
Annals of Pure and Applied Logic 115 (2002) 233–277
www.elsevier.com/locate/apal

Degree spectra of relations on structures of "nite
computable dimension

Denis R. Hirschfeldt ∗
School of Mathematical and Computing Sciences, Victoria University of Wellington, New Zealand

Received 27 January 2001; received in revised form 11 April 2001; accepted 11 April 2001
Communicated by R.I. Soare

Abstract

We show that for every computably enumerable (c.e.) degree a¿0 there is an intrinsically
c.e. relation on the domain of a computable structure of computable dimension 2 whose degree
spectrum is {0; a}, thus answering a question of Goncharov and Khoussainov (Dokl. Math. 55
(1997) 55–57). We also show that this theorem remains true with �-c.e. in place of c.e. for any
�∈! ∪ {!}. A modi"cation of the proof of this result similar to what was done in Hirschfeldt
(J. Symbolic Logic, to appear) shows that for any �∈!∪{!} and any �-c.e. degrees a0; : : : ; an
there is an intrinsically �-c.e. relation on the domain of a computable structure of computable
dimension n + 1 whose degree spectrum is {a0; : : : ; an}. These results also hold for m-degree
spectra of relations. c© 2002 Elsevier Science B.V. All rights reserved.

MSC: 03C57; 03D45; 03C15

Keywords: Degree spectra of relations; Computable structures; Computable dimension

1. Introduction

The study of the e<ective content of model theory has proved quite fertile, and has
attracted the attention of a large number of researchers. The recent publication of the
Handbook of Recursive Mathematics [9], the "rst volume of which is dedicated to
e<ective model theory, attests to the growth of the "eld. (This handbook is a valuable
reference; in particular, the introduction and the articles by Ershov and Goncharov [8]
and Harizanov [16] give useful overviews, while the articles by Ash [1] and Goncharov

∗ The results in this paper are part of the author’s doctoral dissertation, written at Cornell University under
the supervision of Richard A. Shore. The author thanks Professor Shore for many useful comments and
suggestions. The author was partially supported by an Alfred P. Sloan Doctoral Dissertation Fellowship.
Current address: Department of Mathematics, University of Chicago, 5734 S. University Ave., Chicago, IL
60637, USA. Tel.: +1-773-702-5353; fax: +1-773-702-9787.
E-mail address: drh@math.uchicago.edu (D.R. Hirschfeldt).

0168-0072/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0168 -0072(01)00094 -X

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82225722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

234 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

[12] cover material related to the topic of this paper. Another relevant survey article
is [21].)

Several di<erent notions of e<ectiveness of model-theoretic structures have been
investigated. In this paper, we are mainly concerned with structures whose constants,
functions, and relations are uniformly computable.

De�nition 1.1. A structure A in a computable language is computable if both its
domain |A| and the atomic diagram of 〈A; a〉a∈|A| are computable.

Providing e<ective analogs of theorems of classical model theory (and showing that
in certain cases there are none) is part of the work of computable model theory. Another
part consists of analyzing phenomena that only arise in the computable setting, such as
the fact that isomorphic computable structures, which are considered to be essentially
identical in classical model theory, might behave quite di<erently from a computability-
theoretic point of view.

For example, under the standard ordering of !, the successor relation is computable,
but it is not hard to construct a computable linear ordering of type ! in which the suc-
cessor relation is not computable (see, for instance, [6]). In fact, for every computably
enumerable (c.e.) degree a, we can construct a computable linear ordering of type ! in
which the successor relation has degree a. It is also possible to build two isomorphic
computable groups, only one of which has a computable center, or two isomorphic
Boolean algebras, only one of which has a computable set of atoms. This leads us to
study computable structures up to computable isomorphism, a point of view reJected
in the following de"nition.

De�nition 1.2. An isomorphism from a structure M to a computable structure is called
a computable presentation of M. (We often abuse terminology and refer to the image
of a computable presentation as a computable presentation.)

If M has a computable presentation then it is computably presentable.
The computable dimension of a computably presentable structure M is the number

of computable presentations of M up to computable isomorphism.
A structure of computable dimension 1 is said to be computably categorical.

We will also have occasion to consider c.e. structures.

De�nition 1.3. A structure A is c.e. if its domain |A| is computable and the atomic
diagram of 〈A; a〉a∈|A| is c.e.

An isomorphism from a structure M to a c.e. structure is called a c.e. presentation
of M. (As in the computable case, we often refer to the image of a c.e. presentation
as a c.e. presentation.)

If M has a c.e. presentation then it is c.e. presentable.
The c.e. dimension of a c.e. presentable structure M is the number of c.e. presen-

tations of M up to computable isomorphism.

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 235

The examples mentioned above of structures that are isomorphic but not computably
isomorphic, as well as many other natural ones, suggest the idea of attempting to
understand the di<erences between noncomputably isomorphic computable presentations
of a structure M by comparing (from a computability-theoretic point of view) the
images in these presentations of a particular relation on the domain of M. (Of course,
this is only interesting if this relation is not the interpretation in M of a relation in
the language of M.) The study of additional relations on computable structures began
with the work of Ash and Nerode [3] and has been continued in a large number of
papers. (References can be found in the aforementioned articles in [9], as well as in
[21].)

Ash and Nerode [3] were concerned with relations that maintain some degree of
e<ectiveness in di<erent computable presentations of a structure.

De�nition 1.4. Let U be a relation on the domain of a computably presentable structure
M and let C be a class of relations. U is intrinsically C on M if the image of U in
any computable presentation of M is in C.

In [3], conditions that guarantee that a relation is intrinsically computable or in-
trinsically c.e. were given. More recent work has led to a number of other condi-
tions guaranteeing that a relation is intrinsically C for various classes C (see [4], for
example).

A di<erent approach to the study of relations on computable structures, which began
with the work of Harizanov [14] (although there is some earlier work, for instance by
Remmel in [23], that can be thought of in this light), is to look at the (Turing) degrees
of the images of a relation in di<erent computable presentations of a structure.

De�nition 1.5. Let U be a relation on the domain of a computably presentable structure
M. The degree spectrum of U on M, DgSpM(U), is the set of degrees of the images
of U in all computable presentations of M.

It is also interesting to consider degree spectra of relations with respect to other
reducibilities.

De�nition 1.6. Let r be a reducibility, such as many–one reducibility (m-reducibility)
or weak truth-table reducibility (wtt-reducibility). Let U be a relation on the domain of
a computably presentable structure M. The r-degree spectrum of U on M, DgSpr

M(U),
is the set of r-degrees of the images of U in all computable presentations of M.

Ash–Nerode type conditions often imply that the degree spectrum of a relation is
either a singleton or in"nite. Indeed, for various classes of degrees, conditions have
been formulated that guarantee that the degree spectrum of a relation consists of all
the degrees in the given class (see [2] or [17], for example). Motivated by these con-
siderations, as well as by Goncharov’s examples [11] of structures of "nite computable

236 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

dimension, Harizanov and Millar suggested the study of relations with "nite degree
spectra.

Harizanov [15] was the "rst to give an example of an intrinsically 	0
2 relation with a

two-element degree spectrum that includes 0. (Harizanov also noted that Goncharov’s
example of a rigid structure of computable dimension 2 can be converted into an
example of an intrinsically 	0

3 relation with a two-element degree spectrum that
includes 0.)

