VB e (ZU0})’.

=)
Sslw

00 poo
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Notation. Throughout this paper, we denote some notations on the matrix M = (Mjj)1<i, j<m
def
IM|= Myl
L,
and for a functional space X, we denote |M| x by

def
IMIx =) 1Ml x.
ij

The structure of this paper is organized as follows.

In Section 2, we recall some basic facts about the Littlewood-Paley theory and the functional
spaces. In Section 3, we analyze Green’s matrix of the linear system (1.13) and show some new
results concerning its regularizing effect. Section 4 is devoted to the proof of Theorem 1.2. Section 5
is devoted to the proof of Theorem 1.4. In Section 6, we give certain decay rates of the solution.

2. Littlewood-Paley theory and the function spaces

Firstly, we introduce the Littlewood-Paley decomposition. Choose two radial functions ¢, x €
S(R3) supported in C={& e R3, 3 <|&|< 8}, B={t eR3, |£| < 3} respectively such that

> @(2778)=1, forallg 0,

JjezZ

and

XE+> p@27E)=1, forallg eR>.
j>0

For f € S'(R?), the frequency localization operators Aj and S;(j € Z) are defined by
Ajf=¢(27D)f,  S;f=x(7'D)f.
Moreover, we have
j—1
Sif=Y_ Af inZ'(R).
k=—00

Here we denote the space Z/(R3) by the space of tempered distributions modulo polynomials.
With our choice of ¢, it is easy to verify that

AjAf=0 if|j—k|>2
and
Aj(Sk-1fAf)=0 if|j—kl >5. (21)

For more details, please refer to [4,3].
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In the sequel, we will constantly use the Bony’s decomposition from [1]:
fe=Tsg+Tgf +R(f. ). (2.2)

with

ng=ZSj_1fAjg, R(f7g)=ZAjfzjg, Xig= Z Ajg.

jez jez [j'=jl<1
Let us first recall the general definition of a Besov space.

Definition 2.1. Let s e R, 1 < p, g < +o00. The homogeneous Besov space B;’q is defined by

By o2 (f € Z/(R): 1flgy, <-+oo).
where
def
115, = 125186 F Ol

Ifp=q=2, B;_z is equivalent to the homogeneous Sobolev space HS.
Now let us recall Chemin-Lerner’s space-time space [3].

Definition 2.2. Let se R, 1< p,q,r <oo, I CR is an interval. The homogeneous mixed time-space
Besov space L' (I; B;’q) is space of distributions such that

(1 By ) L {f €D(1: 2/ (RY); 1f Wiy < o0},
where

def
”f(t) “Zr(l;Bf,,q) =

09(Z)

1
2sj< /|| Ajf(t)”; dr)
1

For convenience, we sometimes use f{(B;,q) and ALJT(B;@) to denote L'(0,t; B;,q) and
17(0, oc; Bz,q)' respectively. The direct consequence of Minkowski’s inequality is that

Li(B}q) SLi(Byq) ifr<q and L{(B},) SL{(By,) ifr>gq.
Let us state some basic properties about the Besov spaces.

Lemma 2.3. (See [3].)

(i) If s < % ors= % andr =1, then (B3, . || - 5, is a Banach space.
(ii) We have the equivalence of norms

HDkf”[g;q ~ ||f||3mk, forkeZ™.
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(iii) Interpolation: for s1,s; € R and 6 € [0, 1], one has

0 (1-6)
If W gosy o5y < F sy IF N s ™
p.q p.q p.q

The following Bernstein’s lemma will be repeatedly used throughout this paper.

Lemma 2.4. (See [3].) Let 1 < p < q < +00. Then for any B,y € (N U {0})3, there exists a constant C inde-
pendent of f, j such that

supp [ € {11 <A02i) = |07 f|l 0 < 2GR pyp,

supp f € {A127 <161 < A2} = lIfll <27 sup 8P f|,,.
[BI=lyI

Lemma 2.5. (See [7].) Let 2 < p < +oo. Then for any f with suppf C {A12] < |E| < Ap27}, there exists a
constant c independent of f, j such that

c?f/Wdexgjk—AfoW”fdx
R3 R3

Lemma 2.6. (See [3].)

