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1. INTRODUCTION 

The famous French mathematician Henry Poincare founded the normal form theory for au- 
tonomous differential equations j. = f( x near a rest point in his thesis in 1879. Soon a parallel ) 
theory for autonomous difference equations xk+i = f(xk) was developed. If the eigenvalues 
Xl,... ,X, of the linearization xk+i = Df(x’)xk at the rest point x0 satisfy the nonresonance 
condition 

xj #x;l...x~, (1) 

j E (1,. . . ) n}, qi E NO = {O,l,. . . }, Cy=“=, qi 2 2, then the difference equation can be formally 
linearized. 

As an example, we consider the following planar autonomous system: 

xk+l = 2xk, 

Yk+l = xyk + & 

with A E (0, oo). We are looking for a near-identity transformation 

H(x, y) = ; + h2(X,Y), 
0 

which eliminates the second order nonlinearity (,“2) an d we choose hz E span{(f), (s), (y), (,“,), 
(“,a), ($)}. It is not difficult to show that the transformed equation has no second-order nonlin- 
earity if and only if the so-called homological equation 

= f2(? Y) 
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is satisfied with 

and fibc,~)= (3 

It is solvable if and only if X # 4 and with its unique solution we get 

X 

H(X,Y) = ( ) 1 * 
-x2 

y+A-4 

In this simple example, the transformed equation xk+i = 2xk, yk+r = k& is linear. In general, the 
elimination of second-order nonlinearities produces higher-order nonlinearities, and the process 
has to be iterated. The resulting transformation is the composition of the transformations of each 
elimination step, and it is nonlinear but is constructed by solving a sequence of linear equations. 

In this article, we consider nonautonomous invertible difference equations 

Xk+l = fk(2k) (2) 

not in the vicinity of a rest point as Poincare did it in the autonomous case, but in the vicinity 
of an arbitrary reference solution w” : z + RN. For some p 2 2 we assume fk : Df, C 

RN -t fk(Dfk) c RN to be a 0’ diffeomorphism for every k E Z = (0, fl, . . . }. We will extend 
Poincare’s normal form theory by showing that if the linearization xk+r = Dfk($)xk of (2) along 
the reference solution v” has invertible coefficient matrices Dfk(vg) E BNX N, k E Z, and satisfies 
a nonresonance condition, then system (2) is locally 0’ equivalent to a system xk+l = gh(xk) in 
normal form; i.e., with zero reference solution, block diagonal linear part xk+l = Dgk(O)xk and 
all nonresonant Taylor coefficients of g up to order p are zero. 

We therefore have to use a proper replacement of the “linear algebra” for autonomous systems 
(i.e., eigenvalues and eigenspaces) in our nonautonomous situation. A spectral theory for nonau- 
tonomous difference equations is developed in [l]. The dichotomy spectrum of the linearized 
difference equation xk+i = Dfk(vi)xk consists of at most N closed intervals of the positive real 
line Wf = (0, co); in general, the spectrum may be empty or unbounded. It is nonempty and 
compact, i.e., consists of n compact intervals with 1 5 n 5 N, if the system has bounded growth. 
A linear system xk+l = Akxk has bounded growth if its evolution operator @ satisfies the esti- 
mate ll@(k,l)ll 5 Ku Ikeel for k, e E Z with constants K, a 1 1. Bounded growth is equivalent to 
the boundedness of the coefficients and their inverses [l, Lemma 2.31, and hence, the linearized 
difference equation xk+l = Dfk($!)Xk has bounded growth if ]]&]I 5 kf and llAk’/l 5 M for 
k E Z with some constant M 2 0 and Ak = Dfk(vi). 

For simplicity, we assume in the following that the linearized equation has bounded growth, 
although the theory could also be developed in the general case. 

2. PRELIMINARIES 

Let d(- ; C t) : Ie,c + RN denote the uniq ue maximal solution of the initial value problem (2), 
xe = < for E E Df, where It,< is a Z-interval (i.e., an intersection of an interval with Z) containing f? 
such that the solution identity 

4(k + 1; 6 8 = fk(d(k e, t)), for k, k + 1 E It,<, 

holds. We have q5(-$ e, 6) = [ and d(k; 4(m; -t, f)) = $(k + m; !, t) for m, k + m E Ie,<. 
There is no straightforward way to define a notion of conjugacy for nonautonomous difference 

equations. What do we mean by this? Two autonomous difference equations xk+i = f ‘(xk) and 
xk+i = f2(zk) in RN are said to be conjugate if there exists a homeomorphism H : RN + RN 
such that the flows &(e ;[), respectively, q52(.; 11) satisfy the conjugacy relation H(&(k;e)) = 
&(k;H([)) for all t E RN, k E IE; i.e., H maps solutions of the first equation onto solutions of 
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the second equation and vice versa for H- l. Now if we would define a conjugacy between two 
nonautonomous difference equations zk+l = fJ(zk) and X&l = fi(zk) by the same property, 
but now with a k-dependent H, then for every C E Ik,r 

&c(X) := h(k; l, 4l(C k, x)) 

would establish a conjugacy; i.e., H maps solutions of the first equation onto solutions of the 
second equation and vice versa with 

H,y’(x) := 4l(k;C4$;k,x)). 