Theorem 1.7 (Harizanov). There exist a 	0
2 but not c.e. degree a and a relation U

on the domain of a computable structure A of computable dimension 2 such that
DgSpA(U) = {0; a}.

Khoussainov and Shore [20] and Goncharov and Khoussainov [13] showed the ex-
istence of an intrinsically c.e. relation with a two-element degree spectrum.

Theorem 1.8 (Khoussainov and Shore, Goncharov). There exist a c.e. degree a and
an intrinsically c.e. relation U on the domain of a computable structure A of com-
putable dimension 2 such that DgSpA(U) = {0; a}.

This left open the question, asked explicitly in [13], of which (c.e.) degrees can be
the nonzero element of a two-element degree spectrum of a relation on a structure of
computable dimension 2. A partial answer to this question was given by the author in
[18], where the following result was established.

Theorem 1.9. Let a¿0 be a c.e. degree. There is an intrinsically c.e. relation U on
the domain of a computable structure A such that DgSpA(U) = {0; a}.

In this paper, we improve this result by showing that A can be chosen to have
computable dimension 2, thus fully answering the question mentioned above in the c.e.
case. Our proof is such that we are able to control not only the computable dimension
but also the c.e. dimension of the structures we build (which was also the case in
[20]).

Theorem 1.10. Let a¿0 be a c.e. degree. There is an intrinsically c.e. relation U
on the domain of a computable structure A of computable dimension 2 such that
DgSpA(U) = {0; a}. In addition; A can be picked so that every c.e. presentation of
A is computable; which implies that A has c.e. dimension 2.

This result and its extensions, Theorems 1.12 and 1.14 below, are also due indepen-
dently to Khoussainov and Shore [22], whose proofs use a complicated modi"cation
of their proof of Theorem 1.8.

The proof of Theorem 1.10, which appears in Section 2, is based on the proof
of Theorem 1.9, and uses techniques from [20], which in turn builds on work of
Goncharov [10, 11] and Cholak, Goncharov, Khoussainov and Shore [5].

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 237

We can extend Theorem 1.10 by broadening our focus from the c.e. degrees to larger
classes of 	0

2 degrees.

De�nition 1.11. Let A⊆! be a set. A computable sequence a0; a1; : : : is a 	0
2 approx-

imation of A if for all x∈!, |{s | as = x}| is "nite and x∈A⇔|{s | as = x}| is odd.
Let n∈!. A is n-c.e. if there exists a 	0

2 approximation a0; a1; : : : of A such that
|{s | as = x}|6n for all x∈!.
A is !-c.e. if there exist a 	0

2 approximation a0; a1; : : : of A and a computable function
f such that |{s | as = x}|6f(x) for all x∈!.

Let �∈! ∪ {!}. A degree is �-c.e. if it contains an �-c.e. set. A collection of sets
{Ai}i∈! is uniformly �-c.e. if

⊕
i∈! Ai = {〈i; x〉 | x∈Ai} is �-c.e.

Remark. The above de"nition of !-c.e. is the one that will be useful in Section 3.
There is an equivalent de"nition which can be generalized to de"ne the concepts of
�-c.e. set and �-c.e. degree for any computable ordinal � (see [7]). It is also interesting
to note that a set is !-c.e. if and only if it is wtt-reducible to ∅′.

Theorem 1.12. Let �∈!∪{!} and let b¿0 be an �-c.e. degree. There is an intrin-
sically �-c.e. relation V on the domain of a computable structure B of computable
dimension 2 such that DgSpB(V) = {0; b}. In addition; B can be picked so that every
c.e. presentation of B is computable; which implies that B has c.e. dimension 2.

The structure B, which will be described in Section 3, will be an extension of the
structure A constructed in the proof of Theorem 1.10 for an appropriate c.e. degree a.

In [18], the following extension of Theorem 1.9 was established.

Theorem 1.13. Let {Ai}i∈! be a uniformly c.e. collection of sets. There is an in-
trinsically c.e. relation U on the domain of a computable structure A such that
DgSpA(U) = {deg(Ai) | i∈!}.

Khoussainov and Shore [20] showed that, for each n∈!, there exist c.e. degrees
a0; : : : ; an and an intrinsically c.e. relation U on the domain of a computable structure
A of computable dimension n+ 2 such that DgSpA(U) = {0; a0; : : : ; an}. It is straight-
forward to combine the proofs of Theorems 1.10 and 1.12 with that of Theorem 1.13,
given in Section 3 of [18], to yield the following strengthening of that result.

Theorem 1.14. Let �∈!∪{!} and let a0; : : : ; an be �-c.e. degrees. There is an intrin-
sically �-c.e. relation U on the domain of a computable structure A of computable
dimension n + 1 such that DgSpA(U) = {a0; : : : ; an}. In addition; A can be picked
so that every c.e. presentation of A is computable; which implies that A has c.e.
dimension n+ 1.

The proofs of Theorems 1.10 and 1.12 are such that these theorems remain true
with degree replaced by m-degree and DgSpA(U) replaced by DgSpm

A(U). The same

238 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

holds of Theorem 1.14 if we require that the m-degrees of ∅ and ! not be on the
list a0; : : : ; an. Thus, for any reducibility r weaker than m-reducibility, these theorems
remain true with degree replaced by r-degree and DgSpA(U) replaced by DgSpr

A(U).
By the results of [19], for each of the following theories, Theorems 1.10, 1.12, and

1.14 remain true if we also require that the structures mentioned in them be models of
the given theory, and that the relations mentioned in them be submodels: symmetric,
irreJexive graphs; partial orderings; lattices; rings (with zero-divisors); integral domains
of arbitrary characteristic; commutative semigroups; and 2-step nilpotent groups.

2. Proof of Theorem 1.10

In this section we prove the following theorem. 1

Theorem 1.10. Let a¿0 be a c.e. degree. There exists an intrinsically c.e. relation
U on the domain of a computable structure A of computable dimension 2 such that
DgSpA(U) = {0; a}. In addition; A can be picked so that every c.e. presentation of
A is computable; which implies that A has c.e. dimension 2.

Proof. Let A be a c.e. set that is not computable and let a0; a1; : : : be a computable
enumeration of A. Let A[0] = ∅ and A[s+ 1] = {a0; : : : ; as}. We wish to construct com-
putable structures A0 and A1 and unary relations U 0 and U 1 on the domains of A0

and A1, respectively, so that the following properties hold:
(2.1) A0 ∼=A1 via an isomorphism that carries U 0 to U 1.
(2.2) U 0 ≡m A and U 1 is computable.
(2.3) If G∼=A0 is a computable structure then G is computably isomorphic to either

A0 or A1.
(2.4) A0 is rigid.
(2.5) Every c.e. presentation of A0 with computable equality relation is computable.

The reason that (2.5) is enough to establish the last part of Theorem 1.10 is that we
can let A be the result of adding to A0 the binary relation Q that holds of x and y
if and only if x =y. Clearly, A shares all the relevant computable properties of A0,
and any c.e. presentation of A restricts to a c.e. presentation of A0 with computable
equality relation.

Our structures will be directed graphs. We begin by de"ning our basic building
blocks.