(i) Let (s, p,r1) be such that BZ.H is a Banach space. Then the paraproduct T maps continuously L*° x B;,rl
into B;’r. Moreover, if t is negative and r such that

1 1 1
—+—==<1,
I8 2 r

and if BSf! is a Banach space, then T maps continuously B . x B, . into B3t

, p.r
(ii) Let (pg,rx) (fork € {1, 2}) be such that ’

1 1
<—+—<1 and

1
s1+s2>0, —
p D1 D2

The operator R maps B}, ;, x B} ., into Bj'? with

1 1 1
012 :=$1 +52—3(—+— ——>,
Pt p2 P

provided that 012 <3/p,oro1; =3/pandr=1.
With the help of the above lemma, we can obtain
Lemma 2.7. Let 1 < p < oo. Then there hold:

(@) Ifs1,s2 < % and s1 + s3 > 3 max(0, % —1), then

UL

<C .5 s .
: X ”‘f”Bpl] ”g”Ble
p.

3
p
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(b) Ifs1 < %,sz < %, and s + s > 3 max(0, % — 1), then

198103 < Wi gl
(c) Ifs1 < %,52 < %, and s + s > 3 max(0, % — 1), then

1981103 < C1F Ly I8

Proposition 2.8. (See [8].) Let ¢ € S(R?) and p > 3. If ¢ () défe"x?l ¢ (x), then for any € > 0,

1-3
Igell 5, <Ce'F,
B

p.oo
here C is a constant independent of €.

The following proposition describes the smoothing effect of the solution for linear heat equation,
the proof can be found in [3].

Proposition 2.9. Let s € R, and p,r € [1, 00], v1 > 0, v2 > 0. Assume that ug € Bz‘q, fe L}B;’q. Then the
equation

{a[u—leu+v2u=f,

ult=o = Uo,

has a unique solution u satisfying

Il v < C(Iuollig, + 1 135.,)

3. The linearized equations of the microfluid system

In this section, we are devoted to analyzing the Green matrix of Eq. (1.6) by Laplace transform
with respect to the time variable. We define Laplace transform of f(t)

o0

(Lf)(p) = f e P'f(t)de.

0

For the sake of convenience, we denote (f)-(p) by the Laplace transform (£ f)(p) of f(t).
First, let us introduce a notation: if (Mjj)1<i j<2) is @ matrix, f = (f1, f2, f3), & = (g1, &2, &3) are
vectors, then we denote

f)@(l\/lnf-i-l\/lug)

M . =
( 1;){1<1,1<2} (g Mz f + M228

Taking Fourier transform of (1.13) yields that
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Oclia + €17 Uz — §|@g =0,
&g + (167 +2)@g — |&lua =0, 3.1)
(g, @2) =0 = (U0, A, @0, 2)-

In what follows, we will use the Laplace transform to get the explicit expression of é(g,t), where

G(x,t) denotes the Green matrix of (1.13).
Let

Y ={zeC\(0}, Jargzl <¢}.
¢

Assume that p € Z¢ for some ¢ € [0, 7 /2), then we have

[ p@n)t + E12@a)* — |El@n)t = to.a, (32)

p@2)" + (117 +2)(@p)" — 161t = @o.a,

that is,

(@)L<&f>>_(p+|5|2 —[g] >1<u’ﬂ>
@a)teEn) "\ —lEl p+IEP+2 wos)

Setting A2 = p + |£|%, we see that
<(ﬁ)L>_L<AZ+2 H )(Lm)
@a)t)  det\ 1€l 2*+2 )\ g

det @4 4202 — g2,

with

Then we have the explicit expression of the solution of (3.1):

G _ (2N, L (2 |$|>}<u’o,7>
(cBE)_{ﬁ (det>1+£ (det) €] 0 @op) (33)

where £~ is the inverse Laplace transformation with respect to p, and I is the identity matrix.
Denote

deof @1V IHIER)E _ o(—14+/ 1+t
A1) =
21+ €2
def eIV IHERE | o(=TH4/1H[E)t

B¢, t) = 5 .

Note that

A2 e

(241 THER) 2+ 14T+ 52)  det’

fe—Pf[A(s, £+ B(E, 0]e ¥ de =
0
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and

o

—/e_ptA(S,t)e_|5|2tdt=

0

1 1

we obtain the following proposition.

Proposition 3.1. There exists a unique solution (i1, @g) of Eq. (3.1) which is given by

)

wo, 2

with

GEe.nYacor®.,  GEn¥sBeEnl,

where

(-1 -k
R‘“‘(—m 1)'

Next we will derive the pointwise estimates for §1 (&,0), @(5, t) and their derivatives.

Lemma 3.2. For multi-indices o, there exists a positive constant C independent of &, t such that

1| DEG (5. 1) ¢G5 1)
<C(1+e T (6120 + (6120 o+ g2+ 1).