In the nonautonomous situation, we need, therefore, some additional conditions which ensure 
that qualitative behaviour-at least for a single reference solution-is preserved under the trans- 
formation. 

It is easy to see in the autonomous situation that for a conjugacy, periodic solutions, limit 
sets, and invariant sets of the first equation are bijectively mapped onto periodic solutions, limit 
sets, and invariant sets, respectively, of the second equation and that (asymptotic) stability, 
attractivity, and instability of bounded solutions are preserved under the conjugacy. In most 
cases this is enough, but note that the assumption of boundedness of solutions is essential for the 
preservation of stability. For example: the two linear systems xk+l = xk + 1, Yk+l = (1/2)yk and 
z&l = ICY + 1, yk+l = !& are conjugate via H(x, y) = (z,$~~), but the first system is stable 
and the second is unstable. To preserve the stability of an unbounded solution vk, it would be 
necessary to pose some uniformity condition on H, e.g., limz.+o H(vk + z) = H(vk) uniformly in 
k E Z. Such a uniformity condition is exactly what we need in the nonautonomous situation to 
define a meaningful notion of 0’ equivalence. 

Consider difference equations together with reference solutions 

xk+l = fk(ek)r v” :Z+RN, (3) 

z/c+1 = gk(xk)r wO:Z+RN, (4 

where fk and gk are 0’ diffeomorphisms, i.e., .fk E Diffp(Df,, fk(Dfr)), gk E DiffP(D,,,gk(ogk)), 
p > 0. We assume that uniform neighbourhoods of the reference solutions are contained in the 
corresponding sets of definition, i.e., there exist E > 0 and S > 0 such that 

J% (WE) c Df, and Bs (WE) c D,, , for k E Z, 

where BE(xo) := {x E RN : 11x - x011 < E}. Define UE(vo) := {(k,x) E Z x RN : z E BE(vg)}. 

DEFINITION 1. Consider systems (3) and (4). If there exist E’, 6’ with 0 < E’ 5 E and 0 < b’ 5 b 
together with functions 

H : U&I”) -+ RN, H-l : U&I (w’) -+ RN, 

then H is called a local CP equivalence between system (3) with solution v” and system (4) with 
solution w”, if the following statements are valid. 

(A) For each k E Z, the mappings 

Hk : B,, (WE) + Hk (Be (u;)) C Bs (‘WE) , 

H,-’ : B&t (w;) + H; ’ (BP (w:)) c B, ($$ 

are 0’ diffeomorphisms (or homeomorphisms if p = 0) with 

&(&l(x)) = x and H;‘(Hk(x)) = x 

for all x for which the compositions are defined. 
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(B) If vk is a solution of (3) in UEl(vo), then I-I k vk is a Sohkn of (4). If ?.L& is a solution ( ) 
Of (4) in up(W”), then Hi’(Wk) is a SdutiOn Of (3). 

(C) The reference solutions are mapped uniformly onto each other, 

;FoHk (Vi +Z) = W;, 

liio I?,-’ (wi + x) = vi, 

uniformly in k E Z, 

uniformly in k E Z. 

LEMMA 2. Consider systems (3) and (4) together with a solution v” : I --t RN of (3) which is 
defined on some Z-interval I. Then a mapping w : J --) RN defined on a Z-interval J c I is a 
solution of the difference equation 

zk+l = gk (ek + vi) - fk (Vi) (5) 

ifandonlyifw+v’: J-+WN is a solution of the difference equation (4). 

PROOF. Since v” is a solution of (3) one has for k, k + 1 E J 

wk+l = gk (wk + Vi) - fk (Vi) * wk+l+v:+l = gk(Wi + Vi), 

and the claim is proved. 

3. NORMAL FORMS 
We consider a difference equation together with a reference solution 

xk+l = fk(zk), v" : z + RN, (6) 

which satisfy the following conditions. 

l Smoothness: fk E DiffP(Dfk, fk(D&)) for a p 2 2. 
l Set of definition: E := inf{$ 2 0 : &(v~) c Df, for all k E Z} > 0. 
l Linearity: xk+l = Dfk(v$xk has bounded growth. 
l Nonlinearity: II@fk(vg)II 5 M for 2 5 j 5 p and all k E Z. 

We will simplify system (6) in three steps. 