1 The construction in this section will be similar in many ways to what was done in [18] to prove the
result we have numbered Theorem 1.9, as will the proof that properties (2.1) and (2.2) below hold. (The
construction in [18] also satis"ed (2.4) below, but this was not mentioned in that paper because it was not
needed to prove Theorem 1.9.) There will also be similarities with certain aspects of the proof in [20] of
the result we have numbered Theorem 1.8. However, we will not assume that the reader is familiar with
these papers, and will make our discussion below, as well as the formal proof that follows it, self-contained.

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 239

Fig. 1. [2] and [{2; 3}]:

De�nition 2.1. Let n∈!. The directed graph [n] consists of n+3 many nodes x0; x1; : : : ;
xn+2 with an edge from x0 to itself, an edge from xn+2 to x1, and an edge from xi
to xi+1 for each i6n + 1. We call x0 the top of [n] and xn+2 the coding location
of [n].

Let S ⊂!. The directed graph [S] consists of one copy of [s] for each s∈ S, with
all the tops identi"ed.

Fig. 1 shows [2] and [{2; 3}] as examples.

The description of the construction of A0, A1, U 0, and U 1 will be organized as
follows. In Section 2.1, we discuss how we satisfy (2.1) and (2.2). Before dealing
with the satisfaction of (2.3) in Section 2.3, we review in Section 2.2 what was done
in the proof of Theorem 1.9 to satisfy the corresponding property. Formal de"nitions
and conventions are given in Section 2.4; this is followed by the formal construction
in Section 2.5 and its veri"cation in Section 2.6.

We will ignore (2.5) until we give the formal de"nitions used in the full construction;
at that point, we will introduce a few minor changes to ensure the satisfaction of this
property. We will also not make explicit mention in our informal discussion below of
how (2.4) is satis"ed, but it should be clear that the construction we describe ensures
the rigidity of the Ai, and we will assume this fact in our discussion. We will also
assume in our discussion that our construction is such that no connected component of
Ai is embeddable in another component of Ai.

2.1. Satisfying (2:1) and (2:2)

We build A0 and A1 in stages. We begin by letting A0
0 and A1

0 be computable
structures with co-in"nite domains, each consisting of one copy of [k] for each k ∈!.
(This will change slightly when we introduce the changes needed to satisfy (2.5).)
If at each stage s + 1 we enumerate the coding location of the copy of [3as] in A0

0

into U 0 then we will have ensured that U 0 ≡m A. However, we also wish to make U 1

computable while guaranteeing that A0 ∼=A1 via an isomorphism that carries U 0 to
U 1. To describe how we can do this, we need two more de"nitions.

240 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

De�nition 2.2. Let G be a computable structure in the language of directed graphs
whose domain is co-in"nite. G consists of the disjoint union of a number of connected
components, which from now on we will just call the components of G.

Suppose that G has components K and L isomorphic to [B] and [C], respectively,
where B; C ⊂! are "nite. We de"ne the operation K ·L, which takes G to a new
computable structure extending G, as follows. Extend K to be a copy of [B∪C] using
numbers not in the domain of G. Leave every other component of G (including L)
unchanged.

We will also use the notation K ·L to denote the graph [B∪C]. It should always be
clear which meaning of K ·L is being used.

Given a "nite sequence of operations, each of which can be performed on G, so that
no two operations in the sequence a<ect the same component of G, we can perform
all the operations in the sequence simultaneously on G to get a structure extending G.
In this case we will say that we have performed the sequence of operations on G.

De�nition 2.3. Let G be a computable structure in the language of directed graphs
whose domain is co-in"nite and let X0; : : : ; Xn be components of G such that, for each
i 6 n, Xi is isomorphic to [Si] for some "nite Si⊂!. We de"ne two operations, each
of which takes G to a new computable structure extending G:
• The L-operation L(X0; : : : ; Xn) consists of performing the sequence of operations
X0 ·X1; X1 ·X2; : : : ; Xn ·X0 on G.

• The R-operation R(X0; : : : ; Xn) consists of performing the sequence of operations
X0 ·Xn; X1 ·X0; : : : ; Xn ·Xn−1 on G.
Note that if H is the structure obtained by performing L(X0; : : : ; Xn) on G and H′

is the structure obtained by performing R(X0; : : : ; Xn) on G then H∼=H′.

We can now proceed as follows. At stage s+ 1, let X is , Y
i
s , and Zis be the copies in

Ai
s of [3as], [3as + 1], and [3as + 2], respectively. Perform L(Y 0

s ; X
0
s ; Z

0
s) on A0

s to get
A0
s+1 and perform R(Y 1

s ; X
1
s ; Z

1
s) on A1

s to get A1
s+1. (In order to ensure that A0 and

A1 are computable, the new numbers added to their domains at this stage are assumed
to be greater than s.) Put the coding location of the old copy of [3as] in A0

s+1 (that
is, the copy that was already in A0

0) into U 0 and put the coding location of the new
copy of [3as] in A1

s+1 into U 1.
Fig. 2 pictures what happens on either side of the construction. For each i= 0; 1, the

copy of [3as] whose coding location enters Ui is underlined.
Now let A0 =

⋃
s∈!A

0
s and A1 =

⋃
s∈!A

1
s . It is easy to show, by induction using

the de"nition of the L- and R-operations, that for each s, A0
s
∼=A1

s via an isomorphism
that carries U 0[s] to U 1[s]. (Here Ui[s] is the set of all numbers that have entered Ui

by the end of stage s). It is also true that whenever a component of Ai
s participates

in an operation at stage s+ 1, so does the isomorphic component of A1−i
s . Since A0

and A1 have no in"nite components, it follows that A0 ∼=A1 via an isomorphism that
carries U 0 to U 1.

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 241

Fig. 2. The basic coding strategy (top: A0 = bottom: A1).

Furthermore, it is still the case that U 0 ≡m A, since a number is in U 0 if and only if
it is the coding location of the copy of [3a] in A0

0 for some a∈A. On the other hand,
any number put into U 1 at a stage s + 1 is a new number, and is therefore greater
than s, which implies that U 1 is computable.

2.2. The proof of Theorem 1.9

Before we turn to the satisfaction of (2.3), it will be useful to discuss what was
done in the proof of Theorem 1.9 to satisfy the following weaker condition, which,
together with (2.1) and (2.2), clearly implies that theorem.

(2:3′) If G∼=A0 is a computable structure then the image of U 0 in G is either com-
putable or m-equivalent to A.

Our strategy for satisfying (2.3) will be quite similar to that used to satisfy (2:3′),
although the proof that it succeeds will be signi"cantly more involved.

The way in which (2:3′) can be satis"ed for a single G is based on the following
observation.