Proof. The mean value theorem tells us that there exists a constant 6 € [0, 1] such that

1 _1
VI+IER —1= P (1 +11%0) 2,
which implies that
e CTHVITER ) ¢ o 5t

Using the Leibnitz’s formula yields that

DEGi(E. 1) = S DU (VIR o1y

loe|=N, |og |[+|az|=lo|

o2 1 (—1 —ISI))
O (2 1+ \—I5l 1))

02 11— V11 ER) A2 +1+ T+ [E2) det

2709

(34)

(3.5)

(3.6)

(3.7)

For simplicity, we only show the case of |«| =1 in details, the other cases (o] > 1) can be done by

the same argument. Noting that
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1461 <241+ €2,

one gets

D (e-1-v/1+Emy (LHIED omeiey e
sle )\/1+I$|2 :

In addition, due to (3.6) and notations in Section 1, we obtain

D (e o= 1+«/1+|§|2)t) (14181 <Ce \E\_f”%_'
JIFIER

(e(—l—«/1+|§\2)t+e(—1+«/1+|$\2>t)D§< )( + &) < C(e —|5\f+e§T)|§|_

1
VIt

and

(e(—1—4/1+\$|2)t +e(—1+«/1+\5|2)t)

b (—1 —ISI)‘
St \-ll
<Ce 4 e (14 1612) T < (e e g,

Combining the four above inequalities with (3.7) (Ja| = 1), we have

DG (6.0 < C(1+¢5) (e1g] + 1¢1).
Similarly, we can deduce that
D31 (6. 0] < C(1 4T ) (1601 + Jg 42011 pgiei=sgoi=2 4.
+ET2 4 g1,
from which the estimate (3.5) holds. O
Thanks to Proposition 3.1, we have

Proposition 3.3. Let (ua, we)(t) = G(x,t)(Uo,a, wo,2) be the solution of (1.13), then the Green matrix
g(g t) satisfies

G0 =e G150 + Ga&, D),
where @ (&,t) and éz (&, t) are defined in Proposition 3.1.

Lemma 3.4. For any multi-indices «, there exists a positive constant C independent of &, t such that

IDZG(E, 0] < Ce 31tz e, (3.8)
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Proof. Noting that for ¢ > ¢ > 0, k > 0, we have
e—c|e\2t(t|§|2)’< < e—ClEPE,
Then using the Leibniz formula, the estimate
’ag(eflé\zf)’ < C|.§|*|V|e lEr t
and Lemma 3.2, the estimate (3.8) follows easily from the explicit expression of é(é‘, t). O

Using this lemma, we can obtain the following smoothing effect on Green’s matrix G, which will
play an important role in this paper.

Proposition 3.5. Let C be a ring centered at 0 in R3. There exist two positive constants ¢ and C, for any real
p € [1, 00), any couple (t, L) of positive real numbers such that if supp it C AC, then we have

|G, Oul,, < Ce™ . (3.9)

Proof. We will adopt the spirit of the proof for heat operators as in [3]. For the completeness, here
we will present the proof.
Let ¢ € D(R3\ {0}), which equals 1 near the ring C. Set

g (t.x) Y @n>3/é“¢04®§@ima

R3

To prove (3.9), it suffices to show
lg.(x, 0] ;1 < Ce™. (3.10)

Thanks to (3.8) and the support property of ¢, we infer that

/|gk(x,t)|dx§C / f|¢(x_1$)\|§($,t)|d§dx<Ce‘“zt. (3.11)

[x|<at x| <A1 R3

Set L, =d¢f ‘Vé Noting that Ly(e™*¥) = e*¥ we get by integration by part that
&WUZ/ﬁMWW@ﬁga;U@
—(D/"‘g ((»")G&, 1) de.

From the Leibniz formula and (3.8),

|(L:)4(¢()\._1E)§(§,t))| <C|)\,x|_4 Z )vlm|(Vy_ﬁ¢)(K_1§)|e_%|5\2f|g|—lﬂ\.

lyI=4. IBI<IyI
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Then we obtain, for any & with |&§| ~ A,

(L) (¢ (2 718)G(E, )| < Clax| e3P,
which implies that
f g0 0] de < cemH 2 / x|~ dx < Ce =M,
>3 >
This together with (3.11) gives (3.10). O

Proposition 3.6. Let C be a ring centered at 0 in R3, G(x, t) is the Green matrix of the system (1.6), defined
by (1.7). Then there exist two positive constants c and C such that for any couple (t, 1) of positive real numbers,
ifsuppii C AC, then

|Gex, Oul ;> < Ce*Jjull 2. (3.12)

Proof. Thanks to Plancherel theorem and (1.8), we get

|G, u| > = [CE 0aE)| 2 < Clle™ B aE)|, < Ce™full,,
where we have used the support property of ii(¢). O
4. Proof of Theorem 1.2
4.1. A priori estimate
In this section, we will derive a priori estimate for the system (1.5).