STEP 1: TRIVIALIZATION OF THE REFERENCE SOLUTION. 
F&call Lemma 2. If f E g, then system (5) reduces to 

xk+l = fk (xk + v,$ - fk (vi) , (7) 

which is usually called the difference equation of perturbed motion of (6) w.r.t. the solution v”. 
Obviously, (7) has the zero solution, and because of Lemma 2, w : .I c I + RN is a solution 
of (7) if and only if w + v” is a solution of (6), and hence, the mappings 

Rk : & (71;) -+ RN, x H x -vi, 

Ril : BE(O) -+ RN, xcx+v;, 

define a C” equivalence between (6) with reference solution v” and system (7) with zero reference 
solution. We rewrite (7) as 

Xk+l = A;% + $(xk), (8) 

where A; = Dfk (v:) is the linear part and &?(xk) = fk(xk + vi) - fk(Vz) - Dfk(Vi)Xk is the 
nonlinearity. Obviously, U, (0) = R x BE(O) is contained in the set of definition of the right-hand 
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side of (8). Note that this simple transformation is a powerful nonautonomous tool. It is of no 
use in a purely autonomous framework, since (8) in general is nonautonomous. 

STEP 2: BLOCK DIAGONALIZATION OF THE LINEAR PART. 
In [2, Reduction Theorem] it is shown that there exists a kinematic similarity S : Z --+ WNX N 

between the linearization ~k+l = A& of (8) and a linear system 

xk+l = AkXk (9) 

such that A : Z + RNX N is in block diagonal form 

4 A,, = 
i I 

. . 
4 

and each block Ai : Z -+ WNix Ni, i = 1 , . . . , n, corresponds to a spectral interval Xi. System (9) 
also has bounded growth, the dichotomy spectra C(A*) and C(A) are the same, and they equal 
Xl u . . . u A,. 

LEMMA 3. There exist E’, (T, (r’ with 0 < E’ 5 E and 0 < C’ 5 u such that for k E Z, the mappings 

define a C” equivalence between (8) and the difference equation 

Zk+l = AkXk + Fk(%kj (10) 

with F&) = s&F;(s@) and [Ak + Fk] E Diff’(Bb(O), [Ak + Fk](B,(O))). Moreover, 
IlojFk(O)ll 5 M’ for all k E Z and aI1 j E (2,. . . ,p} with some M’ 2 0. 
PROOF. Due to [2, Corollary 2.11, the kinematic similarity satisfies sk+l = A;skAil. Let ?& be 
a solution of (8). Then ‘wk := sil?& satisfies for all k E Z 

wk+l = s,& [A;Vk + &+(vk)] = AkWk + s$F;(skWk); 

i.e., Wk iS a solution Of (10) with Fk(xk) = SiilFc(S@&). The remahing claims of the lemma 
follow with the definitions ~7 := 0 := JS(-l~, E’ := min{&, JSI-la}, and M’ := ISlp+lM where 

due to the boundedness of a kinematic similarity. 

STEP 3: ELIMINATION OF NONRESONANT TAYLOR’COMPONENTS. 
This is the crucial step. We will eliminate Taylor components of the nonlinearity which corre- 

spondtotheblocksAkEIWNixNi,i=l,... , n, of the linear part Ah. Therefore, define Ei := RN;, 
i=l , . . . ,n, and write F = (Fl,. . . , F”) with the component functions Fi : DF + E’. Let @’ 
denote the evolution operator of the linear block system x:+~ = Aix:. 

In order to present the ideas, we first motivate the construction of the transformation and the 
nonresonance condition. For simplicity assume, therefore, that system (10) is globally defined, 
i.e., DF = iZ x RN and that each solution exists on Z; this can be achieved by cutting of F 
outside the neighbourhood Us(O) of the zero solution. Now for all k E Z we can expand Fk into 
a Taylor series at x = 0, 

F/c(x) = -c -$Dq&(0) . x4 + fJ (1141”) 7 
s~r”r,-:21lql<P . 
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q = (41,. . . ,qn) E IV: a multi-index, q! = ql! ... q,,!, 29 = (d, . . . ,zn)q = (x1)91 . . . (cP)qn, 
IQI = 41 f... + qn. Now we are looking for a condition under which a 0’ transformation exists 
which eliminates the jth component (l/q!)DQFl(O) . ZQ of a summand in the Taylor expansion. 
Therefore, choose and fix a j E (1, . . . ,n} and a multi-index q E N2; with 2 5 141 5 p. For 
simplicity we assume that the Taylor coefficients of F at 2 = 0 up to order 1q( - 1 are already 
eliminated; i.e., 

DQFk(0) = 0, for all Ic E Z, and all 4 E Nz, with 141 5 141 - 1. (11) 

We define a new function G : Z x RN --+ RN by 

G,(x) := F/&T) - x4,0,. , , ,o 
> 

. 