Let U be the image of U 0 in G and let G[s] denote the stage s approximation to G.
Assume that, for all s∈!, no component of Ai

s is embeddable in another component
of Ai

s and G[s] is embeddable in A0
s . The latter assumption can be made because we

only care about G if it is isomorphic to A0.
Suppose that, at some stage s, A0

s has components X 0
s , Y 0

s , Z0
s , and S 0

s , A1
s has

isomorphic components X 1
s , Y 1

s , Z1
s , and S1

s , respectively, and G[s] has isomorphic
components Xs, Ys, Zs, and Ss, respectively. Now, suppose we perform L(Y 0

s ; X
0
s ; Z

0
s ; S

0
s)

on A0
s to get A0

s+1 and perform R(Y 1
s ; X

1
s ; Z

1
s ; S

1
s) on A1

s to get A1
s+1. Then A0

s+1 has
components isomorphic to S 0

s ·Y 0
s , Y 0

s ·X 0
s , X 0

s ·Z0
s , and Z0

s · S 0
s , and these are the only

components of A0
s+1 that contain copies of X 0

s , Y 0
s , Z0

s , or S 0
s . So if Xs, Ys, Zs, and Ss

do not grow into isomorphic copies of the aforementioned components of A0
s+1 then

we can win immediately by not involving these components in any further operations,
thus guaranteeing that G�A0.

242 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

So if G∼=A0 then there are only two possibilities. The "rst is that Ss grows into
a copy of Ss ·Ys, Ys grows into a copy of Ys ·Xs, Xs grows into a copy of Xs ·Zs, and
Zs grows into a copy of Zs · Ss. In this case we will say that G “goes to the left”. The
other possibility is that Ys grows into a copy of Ss ·Ys, Ss grows into a copy of Zs · Ss,
Zs grows into a copy of Xs ·Zs, and Xs grows into a copy of Ys ·Xs. In this case we
will say that G “goes to the right”.

Now if the coding location of X 0
s is put into U 0 and the coding location of the new

copy of X 1
s is put into U 1 then the coding location of the copy of Xs that is part of

the component isomorphic to Xs ·Zs is in U . In other words, if G goes to the left then
the coding location of Xs in G[s] is in U , while if G goes to the right then the coding
location of the copy of Xs in G − G[s] is in U . It is easy to conclude from this that
if G goes to the left at all but "nitely many stages then U ≡m A, while if G goes to
the right at all but "nitely many stages then U is computable.

So to satisfy (2:3′) it is enough to ensure that G either almost always goes to the
left or almost always goes to the right. This can be done by always using the same
component of G, which we will call the special component of G, as Ss.

That is, we "rst pick some component of G to be its special component. Say we
pick the one that extends the "rst copy of [0] to appear in G. (Let us assume that
0 =∈A). At stage 0, we de"ne Ai

0 as above and wait until a copy of [0] is enumerated
into G. We also de"ne r0 to be 0. The value of rs will code whether G goes to the
left or to the right at stage s.

At stage s + 1, we let X is , Y
i
s , and Zis be the copies in Ai

s of [3as], [3as + 1],
and [3as + 2], respectively, and let Sis be the isomorphic copy in Ai

s of the special
component Ss of G[s]. We wait until copies of X is , Y

i
s , and Zis are enumerated into

G[s] and then perform the same operations as before. We then wait until copies of
Ss ·Ys, Ys ·Xs, Xs ·Zs, and Zs · Ss are enumerated into G. Either the copy of Ss ·Ys or
that of Zs · Ss will extend Ss. Whichever one it is now becomes Ss+1. If Ss+1

∼= Ss ·Ys
then rs+1 = 0; otherwise rs+1 = 1.

The above construction ensures that if G∼=A0 then the special component of G

is in"nite. On the other hand, it also guarantees that if G changes direction in"nitely
often (that is, if rs does not have a limit) then no component of A0 is in"nite, so
that G�A0. This is because, for each s∈!, the copy of the special component of
G[s+ 1] in A1−rs+1

s+1 is a component that participates in an operation for the "rst time
at stage s+1. Fig. 3 illustrates the case rs+1 = 0. In this "gure, the special components
of G[s] and G[s+ 1] and their images are shown in boxes.

However, there are two problems with this construction. First of all, by the same
reasoning as in the last paragraph, if G almost always goes to the left then no compo-
nent of A1 is in"nite, while if G almost always goes to the right then no component
of A0 is in"nite. In either case, (2.1) no longer holds.

This problem can be solved by re-using components in operations. The idea is
roughly as follows. Instead of using four components in our operations, we use six. That
is, at stage s + 1, in addition to the components mentioned above, we pick two other
components B0

s and C 0
s of A0

s and isomorphic components B1
s and C1

s of A1
s , perform

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 243

Fig. 3. The images of the special component (top: G =middle: A0 = bottom: A1).

L(Y 0
s ; X

0
s ; Z

0
s ; B

0
s ; S

0
s ; C

0
s) on A0

s to get A0
s+1, and perform R(Y 1

s ; X
1
s ; Z

1
s ; B

1
s ; S

1
s ; C

1
s) on

A1
s to get A1

s+1. (In order to accommodate the extra components, X is can be the copy
of [6as] in Ai

s , and a similar change can be made for the other components.)
As long as G is going in the same direction, we designate every other stage as an

isomorphism recovery stage. At such a stage s + 1, if rs = 0 then we let C 0
s be the

component of A0
s that extends B0

s−1 and let C1
s be the isomorphic component of A1

s .
On the other hand, if rs = 1 then we let B1

s be the component of A1
s that extends C1

s−1

and let B0
s be the isomorphic component of A0

s . Whenever G changes direction, we
restart this isomorphism recovery process.

It is straightforward to check that this strategy guarantees that if rs has a limit then
the copies of the special component of G in A0 and A1 are isomorphic, while still
ensuring that if rs does not have a limit then no component of A0 or A1 is in"nite.
We will give an example below to illustrate isomorphism recovery.

Another problem that had to be faced in the proof of Theorem 1.9, and will have
to be faced here also, is that, in general, we cannot know in advance whether a given
computable structure G is isomorphic to A0, so it is not possible to wait at each stage
until the appropriate components are enumerated into G. To get around this, the notion
of a recovery stage can be used.

At stage s + 1, where we would have waited for G to provide components Ys, Xs,
Zs, Bs, and Cs, we can simply not involve copies of the special component of G in our
operations unless these components are provided. (That is, if these components are not
in G[s] then we perform L(Y 0

s ; X
0
s ; Z

0
s) on A0

s to get A0
s+1 and perform R(Y 1

s ; X
1
s ; Z

1
s)

on A1
s to get A1

s+1.) Furthermore, where we would have waited for Ys, Xs, Zs, Bs, Ss,

244 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

and Cs to grow into copies of Ys ·Xs, Xs ·Zs, Zs ·Bs, Bs · Ss, Ss ·Cs, and Cs ·Ys, we can
just declare that we are waiting for these copies to appear in G.

A recovery stage in the sense of the proof of Theorem 1.9 is then a stage s+1 such
that
1. G[s] contains copies of all the components for which we are currently waiting and
2. for each j =∈A[s] that is less than or equal to the number of recovery stages before

stage s + 1, G[s] contains components that can be used as Yt , Xt , Zt , Bt , and Ct if
at = j for some t¿s.

(As we will see in the next section, we will need a somewhat more complicated version
of this concept.)

Now suppose that G∼=A0. Say that G is active at a given stage if isomorphic copies
of its special component participate in the operations performed at that stage. We want
there to be in"nitely many recovery stages. This will happen as long as there is a
bound on how often G can be active while waiting for recovery.