Proposition 4.1. Let 1 < p < 6, T > 0. Assume that (u, w) is a smooth solution of the system (1.5) on [0, T],
then we have

@) g < (| wo.w0)| o + | . @) [2), (41)
where

U S NS o p_ gl
Er =LF(Bp.oo) NL1(Bp.oo), Ey =Bp.oc-

Proof. Let us consider the following frequency localized system:

3tAjUA — AAjup — AAjwg :A]’F,
A jwo — AAjwo +2Ajwe — AAjup = AjH, (4.2)

(Ajua, Ajwe)|i=0 = (Ajup,a, Ajwo,2),

with

F=—(Pu-Vu)),, H=—-A"lcurl(u-Vw) and divu=0.
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In terms of the Green matrix G, the solution of (4.2) can be expressed as

Ajua(t) Ajlo,A / B <AjF(T)>
<Ajw9(t)> G(x, t)< ) G(x,t —1) AjH(T) dr. (4.3)

Applying Proposition 3.5 to the above equation to get

1A Al + 1A ool < Ce 2t (| Aaud |, + | A0S,

t
¢ [ (aF@], +|aH@] )b @
0

Taking L™ norm with respect to t gives

[Ajualrie + 1A jol e
_2j
C277 (I Ajuo.alle + 1A jwo, e lle + IA;Fll e + ||AjH||L1TLp)-

3
Multiplying 2/ 1% on both sides, then taking supremum over j € Z, we derive

luall 31,3 +logl
LTBIlOo

3 2
7 pp 1t

T5p,>

(IIUOAII 3. Tllwoell s s FIFI 3o +IHIL 5 )-

Bp o Bp o L}1B) oo [2:28

According to the boundness of Riesz transform on the homogeneous Besov space and Lemma 2.7, we
have

[(Pw-Vw),|_ s, <Clu-Vul_ s_ CIIUII 3 1lVull e 51
A 1 71 T3pP72
LTBPOO LTBP-oc T POC TBPOO
[a7 eurdu-Vo)|_ 5, <Cllu-Vol_ 3, <Cllul_ 3 1IVol s 5 1. (4.5)
Il BIJ T1 BP T 2 I3 BIJ 2
T=p,0 T=Pp,> T"p,> T 7P,
From Proposition 2.8, we infer that
lwall . 34,2 < (Ilwoll 3+ A" div(u - V60)||~ ,,,)
LTBP-oc POO T POO
<Cllwoll 3y +1llull_ s 1Vl a 3_1). (4.6)
Bﬂ 2 L3BP 2
b, T=p,>© T ”p,>
Thanks to the interpolation
341 ~y .31
00 _T4pp 2
(L3 BPOO,L Bpoo)%_LTBp .
+1 +3

1 00 » (4.7)
4
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which together with (4.5), (4.6) and Lemma 2.3(ii) imply

[

SCOul szl sn)(jeo] s+ e o) s.). (48)

T “p,o>© T=p, T °p,o© T=p,©

On the other hand, noting that w = A~'Vw,; — A~ divwg and

3
Ml s 2= luill 3 2 <lual_ 3,2,
L7 Bpoo i1 LrBpeo | TBpoo '

taking r =00 and r =1 in (4.8), then adding up the resulting equations, we have

[ o) <o, 00 5+ @ olz).

p.oo

The proof is completed. O

4.2. Approximate solutions and uniform estimates

The construction of approximate solutions is based on the following local existence theorem.

Theorem 4.2. (See [19].) Let s > 3/2. Assume that (ug, wg) € H¥(R?) with divug = 0, then there is a positive
time T (|| (ug, wo) || s ) such that a unique solution (u, w) € C([0, T); HY) N C1((0, T); H) N C((0, T); H*2)
of system (1.1) exists.

Moreover, if there exists an absolute constant M > 0 such that if

T
&!i_%s;teijT/ [A;(V xu)| dt=8<M
—&

then § = 0, and the solution (u, ) can be extended past timet =T.