To derive some necessary conditions for the existence of an equivalence we assume now that a 
near identity Cp equivalence Hk(z) = z + hk(z) between (10) with zero reference solution and 
the difference equation 

zk+l = AkQ + Gk(Q) (12) 

with zero reference solution exists, where h : Z x RN + RN is a mapping with hk(0) = 0 and 
Dhk(O) = 0 for k E Z. We will make some observations which will help us to construct an explicit 
candidate for a CP equivalence. 

First, we will assign a difference equation to the values of the transformation H along a fixed 
solution d(.;m,[) of (10). 

OBSERVATION 1. For each initial condition (m,<) E Z x RN the mapping hk($(k; m,t)) is a 
solution of 

zk+l = h& + Gk(Q + +(k; m, t)) - Fk(+(k; m, 5)). (13) 

Observation 1 is a simple but powerful consequence of Lemma 2. Next, we expose a connection 
between Dqhk(0) and Di[hk(4(k; m,[))]I+o. * 

OBSERVATION 2. For all k, m E Z and 77 = (r]‘, . . . ,v”) E El x . . . x E” = RN we have 

D;[h&b(k;m,[))]I+o . vq = D’hk(O) . [@l(k,+‘]q’ a** [Q”(k,~)rl”Iq”~ 

This can be seen by calculating the partial derivatives which is easily possible since, by (ll), 
the Taylor coefficients of F and G are zero up to order IqI - 1. The evolution operators Qd of the 
linear block systems ~i+r = A:xi come into play because of 

+$(k; m,<)IE=o = (0,. . . ,O, @(k, m), 0,. . . 70) E L(Ei; RN). 

Now, we replace the vi in Observation 2 by @(m, k)c, and with the identity [@(k,m)]-’ = 
@(m, k), we get the following proposition. 

OBSERVATION 3. For all k,m E iz and C E RN we have 

Dqhk(0) .Cq = DEQ[hk(~(k;m,~))]l~=o. [~l(~,k)C1]ql...[~n(~,k)C”lq”. 

Now, we have a relationship between the Taylor coefficient Dqhk(0) of h and the partial de- 
rivative Dg[hk(4(k, . m, E))] ]~=c. Observation 1 implies that hk(d(k; m, t)) is a solution of (13). 
Then, by differentiation, one can show the following proposition. 
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OBSERVATION 4. The function o,“[hk(4(k;m, t))]+~ is a solution of 

x/c+1 = Am + ck, 

the variational equation of (13) in Lq(E1, . . . , E”; RN), where 

(14) 

ck=- 0,s.. 
( 

,o,Dq(o),o,. . . ,o 
> 

. [ipl(k,m)]q’ . *. [vyk,m)]qn . 

So far, we have assumed that a CP equivalence Hk(z) = z + hk(2) between (10) and (12) exists 
and by Observation 3, the Taylor coefficient (l/q!)D’hk(O) . xq is a function of a special solution 
Di[hk(+(k; m, c))]l.+c of the difference equation (14) and the known evolution operators @. 

From now on, we want to use this information to construct a candidate for a CP equivalence 
between (10) and (12). We make the ansatz 

&(x) = x + --D’hk(o) . x9; 
,‘! 

i.e., hk(x) = (l/q!)Dqhk(o). XQ has only one nontrivial Taylor coefficient. 
We make use of Observations 3 and 4 in the way that we choose a special solution z of (14) 

and interpret Zk as o:[hk(f$(k; m, <))I JE=~ for an arbitrary but fixed m E Z. With Observation 3 
and our ansatz, this yields 

. 
Hk(x) =x-k $zk. [@l(m,k)X’]ql -.‘[+“(m,k)xn]qn. (15) 

Which solution .z of (14) should we choose ? To satisfy the condition (C) of Definition 1, it is 
necessary that lirnZ+o Hk(X) = 0 uniformly in k E Z, and this is satisfied if Zk . [a1 (m, k).]ql . . . 
[an(m, Ic).]qn is bounded for k E Z. Using [2], one knows that the borders of the spectral intervals 
Xi = [ai,bi] yield the exponential growth rates of the evolution operators ai of x:+~ = Atxi. 
Now it is the exponential growth rate of z we have to take care of. Here a key lemma comes in 
Play. 

LEMMA 8. Consider the jth component of (14) 

xcjktl = Ajk2; + c$. (16) 

(A) Assume that the spectral intervals Xi = [ai, bi] satisfy the condition 

aj > bp’...bF. (17) 

Choose a y E (b:’ . . . bg, aj). Then zi := - Czk @j(k,! + l)c$ is the unique solution 
of (16) with the exponential growth rate yk for k -+ 00, i.e., jlz;II < C’y” for all k 2 0 
with some C’ 2 0. 

(B) Assume the condition 
b. <+..@ (18) 

Choose a y E (bj, @ * . . a? ). Td, 4 := &tm @(k, e + l)d is the unique solution 
of (16) with the exponential growth rate y” for k --t -oo. 