Let P be the set of all j∈! that do not enter A before the jth recovery stage. Let
M be the set of all coding locations of copies of [6j], j∈P, in G and let N be the
set of all coding locations of copies of [6j], j =∈P, in G. By the de"nition of recovery
stage, G will be active at each stage s+ 1 such that as ∈P. We make it a rule that G
is not active at any other stage. This clearly provides the desired bound on the number
of times G can be active while waiting for recovery.

Arguing as before, we conclude that if G almost always goes to the left then
U ∩M ≡m A, while if G almost always goes to the right then U ∩M is computable.
But P, N , and U ∩N are computable, since if we wait until the jth recovery stage
then we can tell whether j∈P, and if j =∈P then j∈A. So if G almost always goes to
the left then U ≡m A, while if G almost always goes to the right then U is computable.
Thus (2:3′) is satis"ed for this G.

We remark that the modi"cation to the construction that we have just described
makes the de"nition of isomorphism recovery stage a little more complicated, in that
a stage cannot be an isomorphism recovery stage unless it is a 9rst stage, that is, the
"rst stage at which G is active after a recovery stage. We will discuss this further
below.

Before proceeding, let us look at two examples. The "rst one illustrates what happens
in the construction described above when G recovers. Suppose that s¡t¡u¡v are such
that s + 1 is a "rst stage, rs+1 = 0, v + 1 is the next recovery stage after stage s + 1,
and t + 1 and u+ 1 are the only two stages between stages s+ 1 and v+ 1 at which
G is active.

Fig. 4 pictures what happens on the A0 side of the construction. From now on, we
will use the notation Ris in place of Sis, since this is the notation that we will adopt in
the full construction. This change is made because Riw might not be isomorphic to the
special component of G[w] if w + 1 is not a recovery stage.

Note that, by the de"nition of recovery stage, the special component of G[s] is
isomorphic to R0

s and, for each w= s; t; u, G[s] has components Yw, Xw, Zw, Bw, and
Cw isomorphic to Y 0

w , X 0
w , Z 0

w, B0
w, and C 0

w, respectively.

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 245

Fig. 4. Recovery.

Since G recovers at stage v+ 1, there are two possibilities. The "rst one is that the
special component of G[v] is isomorphic to one of B0

s ·R0
s , B

0
t ·R0

s ·C 0
s , or B0

u ·R0
s ·C 0

s ·
C 0
t . In this case, rv+1 = 1.
The second possibility is that the special component of G[v] is isomorphic to R0

s ·C 0
s ·

C 0
t ·C 0

u . In this case, the component of G[v] that extends Cu must be the one isomorphic
to C 0

u ·Y 0
u . From this it follows that the component of G[v] that extends Yu must be the

one isomorphic to Y 0
u ·X 0

u . Proceeding in this fashion, we see that for each w= s; t; u,
the component of G[v] that extends Xw is the one isomorphic to X 0

w ·Z 0
w.

Note that in the previous argument it is crucial that no component of A0 other
than the one that extends R0

s participates in operations more than once in the interval
(s; v]. This is the reason for requiring that isomorphism recovery happen only at "rst
stages.

Our second example illustrates isomorphism recovery. Suppose that s¡t¡u¡v¡w
are such that s+1 and v+1 are "rst stages, t+1 and u+1 are the only stages between
s+ 1 and v+ 1 at which G is active, and w + 1 is the "rst stage after stage v+ 1 at
which G is active. Suppose further that rs+1 = rt+1 = ru+1 = rv+1 = rw+1 = 0.

Fig. 5 pictures what happens on either side of the construction. The key point to
note here is that if R0

t
∼=R1

t then R0
w extends R0

t , R
1
w extends R1

t , and R0
w
∼=R1

w. This
pattern would allow us to prove by induction that if rs has a limit then each Ai has
a unique in"nite component Si and S 0 ∼= S1.

In the full construction in the proof of Theorem 1.9, we of course had to satisfy
(2:3′) for every computable directed graph. Let G0;G1; : : : be a standard enumeration
of all partial computable directed graphs. In that construction, we de"ned the concepts
of n-recovery stage, n-isomorphism recovery stage, rn; s, and so forth in the same way
as the corresponding concepts have been de"ned above, with Gn in place of G. We

246 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

Fig. 5. Isomorphism recovery (top: A0 = bottom: A1).

also said that n was active at a given stage if copies of the special component of Gn
participated in operations at that stage.

Remark. For the sake of de"niteness, we make the following de"nition, although we
will make no explicit use of it. A partial computable directed graph G consists of
two 0; 1-valued partial computable functions ' and (, the former unary and the latter
binary, such that if '(x)[s]↓='(y)[s]↓= 1 then ((x; y)[s]↓. The graph G (resp. G[s])
is the graph whose domain has characteristic function ' ('[s]) and whose edge relation
has characteristic function ((([s]).

We were able to satisfy (2:3′) for each Gn independently. In order to describe how
this was done, we "rst need some notation to allow us to distinguish the components

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 247

Fig. 6. The result of either of the operations ([3]; [4]) · [2] or [2] · ([3]; [4]).

that were used to satisfy (2:3′) for a particular Gn. We will denote by (Ai)n the sub-
graph of Ai consisting of those components used in the construction to satisfy (2:3′) for
Gn; that is, those components that act as Y , Z , B, S, and C components at some stage in
the strategy for satisfying (2:3′) for Gn described above. The corresponding components
of Gm for m possibly but not necessarily equal to n will be denoted by (Gm)n.

We need to de"ne new L- and R-operations that allow us to involve components of
(Ai)n for di<erent n’s in operations at the same stage.

De�nition 2.4. Let G be a computable structure in the language of directed graphs
whose domain is co-in"nite. Let K0; K1; : : : ; Kn and L be components of G isomorphic
to [y0]; [y1]; : : : ; [yn] and [x], respectively, where y0; y1; : : : ; yn; x∈!. We de"ne two
operations, each of which takes G to a new computable structure extending G:
• The operation (K0; K1; : : : ; Kn) ·L consists of performing the following steps, and

otherwise leaving G unchanged. Create a new copy of [x] using numbers not in the
domain of G. For each i6n, add an edge from the top of this new copy of [x] to
the top of Ki.

• The operation L · (K0; K1; : : : ; Kn) consists of performing the following steps, and
otherwise leaving G unchanged. For each i6n, create a new copy of [yi] using
numbers not in the domain of G. For each i6n, add an edge from the top of L to
the top of the new copy of [yi].
For example, suppose that L, K0, and K1 are copies of [2], [3], and [4], respectively.

Then the operation (K0; K1) ·L consists of extending K0 ∪K1 to a copy of the graph
shown in Fig. 6, while the operation L · (K0; K1) consists of extending L to a copy of
that same graph.

De�nition 2.5. Let G be a computable structure in the language of directed graphs
whose domain is co-in"nite. We say that a component C of G is a set component if
it is isomorphic to [T] for some "nite T ⊂!. If T is a singleton then we say that C
is a singleton component.

Let Y0; : : : ; Yn, X , Z0; : : : ; Zn, B0; : : : ; Bn, S0; : : : ; Sn, and C0; : : : ; Cn be components of
G such that for each i6n, X , Yi, and Zi are singleton components and Bi, Si, and
Ci are set components. We de"ne two operations, each of which takes G to a new
computable structure extending G.