Let us consider a sequence (¢n)nen € S such that ¢y is uniformly bounded with respect to n and
such that ¢, =1 in a neighborhood of the ball B(0,n). Then for the initial data ug, wg, we define an
approximate sequence g, = ¢n(Sptlo), and wo n = ¢n(Snwo) € H® such that

lim || ¢n(Spuo) —uo| 3, =0, lim | n(Snwo) — wo| 3, =0. (4.9)
n—oo BP n—oo BP

p,o0 p.oo

Then Theorem 4.2 ensures that there exists a maximal existence time T, > 0 such that the sys-
tem (1.5) with the initial data (ugn, @ n) has a unique solution (u", ") satisfying

(u", ®") € C([0, To); H) N C'((0, Tp); HY) N C((0, Tp); H*H2).
On the other hand, using the definition of the Besov space and Lemma 2.4, it is easy to check that

n o n » %_] 1 » %‘H
(u", @") € C([0, Tn); Bp oo ) NL'(0, Tn: By,

).



Q. Chen, C. Miao /J. Differential Equations 252 (2012) 2698-2724

From (4.9) and (1.15) we find that

[ (wo.n, won)| 2, < Com,
BP

p,oo

for some constant Cg. Given a constant M to be chosen later on, let us define

17 < supft € 10, Ty):

(", ")
Firstly, we claim that

Ty=Tn, VneNl.

Using the continuity argument, it suffices to show that for all n € N,

3
TR TR

) NN
In fact, we apply Proposition 4.1 to obtain
[@" @[, < C(Con+Mm)?).
n
If we set M =4CCp, and choose 1 small enough such that

8C*Con <1,

3 3
- NP |

copb 1pP
L®Bp oo ML Bp oo

2715

(4.10)

(4.11)

then the inequality (4.10) follows from (4.11). In conclusion, we construct a sequence of approximate

solution (u", w") of (1.5) on [0, T,,) satisfying
" <M
() 5 <M
for any n € N. Next, we claim that

Th =400, VYneN.

According to Theorem 4.2, it remains to prove V x u" € f}ntoqoo. From (4.12) we know that

(NS 3
I} B) o I} B) o

3 ~
this combined with the embedding L Bj o <> L} BS, o

continuation criterion in Theorem 4.2 has been verified.

<[va'll s <M.

implies that V x u" € ZlTn ;

(412)

thus the
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4.3. Existence

We will use the compactness argument to prove the existence of the solution. Due to (4.12), it is
easy to see that

~ L3 .34
e u", " is uniformly bounded in L*(0, 00; B} o) N L1(0, oo; Bj o).
Let u}, w] be a solution of

{ oru] — Auj =0, uf (0) = vo,n,
dw] — Awf +20] =0, @] (0)=wo .

It is easy to verify that u}, w] tends to the solution of

orup — Aup =0, ur(0) =ug,
{ fllf L 1(0) =ug (413)
ohwp — Awp + 2w =0, wr(0) =
+1
in T°°(0, 0o; B;;oomL (0, 00 B oo)
We set u” —fu —uf and &" —fa) — ]. Firstly, we claim that (U",@") is uniformly bounded in
3 1 3
C,f)c(]R+ Bp oo) x CIOC(R+ poo T B OO). In fact, let us recall that

dl" = AU" —P(u" - Vu") — V x 0"

Thanks to Lemma 2.7, we have

1,
2

n,n n n
)] g <l el

p.co

t‘ "::Iw

,00

— o~ .32 .32 o~ .32
combined with AT" € [2(Rt; B[,’ ) and V x o" € L®(R*; B} ) implies 3,u" € LIZDC(R+; B} ), thus
3

u" is uniformly bounded in C (R*; B p, C)o) On the other hand, since

loc

90" =AD" - 20" —u" - Vo' — V x u",

- o~ .39 .32 .
by the same argument as used in the proof of 9;u", we get 3;@" € LIZDC(R+; Bg.oo + Bl’)”_oo), which

.21 .32
implies u" is uniformly bounded in CIOC(R+; B} s +Bj o).
Let {x;}jen be a sequence of smooth functions supported in the ball B(0, j + 1) and equal to 1 on

)
B(0, j). The claim ensures that for any j €N, {xju"}ren is uniformly bounded in C (R, B;l;,oo ), and

3 1 3
{xj®"}ken is uniformly bounded in C,OC(R+; B;Izj,oo + Bg,oo)' Observe that for any x € CS°(R* x R3),
for € € (0, 1), the map: (@", @") — (xu", x@") is compact from

loc

.32 L3 - .31 .3 1- ) L3 .32
(B} mB;,’,o; Y x (Bloo + Bl ) into B S x (B,‘,’,OO1 +BL),

see [3]. By applying Ascoli’s theorem and Cantor’s diagonal process, there exists some distribution

~ o~ cop? | 17 %+1 :
(U, ) € LBy oo NL' B}  such that for any j €N,
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3
e
~n o~ +.hp
XU — xUin Cpoe (RT3 By oo ),
3 3,

~ ~ . | .
Xj@" — xj@ inCie(RY;Bp oo + B oo ) (4.14)

With (4.14), it is a routine process to verify that (I + uy, @ + w;) satisfies the system (1.5) in the
sense of distribution.