PROOF. We prove only (A). For every E > 1 we get with [2, Corollary 3.11 a constant K > 1 
with 

5 MIe 
(by’ . . . b$&?l)e-m , for e 2 m, 

(4’ ..-a~s-lql)e-m, for e 5 m. 

The rest follows from [3, Lemma 3.41. 
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Now, we assume that (17) or (18) holds (both together cannot hold) and choose the following 
special solution z = (zl, . . . ,z”) of (14): 

0, if i # j, 

- 5 @(lc,C + l)d, if i = j and (17) holds, 
e=k 

k-l 
c @(k,C + l)d, if i = j and (18) holds. 

e=--oo 

Using (15) and the identity @j (f?, m)@ (m, lc) = @j(f!, k), our explicit candidate Hk(x) = z+hk(z) 
for a CP equivalence is defined by 

I 
0, if i # j, 

E @j(k,l+ l)+F:(o) . pyc, k)xl]Q1 *. . [@ye, k)xc”]Q” , 
e=k 

h;(x) = 

1 

if i = j and (17) holds, (19) 
k-l 

-e=C_~~(k,(+l)~DQ~~(0). [@‘(C,~)X’]‘~ +I?~(@)x~]~“, 

if i = j and (18) holds. 

Let us have a closer look at conditions (17) and (18). For two compact intervals [a, b] and [c, d] 
in W+, we introduce a multiplication [o,b] . [c,d] := [ac, bd] and [a, b]’ := [ur, b’] for r E NJ; 
furthermore, we will use the relations [a, b] < [c, d] :e b < c and [a, b] > [c, d] :e a > d. With 
this notation, conditions (17) and (18) for the spectral intervals Xi = [ai, bi] are equivalent to 

Xj > Xyl * * . A:, respectively, Xj < XT1 . . . A:. 

So for our explicit candidate of H to be well defined, we have to assume that one of these two 
conditions is satisfied and this is equivalent to the so-called nonresonance condition 

AjflfiAy =0. (20) 
i=l 

If condition (20) does not hold, then we have a resonance of order 141 and the term (0,. . . ,O, 
(l/q!)DF~(O) . xQ, 0,. . . ,0) is called resonant. 

If the linear part A of system (10) does not depend on k, then the dichotomy spectrum C(A) 
consists of the absolute values Xi, . . . ,X, of the eigenvalues of A, and the nonresonance condi- 
tion (20) for the spectral intervals reduces to Poincare’s discrete nonresonance condition Xj # 
x71 . . . Xe for real eigenvalues. 

Now, we prove that H is indeed a CP equivalence, which eliminates a nonresonant term. In 
contrast to condition (11) in the motivation, we now allow the right-hand side of the difference 
equation to have nontrivial Taylor coefficients of arbitrary order. 

THEOREM 9. Consider the difference equation (10). Let j E { 1,. . . , n} be an index and q E NE, 
2 5 141 < p, a multi-index. Assume that the nonresonance condition (20) holds for the spectral 
intervals Xi,. . . ,X,. Then a local CP equivalence H exists, which eliminates the jt” TayJor 
component (l/q!)DQFkj(O) . xQ belonging to the multi-index q and leaves fixed all other Taylor 
coefficients up to order 141. 

That is, equation (10) is locally CP equivalent to an invertible difference equation 

xk+l = AkXk + Gk(Vc), (21) 
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with zero reference solution, [Ak + Gk] E DiP(&(O), [Ak + Ck](&(O))) with a 6 = b(j, q, A) > 0 
and for all 4 E NG with 1 5 141 5 (41 and all i E (1,. . . , n}, k E Z, the identity 

for 4 # q or i # j, 

for 4 = q and i = j, 

holds. There exist g’, 6’ with 0 < u’ 5 u, 0 < 6’ 2 6 an+ the local near-identity CP equivalence 
H : Z x B,,(O) + B&(O), (k, ) z H 2 + hk(z) between (10) and (21) with respect to the zero 
solutions is defined through (19). The inverse transformation H-l : Z x Bg,(O) + Bb(0) has the 
form 

Hil(x) = x - h/c(x) + @k(x) 

with a continuous mapping II, : Z x Bgj (0) + RN, which satisfies the limiting relation limZ+o x 
($k(x)/IIx[I’q’a-l) = 0 uniformly in k E Z. Moreover, for every k E Z one has the estimates 

lb%(x) - Hk @)I1 I 2 1(x - 311, for all x, 5 E B,,(O), 

/HF’(x) - HL1 (?)I( 5 2 112 - 211, for all z,f E Bp(0). 

PROOF. The proof is divided into seven steps. In the first step, we show that h is well defined. 
The smoothness of H is examined in the second step. In the third step, we construct the inverse 
transformation H-l, and in the following step the Lipschitz estimates for H and H-’ are shown. 
The explicit form of H-l is elaborated in Step 5. The difference equation xk+l = &xk + Gk(Xk) 

is constructed in the sixth step and it is shown that Ck coincides up to order 141 with Fk except 
for the jth component of the Taylor component belonging to the multi-index q; this component 
is eliminated in Ck. In the final step, it is proved that H is a local CP equivalence between (10) 
and (21) with respect to the zero reference solutions. 