248 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

• The L-operation

L(Y0; : : : ; Yn;X ;Z0; : : : ; Zn;B0; S0; C0; : : : ;Bn; Sn; Cn)

consists of performing the following sequence of operations on G:

(Y0; : : : ; Yn) · X; X · (Z0; : : : ; Zn); Z0 · B0; : : : ; Zn · Bn;

B0 · S0; : : : ; Bn · Sn; S0 · C0; : : : ; Sn · Cn; C0 · Y0; : : : ; Cn · Yn
• The R-operation

R(Y0; : : : ; Yn;X ;Z0; : : : ; Zn;B0; S0; C0; : : : ;Bn; Sn; Cn)

consists of performing the following sequence of operations on G:

Y0 · C0; : : : ; Yn · Cn; C0 · S0; : : : ; Cn · Sn; S0 · B0; : : : ; Sn · Bn;

B0 · Z0; : : : ; Bn · Zn; (Z0; : : : ; Zn) · X; X · (Y0; : : : ; Yn)

Note that if H is the structure obtained by performing

L(Y0; : : : ; Yn;X ;Z0; : : : ; Zn;B0; S0; C0; : : : ;Bn; Sn; Cn)

on G and H′ is the structure obtained by performing

R(Y0; : : : ; Yn;X ;Z0; : : : ; Zn;B0; S0; C0; : : : ;Bn; Sn; Cn)

on G then H∼=H′.

The idea now is that, at any given stage in the construction, there is a certain number
of Gn’s that need to have components Y in , Z

i
n, B

i
n, S

i
n, and Cin of (Ai)n participate in

operations at that stage in order for the strategy for satisfying (2:3′) for Gn to proceed as
described above. (The construction is organized in such a way that these components
are distinct for di<erent n’s.) On the other hand, there is a unique component X 0

of A0 whose coding location will go into U 0, as well as a unique corresponding
component X 1 of A1. Letting n0; : : : ; nk be all the n such that components of (Gn)n
need to participate in an operation at this stage, we can now perform

L(Y 0
n0
; : : : ; Y 0

nk ;X
0;Z0

n0
; : : : ; Z0

nk ;B
0
n0
; S0
n0
; C0
n0

; : : : ;B0
nk ; S

0
nk ; C

0
nk)

on A0 and perform

R(Y 1
n0
; : : : ; Y 1

nk ;X
1;Z1

n0
; : : : ; Z1

nk ;B
1
n0
; S1
n0
; C1
n0

; : : : ;B1
nk ; S

1
nk ; C

1
nk)

on A1. It is easy to check that the argument sketched out above still applies, and thus
that, in this way, we can satisfy (2:3′) for all Gn.

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 249

2.3. Satisfying (2:3)

As we have seen, the construction in the proof of Theorem 1.9 was an injury-free
one in which the satisfaction of (2:3′) for a given Gn was handled by a single strategy,
which worked with the components of (Ai)n and acted independently from strategies
for the satisfaction of (2:3′) for other Gm. The trade-o< was forgoing any control of
(Gn)m for m = n.

In order to satisfy (2.3), we need to control more of Gn than just (Gn)n. In order
to illustrate how we do this, we consider the following sample situation. We have two
graphs G0 and G1. We proceed with a construction like that described above, except
that, in order for G0 to recover at stage s+ 1, we require not only that G0[s] have the
components that were necessary for 0-recovery, but also those that were necessary for
1-recovery, and we do not allow 1-recovery unless there is 0-recovery, which means
that 1 is not active unless 0 is active. We claim that we will succeed in controlling
(G0)1 in the same sense that we controlled (G0)0 before.

An example should be helpful here. Suppose that s¡t¡u¡v are such that s + 1
is a "rst stage, v + 1 is the next recovery stage after stage s + 1, r0; s+1 = r0; v+1 = 0,
and t + 1 and u + 1 are the only two stages in the interval (s + 1; v + 1) at which
0 is active. Suppose further that 1 is also active at stages t + 1 and u + 1. Notice
that, since we do not allow 1 to be active unless 0 is active, t + 1 and u+ 1 are the
only two stages in the interval (s + 1; v + 1) at which 1 is active. Figs. 7–9 picture
what happens on the A0 side of the construction, depending on whether r1; s+1 = 0 or
r1; s+1 = 1.

We are assuming the de"nition of recovery stage is such that the special component
of G0[s] is isomorphic to R0

s , G0[s] has a component R1; s isomorphic to R0
1; s, and,

for each w= s; t; u and i= 0; 1, G0[s] has components Yi;w, Xw, Zi;w, Bi;w, and Ci;w
isomorphic to Y 0

i; w, X 0
w , Z 0

i; w, B0
i; w, and C 0

i; w, respectively.
Since G0 recovers at stage v+1 and r0; v+1 = 0, the special component of G0[v] is iso-

morphic to R0
0; s ·C 0

0; s ·C 0
0; t ·C 0

0; u. So, arguing as before, we see that, for each w= s; t; u,
the components of G0[v] that extend Y0; w, Xw, Z0; w, B0; w, and C0; w are isomorphic to
the components of A0

v that extend Y 0
0; w, X 0

w , Z 0
0; w, B0

0; w, and C 0
0; w, respectively. In other

words, all of (G0)0 goes in the same direction as (A0)0.
We wish to show that (G0)1 also goes in the same direction as (A0)1. Let R′1; s be

the component of G0[v] that extends R1; s and, for each w= s; t; u, let Y ′
1; w, X ′

w, Z ′1; w,
B′1; w, and C′

1; w be the components of G0[v] that extend Y1; w, Xw, Z1; w, B1; w, and C1; w,
respectively.

In the r1; s+1 = 0 case, we can argue as follows. As we have mentioned above, for
each w= s; t; u, X ′

w
∼=X 0

w · (Z 0
0; w; Z

0
1; w), which implies that Z ′1; w ∼= Z 0

1; w ·B0
1; w. This in turn

implies that B′1; s∼=B0
1; s ·R0

1; s, B
′
1; t

∼=B0
1; t ·R0

1; s ·C 0
1; s, and B′1; u∼=B0

1; u ·R0
1; s ·C 0

1; s ·C 0
1; t . So

the only component of A0
v left for R′1; s to be isomorphic to is R0

1; s ·C 0
1; s ·C 0

1; t ·C 0
1; u.

This implies that, for each w= s; t; u, C′
1; w

∼=C 0
1; w ·Y 0

1; w, which in turn implies that
Y ′

1; w
∼= (Y 0

0; w; Y
0

1; w) ·X 0
w . Thus, in this case, we see that (G0)1 goes in the same direction

as (A0)1.

250 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

Fig. 7. Recovery in a two-strategy scenario: (A0)0.

In the r1; s+1 = 1 case, the argument that (G0)1 goes in the same direction as (A0)1

is as follows. As before, for each w= s; t; u, X ′
w
∼=X 0

w · (Z 0
0; w; Z

0
1; w), which implies that

Z ′1; w ∼= Z 0
1; w ·B0

1; w. This implies that B′1; u∼=B0
1; u ·B0

1; t ·B0
1; s ·R0

1; s, which implies that B′1; t ∼=
B0

1; t ·B0
1; s ·R0

1; s ·C 0
1; u, which implies that B′1; s∼=B0

1; s ·R0
1; s ·C 0

1; t , which implies that R′1; s∼=
R0

1; s ·C 0
1; s. Now, for each w= s; t; u, we have C′

1; w
∼=C 0

1; w ·Y 0
1; w, which implies that

Y ′
1; w

∼= (Y 0
0; w; Y

0
1; w) ·X 0

w . Thus, in this case also, (G0)1 goes in the same direction as
(A0)1.