Here we show as an example the case of the term u" - Vu". Let ¢ € C°(R™ x R3) and j e N such
that suppy C [0, j] x B(0, j). We write

u"-vu" —u-Vu= (" —u)-Vu' +u-V(u" —u).

We will only give the estimate of the first term with help of Bony’s decomposition, and the similar
argument can be applied to the term u - V(u™ — u). Thanks to divu =0 and Lemma 2.6,

[ Tunwt™| s+ [T " =) 5,

©B) o LB}
<Clu" —uf w2, IIU”IILOC.pgw] +Clu"| o[l —uIILm.ﬁ;z
<Clu"—uf s fut] sl

;1 LeBY

where in the last inequality we have used the embedding B} o, € BZ  for s1 — % =s,. And

HR(u” —u,un)” 5 SC”un _u”
L8y L

n
Sl
p.oo L'B

3
BP
OOBp.oc p,oo

The other nonlinear terms can be treated in the same way.
4.4. Uniqueness

In this subsection, we prove the uniqueness of the solution. Assume that (u',w!) € E’TJ and
W2, w?) e E? are two solutions of the system (1.1) with the same initial data. Then we have
©u, dw) = ' —u?, w! — w?) satisfies

odu — Adu =6F,
00w — Adw — Vdivéw + 26w = §H, (4.15)
(8u, dw)lt=0 = (0, 0),

where

8F =V x 8w —P(8u- Vu') —P(u? - Véu),
SH=V x8u—8u-Vo' —u? Véw.

Let us apply the operator A~'div and A~!curl (for definition see (1.11)) to the second equation of
(4.15) respectively, then we have

8wy — 208wy + 28wq = A~ divsH,
hdwg — Adwg + 28wgo = A curl $H,
Sw=A"1Véwg — A"V divswg,
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here 8wyq = A~ divéw and Swg = A1 curl8w. Applying Proposition 2.9 to the two equations of the
above system respectively, one obtains

ewall_ 3 3t ||5w9|| 3
1ppP T2 R RP

-1

<cla™! d1v5H|| 3, +C[ AT curlsH|
15: 24 [B

3
T2 D
BP [POO

L1BP NI2B) o (73758 .

Again using Proposition 2.9 to the first equations of (4.15), and combining the above inequality we
get

[ (su@), 80)(t))||~ 3+ (u, (Sw(r))H~ 3, <CI@F@.8HMD)| 3, (416)
B 25 LB

t P, I p,% =P,

From Lemma 2.7 and divu = 0, we infer that

||5F|| 3o+ ||5H||

[POO

L <Clsullg gy (@b ul ut)]

3 3 3_ 3
IJ D oD
P L[ BP-OO L[ BP~

Then we have

[Gu®.s0@)]_ 5 +[@Eu@.s00)], 5,
LiBy, 2By
1
<C(Isull, 3+ Moul, 5@l W et )
Bp.oo thoc 2B} [25) o
+Ct2 || o, ) | (4.17)
tBPOO

If t is taken small enough such that ||(o!,u!, u2)||~2 3 and t? sufficiently small, then we conclude
LiBp.o
that (su, sw) =0 on [0, T], and a continuity argument ensures that (u', w!) = (u?, ®?) on [0, c0).