STEP 1. The mapping h : Z x RN + R N is well defined and the estimate 

(22) 

holds with a constant C = C(j, q, A) 2 0. 

PROOF OF STEP 1. The nonresonance condition (20) implies one of the two estimates (17) or (18) 
for the spectral intervals Xi = [ai, bi], i = 1,. . . , n. For every spectral interval Xi = [ai, bi] choose 
two numbers cyi and /?i with 0 < (pi < ai and bi < /3i such that aj > /3? . . . /3? if (17) holds, 
and pj < a?...@ if (18) holds. Then as a consequence of [2, Corollary 3.11, there exists a 
K = K(j, q, A) 2 1 with 

IJ@(k,Oll I Kpfe, for k 2 .& 

Il@(k,C)II I Kafe, for k 5 .& 

fori=l,..., n. Forallk,~EZ,xEWNonehss 

I/ @(k,L + l)-+‘F;(O) . [@‘(e, k)xl]” . . . [P(fJ, k)xn]qnll 

I ll@jW+ 1111 . . $M. 1191(1, k)jl” . . . @l”(l, k)ll”” . )lxlllql . . . llxnllQn 

and the claim follows. 
STEP 2. For every k E Z the mapping Hk : RN + RN, x H z + hk(x) is Coo. 
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PROOF OF STEP 2. Arguing for each component separately, the proof of this claim reduces to 
the verification that hi : RN + Ej is C”O for every k E Z. Assume that (17) holds. Similarly 
to Step 1, one can show that hi is differentiable and one gets for all k E Z and x,e E RN the 
derivative 

Dhj&) . t = ED, [mj(k, C + l)$D’@(O) . [(a’(!, k)x’lql . . . [a)“([, k)i”l’.] . E 
e=k 

x [@I(& k)xllq’ . . . [@(t, k)Ei] . [@(l, k)xi]q’-l . . . [+“(l, k)xnlq” ds, 

and the estimate 

IlDhjk(x)(l I IqlCl141’q’-‘. (23) 
Now, Oh:(x) is again differentiable and the second derivative operates on <, q E RN through 

D2h;(x) . E. 77 = c 
i,m=l,..., n:qi,q,>l, i#m 

qiqm 2 @(k,P + l);D’F’(O) 
e=k 

x [@‘(t, k)xl]‘l . . . [@(!, k@] . [@(l, k)xilq’-’ 

. . + [@“(t, k)vn] . [@“(l, k)xm]qm-l . . . [@“(e, k)xnlqn 

and implies the estimate 

11D2h’k(x)l( I (q(2CJIxll’q’-2. (24) 

Mathematical induction yields the existence of the derivatives D”hjk : RN + L”(R”; Ej) for 
kEZandm=l , . . . , p. For m > p, the mapping Dmhi is zero, and for this reason hi and, 
therefore also, Hk is Cm. 

STEP 3. There exist CA, 66, 60 with 0 < uI, 5 a0 := min{a, (2/qlC)-1/(1qf-1)}, 0 < 66 5 60, such 
that for arbitrary k E Z, 

Hk : &;)(o) --) & (B,;(o)) C B&,(o) 

is a CP diffeomorphism and such that a CP diffeomorphism 

H,-’ : Ba;, (0) + Hi ’ (Bz, (0)) c % (0) 

exists and the identities 

H;‘@,,(x)) = x and Hk(H;l(x)) = x 

are valid for all x E B,;, (0), respectively, x E Ba;, (0). 

PROOF OF STEP 3. With (24), [4, Proposition 2.5.6, pp. 119-1211 implies the claim. 

STEP 4. For every k E Z we have 

llHk(x) - Hk (ff)II I 2 1(x - ffll, for x,x E B,;, (0), (25) 

IIH~‘(x) - HF1 (%)[I 5 2 112 - 311, for x,l E B&;(O). (26) 
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PROOF OF STEP 4. First we prove the Lipschitz continuity of hk : B,;(O) -+ RN. Estimate (23) 
for the derivative of hi implies for all k E Z and 2 E Bb;(0) the inequality IIDhk(z)l) L l/2, and 
hence, 

1 
llW> - h/c @)ll 5 - llz - fll , 2 (27) 

which implies (25). To prove the Lipschitz estimate for H-’ we use (27) to show for k E Z and 
y, k E B,;, (0) the estimate 

IIY - !-Jll - ; 11~ - 811 ~5 11~ - 811 - Ilhk(~) - hk @)I1 > 

and it follows that 

f II?/ -&II 5 IIHk(Y) - Hk @)I1 . 