In either case, we have the same kind of control over (G0)1 as we have over (G0)0.
Now assume that G0

∼=A0 and lims r0; s = 0. We claim that, if there are no other
elements to the construction, so that from some stage s on all of G0 goes in the same
direction as A0, then the unique isomorphism f :A0 →G0 is computable. (Recall that
we are assuming that A0 is rigid.) Indeed, the following is an e<ective procedure for
computing f(x) given x∈A0. Find the least stage t¿s such that x is contained in
a component K of A0

t and there is an isomorphism g from K to some component L

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 251

Fig. 8. Recovery in a two-strategy scenario: (A0)1 in case r1; s+1 = 0.

of G0[t]. Such a stage must exist by the de"nition of 0-recovery, and, since all of G0

goes in the same direction as A0 from stage s on, f(x) = g(x).
Of course, the strategy for G0 that we have just described works at the expense of

the corresponding strategy for G1. Indeed, if G0 does not recover in"nitely often then
G1 is not allowed to recover in"nitely often, even though it might be the case that
G1

∼=A0. We solve this problem in the standard way, by having multiple strategies for
satisfying (2.3) for a given Gn and organizing these on a tree. (The reader unfamiliar
with the technique of organizing priority constructions on a tree should consult [24].)
More speci"cally, for each "nite binary string ,, there will be a strategy for satisfying
(2.3) for G|,|, where |,| is the length of ,. The string , represents a guess about
which Gm, m¡|,|, recover in"nitely often, with ,(m) = 0 representing a guess that Gm
recovers in"nitely often and ,(m) = 1 representing a guess that it does not.

For each , of length n, Gn will have a ,-special component. We will say that ,
is active whenever this component participates in an operation, and will de"ne the

252 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

Fig. 9. Recovery in a two-strategy scenario: (A0)1 in case r1; s+1 = 1.

concepts of ,-recovery, ,-isomorphism recovery, and so forth. We will write ,ai to
mean the concatenation of , with the string of length 1 whose only element is i.

For all - such that ,a0⊆ -, - will not be accessible except at ,-recovery stages,
which means that there will not be --recovery at a given stage unless there is also
,-recovery. As in the two-strategy scenario above, the requirements for ,-recovery
will be such that the components that must be provided by G|,| for it to ,-recover
include all the components that must be provided by G|-| for it to --recover. (Since
there are in"nitely many - extending ,a0 and we can only require G|,| to provide
"nitely many components for each ,-recovery, we will not allow such a - to recover
until , has recovered |-| + 1 many times.) In this way, if , is on the true path of
the construction (which will be de"ned, as usual, as the leftmost path visited in"nitely
often) and G|,| ∼=A0 then we will be able to control not only (G|,|),, but also (G|,|)-
for all - such that ,a0⊆ -, by a similar argument to that in the two-strategy scenario.

It is important to note that , might be active at stages at which it is not accessible.
This is because, as in the simpler construction described above, in order for G|,| to

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 253

,-recover, we will require that it provide enough components to allow , to be active
whenever a number less than the number of times G|,| has ,-recovered enters A.
Whenever such a number does enter A, we will allow , to be active, unless G|,|
has not ,-recovered since the last time , was initialized (that is, the last time the
construction moved to the left of ,).

The reason we require G|,| to ,-recover at least once following an initialization
before , can be active again is that the components that can be used by the strategy
corresponding to , (including the ,-special component) will change each time , is
initialized (more on this below). This restriction will not hamper the strategies on the
true path, since these will be initialized only "nitely often.

In the following discussion, we will denote by (k) the component of Ai that extends
the unique copy of [k] in Ai

0, and by 〈Ai〉, we will mean the union of the components
of Ai that might potentially be used by the strategy for satisfying (2.3) for G|,|
corresponding to ,; once we give the formal details of the construction, it will be
clear which components these are. (As was the case with the corresponding notations
in [18], (Ai), and (Gn),, n∈!, will refer to the union of those components that are
actually used by the strategy corresponding to ,.) By 〈Ai〉 we will mean the union of
the components of Ai of the form (6k), k ∈!. (These are the components that might
not be in 〈Ai〉, for any ,.)

Fix , on the true path such that G|,| ∼=A0. These conditions on , will imply that,
for all -(,, - recovers in"nitely often if and only if -a0⊆ ,. They will also imply
that ,a0 is on the true path, so that , recovers in"nitely often, and that lims r,; s exists
(where r,; s will be de"ned analogously to rn; s). Let i= lims r,; s and let f be the unique
isomorphism from Ai to G|,|. As discussed above, we will be able to compute both
f�〈Ai〉, and f�

⋃
-⊇,a0〈Ai〉-.

Of course, this leaves the problem of uniformly computing f�〈Ai〉- for other -, as
well as f�〈Ai〉. Our strategy for computing f will be to break up the domain of Ai

into "nitely many c.e. sets and show that the restriction of f to each of these sets is
computable. Most of the cases will be handled by making use of the fact that, for a c.e.
union T of "nite components of Ai, if each component of T participates in operations
only "nitely often and there is a computable bound on the last stage (if any) at which
each component of T participates in an operation then f�T is computable. This is
because if a component K of T does not participate in operations after stage s then
K is a component of Ai

s , and hence the unique embedding from K into G|,| can be
found e<ectively. (Recall that we are assuming that our construction is such that no
component of Ai is embeddable in another component of Ai.)

We begin by looking at 〈Ai〉. As discussed above, we will have a computable bound
h(k) such that if (6k) has not participated in an operation by stage h(k) then, when-
ever it does participate in an operation, , is active. Let T0 be the union of those
components (6k) of 〈Ai〉 that do not participate in an operation by stage h(k). Then
f�T0 will be computable for the same reason as f�〈Ai〉,. On the other hand, since
no component of 〈Ai〉 will participate in operations more than once, f�(〈Ai〉 − T0)
will be computable because h(k) will be a computable bound on the last stage at

254 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

which a component (6k) of 〈Ai〉 − T0 participates in an operation. Thus f�〈Ai〉 will
be computable.

Now let T1 be the union of all 〈Ai〉- such that - is to the left of ,. By the de"nition
of the true path, only "nitely many components of T1 will ever participate in operations,
and those that do, will do so only "nitely often. Thus, there will exist a computable
bound on the last stage at which each component of T1 participates in an operation,
and hence f�T1 will be computable.

Let T2 be the union of all 〈Ai〉- such that -a1⊆ ,. The fact that there are only
"nitely many --recovery stages will imply that only "nitely many components of T2

participate in operations, and those that do, do so only "nitely often. Thus there will
exist a computable bound on the last stage at which each component of T2 participates
in an operation, and hence f�T2 will be computable.