5. The proof of Theorem 1.4

To prove Theorem 1.4, we will use the Green matrix of the linear system (1.6). Let us return to (1.5).
Due to divu =0, we have

t
(”) - G(x,t)(uo) —/G(X,t—t)V- <P(“”)> dr
w wo uw
0

. t
:( Gij(O)uy > _/( GijokP(ugu ) + Gigj43) 0k (Ukwj) )dr
Git3)j(Dw} , Gi+3)jkP Ut j) + G (i43)(j+3) k (Ukw))

9 G () (ug, wo) + (ggﬁg) . i=1,2.3, (5.1)

here Gjj(x, t) is the element of the Green matrix G(x, ), and the summation convention over repeated
indices 1< j, k <3 is used.
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. . . .1 .1
In view of the relationship: H2 =~ 3222, we have

t
/G(t — V- (P(uu) + uw)(r)dr
0

2
(Z‘zl( sup /”G(t—r)v Aj (uu~|—ua))(t)HL2dr> )

ez te[0,T)

|Bu, w) H~

2

0[5
TH2

1

2

t

N L DR
te[0,T)

<C

52
(||Tuu||L4Bo +||Tuw+Twu||L4Bo + |R(u, u) + R(u, w)”“i; ),

TZZ

where in the third inequality we have used Lemma 2.4 and Proposition 3.6, in the last inequality we
have used Bony’s decomposition. From Lemma 2.6, we have

Tywl|7ase < Cllu w
ITulizsp0, < Clul, ol

T B oo, 00

Toullape < Cllw u < Cllw u R
IToullzap, <Cleol g full_ 1 <Clel_ s ylul_

oy <Clull, 5 glel
LT B2.2 TBP 00 LT BZ

LTBOOOO LT BZ.Z LTBPYOO LT BZ.Z

and

|R(u, w)|| 4 SClull,
1
35

T22

ol 1 <Cllull_s 5, 1loll. 1.
cop2 3 2

4 1
T332
T 00 LTBZ42 T POC TBZ,Z

The terms Tyu and R(u, u) can be treated in the same way as Tyw, R(u, w), respectively. Combining
the above inequalities, we obtain

[Be @)y < Clan o)gpln ),y (52)

Similarly, we have

[Bu oy <Clon ol ol,,;. (53)

From Proposition 3.6, it is easy to verify that

[e®@o. w0, <Clem® o | wo. 00)] y < Clwo.w0)] ;- (54)

It follows from Theorem 1.2 that ||(u, a))||E¥ < 7, then if 7 is sufficiently small such that nC < % we
have for any T > 0

lw oy <2C]wo w0,y

This finishes the existence of the proof of Theorem 1.4.
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.1
The uniqueness in C(H ?). We will adopt the spirit of [4]. Firstly, let us recall the following bilinear
estimate from [9]:

~ .1
Lemma 5.1. For any T > O, the bilinear operators B(u, v)(t), B(u, v)(t) are bi-continuous from L‘;O(Bzz.oo) X

. .1
L%’(H%) to LCT’O(BZZ’OO). Furthermore, we have

1_k
j <Clul g Itex, 142218V o2 || 2 ez

B(u, v) 1
” ”L%CB% ’ 2,00 T 72,00

Bu,v)|
2,00 L%QB
here

de _ 2k
ek, T :fl—e i

where ¢ > 0 is a constant independent of j, T, u, v.

Now let (u, ) and (v, @) be two solutions in C(0,T; H?) with the initial data (ug, wo) € H?.
Using (5.1), we have the difference

u—v=_B(u- Gij(t)llé, u—v)+ B(G,-j(t)ué, u—v)+Bu—v,v— Gij(t)llé)
+B(u—v,Gij(Ou)) + B(u — Gj®)ul, 0 — @) + B(Gyj(0)uh, 0 — o)
+B(u—v, @ — G43);(O@)) + B(u — v, Giraj®w]), i=1,2,3.

Replacing B by B in the above equation, we can get the representation of w — @ . One easily verifies
by Lemma 5.1 that

o (J = ”Béw +@-2)© ”Bé’,m)
<Csw (Ja-no[ ; +[@-o0] ;)
te(0,T) BZ,oo 32,90

1

x (11 = e ) 322 (1A juollz + 14 je0112) 2

+t£(%})T)(||u ~GOuo| y + v = GOuo| ) +|@ ~ GOwo| ;))-

With the help of the fact: if T is chosen sufficiently small and (uq, wg) € I:I%, then

k

kg 1
[(1— =) 323 (| Ago2 + | Akwoll2) | 2 <

A=

and the strong continuity in time of the H? norm of the Duhamel’s term of the solution (u, w) and
(v, @), then a small enough time T is to be chosen such that the last factor in the right side is
dominated by 1/2, this implies that

[w=v,0-m)®| ; =0, Vrel0,T].
B

1
2
2,00

Then by the standard argument ensures that u = v, w = @ on [0, c0).
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6. The decay estimate