Step 3 implies for z,a: E B&;(O) the identities Hk(&‘(z)) = z and Hk(HFl(%)) = Z and with 
y := H;‘(z), g := Hi’(?) and one gets estimate (26). 

STEP 5. For k E Z, the mapping Hi1 : B&;,(O) + RN is of the form 

&l(X) = X - hlc(x) + +k(z) 

with a continuous mapping -$k : &b (0) + RN, which satisfies 

lbh(x) 11 
!%I ~~5~p12-l 

= 0, uniformly in k E Z. (28) 

PROOF OF STEP 5. For k E Z the inverse of Hk can be given explicitely with the Neumann-series 
(see, e.g., [4, p. 1171) 

H,-‘(z) := $-h&(T), for 2 E B6;, (0). 
i=o 

With the mapping $k : &6(O) -+ RN, z H czz(-hk)i( 2 one has for arbitrary z E B&b(O) the ) 
identity 

H,&) = 2 - h&) + $‘k(x). 

To show the limiting relation (28) one has to apply twice estimate (22) together with (27) to get 
for all z E B&;(O) and i 12 the following inequalities: 

II(+$(x)II I c jl(-h/$-l(z)ll’q’ 5 C2 (l(-hh)i-2(cz$1(‘q’a 

1 0 (~--2M2 
5 c2 

5 l141’q’a 7 

and this implies 

lbbk(x)~~ 5 
c2 

1 - (1/2)1q12 l141’Q’2, 

and therefore, the limiting relation (28). 
STEP 6. Define b := min{#,, a/2,0~/2~}[), b’ := 6, and 0’ := minIa&, S/2} where A% > 0 is a 
constant, with 

II& + DFk(x)ll 5 G, for 2 E B,(O). 

If u is a solution of (10) in B,J (0), then H k vk iS a SOhtiOn of xk+l = @k(zk) with Gk E ( ) 
DiffP(&(0), ek(BJ(O))) and 

ek(xk) = Hk+l (Ak&‘(xk) + Fk (H,-%k))) . 
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If w is a solution of xk+r = Ck(xk) in Bat(O), then HL’( wk is a solution of (10). Moreover, ) 
Ck has the form Ck(xk) = &xk + Ck(xk) and for the components of the Taylor coefficients of 
Gk :&(o) + t? X ..* x E” = RN the following identities hold: 

D”G;(O) z 
D@FL(O), for i # q or i # j, 
o 

, for i = q and i = j, 

for all G E NJ;; with ]G] I IqJ and all i E (1,. . . ,n}. 

PROOF OF STEP 6. The Lipschitz estimates (25),(26) and ]([&a: + Fk(X)] - [i&Z + 4(x)]]] 5 
A?]]x - z]] for x, 1 E B,(O) imply that Ck is a composition of 0’ diffeomorphisms on B&(O). 

Let Vk E B,,(O) be a solution of (10). Then Hk(Vk) E &(O) is a dUtiOn of Xk+l = tik(X), 

and similarly if wk E &r(O) is a solution of xk+l = Ck(x), then &‘(wk) E B,(O) is a solution 
of (10). 

Now, we write the components ti : Z x B&(O) + E”, i = 1 , . . . , n, of the right-hand side of 
the transformed difference equation as a sum of terms up to order IqI and terms of higher order. 
The most important relation to do this is the following connection between hk+r and hk. For all 
k E Z and x E B,(O), one has the identity 

hk+l(AkX) = A&r,(X) - . Xq, 0,. . . ,o . 

Taylor-expanding Ck near x = 0, one gets the identity 

ek(2) = Akx - hchc(Z) + Fk(x) + &+1(&X) + 0 (11X1[“‘) 

=&X+&(X)- 
( 

0 ,..., o+‘F~(o)*Xq,o ,..., 0 
> ( 

+0 ~~X~~lql), 

and the claim follows. 

STEP 7. The mapping H : Z x B,, (0) --f Ba(O) is a 0’ equivalence between systems (10) and (21) 
with respect to the zero solutions with the inverse transformation H-l : Z x B&l (0) + B,(O). 

PROOF OF STEP 7. We only have to verify the properties of the definition of a 0’ equivalence. 
Use Steps 3, 4, and 6. 

COROLLARY 10. Let Ak and 4 be periodic in k with a period K 2 1; i.e., for all k E iz, the 
identities 

Ak+n = A,, and Fk+n = Ftc 

hold. Then H from Theorem 9 is abo periodic in k with period IE. Especially if (10) is au- 
tonomous, then H is independent of k. 

PROOF. For e E Z and E E RN, the mapping @(k + K, I + K)< is the unique solution of the initial 
value problem Xk+l = &+nxk, x(e) = [ and also Q(k, a)[ is the unique solution of the same initial 
value problem xk+r = Akxk, x(e) = E, and therefore, the identity 9(k + K, c + K) = @(k, e) holds 
for all k,C E Z. Moreover, the n-periodicity of F in k implies the relation D’JFi+,(O) = DqFi(O), 
and in case of (17) one gets the equality 

h;+,(x) = 2 @(k + ~,e + l)D”Fi(O) . [a’(!, k + IE)x~]‘~ . . . [a”(& k -t +?]” = h;(x), 
e=k+n 

and the claim follows. 

Now, it is easy to get our main result on normal forms. Combining the three steps, we 
immediately get the following theorem. 
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THEOREM 11. NORMAL FORM. Consider a difference equation 

x/c+1 = h(x) . (29) 

together with a reference solution v” : Z + RN. Assume that 

(A) a neighbourhood UE(vo) is contained in Df for some E > 0, 
(B) d E DiffP(&(vk), fk(&(vk))) for a P 12, 
(C) the linearization xk+l = Dfk(v$k of (29) along v” has bounded growth, and therefore, [I] 

the dichotomy spectrum consists of n, 1 5 n 2 N, compact intervals Xi = [ai, bi], i = 
1 T”‘, n, and 

(D) higher-order terms off in x along v” are uniformly bounded in k; i.e., there is an M > 0 
such that 

for all k E Z and all j E (2,. . . ,p}. 

Then (29) is locally CP equivalent to a difference equation 

with zero reference solution and (30) is in normal form; i.e., it holds that 

(A’) 
P’) 

((3 

gk E Diffp(Ba(0),gk(&(O))) for some 6 > 0, 
the linearization Xk+l = Dgk(O)xk of (30) along the zero solution has the same dichotomy 
spectrum as the linearization of (29) ! a on g v” and additionally is block-diagonalized, each 
block corresponds to a spectral interval Xi, and 
all nontrivial Taylor components of g of order 2 to p are resonant; i.e., for every j E 

(1,. * * I n} and q E N$, 2 < 141 5 p with 

x,“iljXP’=0, 
i=l 

we have Dqgi(O) = 0 fork E Z. 

We apply the normal form theorem to an example. It is the same example which we used at 
the beginning to explain PoincarB’s normal form theory. Therefore, consider again 

xk+l = 2xk, 

Yk+l = h/k + xc:, 

with X E (0, m). The spectral intervals of the first and second equations are the one-point sets 
X1 = (2) and X2 = {X}, respectively, consisting of the eigenvalues of the linear part. We want to 
eliminate the quadratic term xi in the second component of the difference equation, i.e., j = 2 
and q = (2,O). For X < 4 the condition X2 < (2X1+ 0x2) holds, so we have no resonance and get 

k-l 

h;(x,y) = - c @(k,l+ 1). [@I@, kjx12 
e=-oo 

k-l 

=- c ~“4-1 . 4t-k. x2 _ 1 &2 

e=-oo 
A-4 ’ 

and therefore, H is (we get the same h2 for X < 4) 

Hk(2,y)= (;.)+(h:(:,y)) = (y+&x+ 
This is the same result as we calculated above with Poincark’s method. 
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Table 1. 

Autonomous Poincar6 Theory Nonautonomous Theory 

lk+l = A% + fbk) “k+l = AkXk + fkbk) 

Linear part A E RN x N in block diagonal form Linear part Ak E RN x N in block diagonal form 
A = diag(A’ , . , A”). Eigenvalues ~1,. . . , PN & = diag(A:, . . . , A;). Compact dichotomy 
of A or eigenvalue real parts Xl, . . , X, of blocks spectrum X1 = [al, bl], . . . , X, = [a,, bn] of blocks 
A’,...,A”. A;,...,A;. 

Elimination of a Taylor coefficient: Elimination of a Taylor coefficient: 

algebraically analytically 

Solve a linear homological equation Solve a linear difference equation 

Lj,4/& = DqFj (0) xi,, = A;xjk - DqF;(O) +(k,m)q 

with a linear operator Ljlq on a finite-dimensional where the solution is unique with a prescribed 
space of monomials. growth rate. 

+-+ Solve a linear equation. u) Solve a linear difference equation. 

Nonresonance condition Nonresonance condition (new) 

xj - $1 xff # 0 xj n $1 . A$= = 0 

j = 1,. . . , It, Qi E No, 2 I IPI I P. j=l,...,n,qiEW0,2I{ql<p. 

4. CONCLUSION 

We extended Poincark’s normal form theory for autonomous difference equations to the class of 
nonautonomous differential equations in the vicinity of an arbitrary reference solution. Poincark’s 
nonresonance condition for the eigenvalues of the linearization is generalized to a new nonres- 
onance condition for the spectral intervals. A comparison of the new normal form theory with 
PoincarB’s method is contained in Table 1. 

Normal forms traditionally are an important tool in bifurcation theory (see, e.g., [5-81). We 
hope to stimulate the development of a nonautonomous bifurcation theory for difference equa- 
tions. 
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