In this section, we will analyze the long-time behavior of the solutions and get some decay esti-
mates.
Set

wn¥  sup (5 (|DZu 5, + |Diw] 5 _,).
0<t<T, 0<|a| BJ Bp oo

Taking DY on both sides of (4.3), one gets

t
AjDYua \ _ pa Ajug A o B AjF(T)
(AjDQw_Q =Dy G(-, 1) Ajwo o + | DYG(,t—1) AjH(T) dr.
0
Applying Lemma 2.4 to the above equation, we have
| &jDFual, +[A;DF 0],
< Ce 2 (A jug Al + 1A jwogllp) + T + IT (61)
where

t/2
z=c [2¥(|5¢ - DA F @ + |6~ DAGD)] ) dr.
0

t
11 = c/zi(||g(t — DY AF(D)||,p + |G —T)DETT A H (D)) dr.
/2

t

Noting the inequality

=12 2ilbl < o=t2 =1 g1 > 0, (62)
and Proposition 3.5, we get that
t/2
22 (t— _lo
z<c [0 E (@, + [ HE )
0

t
Tr<c [Ny (IDg AR, + [PE A ) dr.
t/2

In the following we denote by c;(j € Z) a sequence in ¢! with the norm [l{cj}ler < 1. In light of (4.5)
and interpolation (4.7), a straightforward calculation shows that
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t/2

rec [N (A @), +|8HO],) e
0

S—iG-D-4
<Cej2 2 (||F||~1‘3 1+”H”I"%71)

LTBPJX? TBp,oo

lo]

<ce2 0V o)

< 0o 0V o 00y

(6.3)
Thanks to the Holder inequality, we have
¢ 3
<@g [ Tar) (108 [0 8500
t/2
S C27%t%(|’D371AJF|’L$Ln +| Dg71A1H|‘L$°LP)'
The divergence free condition on u, Lemma 2.4 and Lemma 2.7 give that
D5 H ey < €2 A5 (DF )0 + (DS 0)) ]y
<ce2 RO o +u(E )] sy
< CC;'T"(%*%)(HD;‘?“WHL%O.i;;1 ool . ”Dg_lw”@o,ﬁj ||u||L?C.§j)-
By means of interpolation and Lemma 2.3(ii), we have
D¢ ul g <l ¥ @ <cpgu]E i
18] L SN Fihe  LFBla

lel 1 1 1
<CETTFIW©)' % (w0, w0) | 5,
0

and

1 3 1 3
lol 33 <Clol* , lol® , <Clol* , IDw|* ,
L¥Bp. LPBY & LBY L°B) LPBY

_3 3 1
SROR [CURED]

The term of F is done in the same way. Thus

i(3_ Jx| 1,1
sup2/G ”ﬁﬂgCW(t)§*ﬁ||(uo,a)o)|;j‘m. (6.4)
JeZ 0
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For the estimate of wy, we localize the third equation of (1.12), then taking DY on the localized
equation yields

3 ADYwg —2AAD¥wy +2AjD%wq = — A" divDYAj(u - Vo).
Multiplying by plAjDﬁde*zAjD?wd and integrating with respect to x yield that
d o p o o p—2 o d o p d
E”Aija)dHLp—f-Zp (—A)ADY wy|AjDFwg|" “AjD§wgdx+2p | |AjDFwy|” dx
R3 R3

= —p//r] div D% Aj(u - V) |AjDZaog|P > AjD% g dix.

R3

Using Lemma 2.5, we have
d . _
I aDs @]l +cp(22 +1)| a;Dfwa ], <C|laDf - Vo) | A;DFwal],
This yields that

d .
g 18Dk @aly +cp (22 +1)[ADF @al| , <C|ADR (- Ve,

This together with Gronwall’s inequality implies that
_ 2j
|ajDf@al, <e~?"* V| A DY wo |, +TIT.

where
t
ITT = C / e—Cp(t=1)2% ,—(t-7) ” DYAj(u- V) (1) ||Lp dt.
0

Using Lemma 2.4 and (6.2), we obtain

t/2
IIT<C / R I INTUR AT
0

t
+ C/e*fp“*fﬂ”e*(f*”(t — ) V2D A - Vo) (1), dr.
t/2
The first term is treated as Z, the second term is treated as ZZ, then

i(3_ o] 1,1
sup2’ GVt F 177 < CW (05 % | (wo. wo) |, (6.5)
JeZ 0
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Combining (6.1) with (6.3)-(6.5), we have

1,1
W® < || (o, @0) | gp + €| (w0, @0) 35 + CW ©)F 3% | (o, o) E,T

Then by the continuous induction, we have W (t) < 2CE. This completes the proof of Theorem 1.6.
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