Let T3 be the union of all 〈Ai〉- such that - is to the right of ,a0. Every time
the construction moves to the left of -, we will guarantee, as part of the initialization
process, that a certain set of components of 〈Ai〉- will never again participate in an
operation, in such a way that if the construction moves to the left of - in"nitely
often then every component of 〈Ai〉- will eventually be guaranteed never again to
participate in an operation. Since ,a0 is on the true path, this will mean that there
exists a computable bound on the last stage at which each component of T3 participates
in an operation, and hence f�T3 will be computable.

We are left with the case of 〈Ai〉- such that -a0⊆ ,. We will show that, for each
such -, if r-; s has a limit then 〈Ai〉- has a unique in"nite component Si-, while if r-; s
does not have a limit then all components of 〈Ai〉- are "nite. Let T4 be the union
of the Si-, -

a0⊆ ,, r-; s has a limit. Given a copy K of [m] contained in a component
C of T4 with top x, we will be able to "nd e<ectively the unique copy L of [m]
in the component of G|,| with top f(x), and f will extend the unique isomorphism
from K to L. Since T4 has only "nitely many components, this will mean that f�T4

is computable.
Finally, let T5 be the union of all "nite components of 〈Ai〉-, -a0⊆ ,. Examining the

construction in the proof of Theorem 1.9, we see that, given an n such that Gn∼=A0,
once a "nite component K of (Ai)n participates in an operation at a stage s, we can
e<ectively "nd a stage t such that K does not participate in an operation after stage t.
Indeed, we can take t to be the "rst stage after stage s such that, for some u¡t, K
does not participate in an operation in the interval [u; t] and there is an n-isomorphism
recovery stage in [u; t].

The analogous situation will hold here, but this will not quite be enough to show that
f�T5 is computable. We will also need an e<ective procedure that, for each component
K of T5, gives us a stage s such that if K has not participated in an operation by stage
s then it will not participate in an operation after stage s. In order to do this, every
time - recovers, we will guarantee that a certain set of components of 〈Ai〉- that have
not yet participated in an operation will never participate in an operation, in such a
way that if - recovers in"nitely often then every singleton component of 〈Ai〉- will
eventually be guaranteed never to participate in an operation. (That is, we will add

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 255

Fig. 10. [2]+.

an extra condition to the de"nition of --recovery to ensure that, for each singleton
component that had been available at the last --recovery stage to be used for the sake
of the strategy corresponding to - and that has not yet been used, there is a new
component that can be used in its place. A similar procedure was employed in [20].)
Thus f�T5 will be computable.

2.4. Formal de9nitions and conventions

For the sake of satisfying (2.5), we need a new kind of building block, whose use
will be made clear shortly. (Basically, if G is a c.e. graph with computable equality
relation and K and L are di<erent components of G[s], s∈!, then it cannot be the
case that K and L are both extended by a component of the form K ·L in G. However,
K and L might both be extended by the same component of G if this component is of
the form K · (L), for example, since the fact that there is no edge from the top of K
to the top of L in G[s] does not mean that the same is true in G. We will avoid this
possibility by only performing operations of the form K · (L0; : : : ; Lk) when K is of the
form [n]+, n∈!, as de"ned below.)

De�nition 2.6. The directed graph [n]+ consists of the following nodes and edges:
1. A copy of [n] with top x.
2. For each i6n, i + 1 many nodes xi;0; : : : ; xi; i, with an edge from x to xi;0 and, for

each j¡i, an edge from xi; j to xi; j+1. We call xi; i the i-attachment node of [n]+.
Fig. 10 shows [2]+ as an example.

We also need a new version of De"nition 2.4.

De�nition 2.7. Let G be a computable structure in the language of directed graphs
whose domain is co-in"nite.

Let K0; K1; : : : ; Kn and L be components of G isomorphic to [k0]; [k1]; : : : ; [kn] and
[l]+, respectively, where k0; k1; : : : ; kn; l∈! and n6l. We de"ne two operations, each
of which takes G to a new computable structure extending G:

256 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

• The operation (K0; K1; : : : ; Kn) · L consists of creating a new copy of [l]+, using the
top of Ki as the i-attachment node for i6n and numbers not in the domain of G

as the other nodes, and otherwise leaving G unchanged.
• The operation L · (K0; K1; : : : ; Kn) consists of creating a new copy of [ki] for each
i6n, using the i-attachment node of L as the top and numbers not in the domain
of G as the other nodes, and otherwise leaving G unchanged.
We de"ne the L- and R-operations as in De"nition 2.5, except that we now require

that X be of the form [k]+, k ∈!.
Fix a computable one-to-one function from 2¡! onto !−{0} and let p,q denote the

image under this function of the string ,.

De�nition 2.8. Let G be a directed graph. We denote by (G), the subgraph of G

consisting of those components C of G that satisfy both of the following conditions:
1. C is not isomorphic to [x] or [x]+ for any x∈!.
2. C contains a copy of [6〈p,q; j〉+3], j∈!, or a copy of [6〈p,q; j; k〉+l], j; k ∈!,
l∈{1; 2; 4; 5}.
De"ne (G)⊇, =

⋃
-⊇,(G)-.

For ,; -∈ 26!, , 6L - means that either ,⊆ - or there exists an n¡|,|; |-| such
that ,(m) = -(m) for all m¡n, ,(n) = 0, and -(n) = 1. If , 6L - and ,* - then we
say that , is to the left of - and that - is to the right of ,.

For each i= 0; 1, we will "rst de"ne a computable structure Ai
0. At each stage s+1,

we will perform an operation on Ai
s to get Ai

s+1 ⊃Ai
s and add an element of the

domain of Ai
s+1 to Ui. We will then let Ai =

⋃
s∈!A

i
s . In order to guarantee that Ai

is computable, we make it a convention that all numbers added to the domain of Ai
s

at stage s+1 to get Ai
s+1 are greater than s.

Let t¿ s. We say that a component L of Ai
t or Ai (resp. Gn[t] or Gn) extends

a component K of Ai
s (Gn[s]) if the domain of K is contained in the domain of L,

and that L properly extends K if this containment is proper. (Note that saying that L
extends K means more than just that K can be embedded in L, though it of course
implies the latter.) If L extends K but not properly then we say that L is a component
of Ai

s (Gn[s]).
It will be the case that if K and L are distinct components of A0

s and K is not a
copy of [6k+1] or [6k+2] for any k ∈! then K and L are not extended by the same
component of A0. Thus, since we are not interested in Gn unless it is isomorphic
to A0, we may assume without loss of generality that, for each n; s∈!, there is an
embedding of Gn[s] into A0

s such that if K and L are distinct components of Gn[s] and
K is not a copy of [6k+1] or [6k+2] for any k ∈! then K and L are mapped into
distinct components of A0

s .
Let k be the number of times , has been initialized (de"ned below) before stage t.

Suppose there is a least stage s6t such that G|,|[s] has a component K isomorphic to
[6〈p,q; k〉+3]. We call the component of G|,|[t] that extends K the ,-special component
of G|,|[t]. If , is initialized only "nitely often, say k many times, and there is a least

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 257

stage s such that G|,|[s] has a component K isomorphic to [6〈p,q; k〉+3] then we call
the component of G|,| that extends K the ,-special component of G|,|.

2.5. The construction

We now proceed with the construction of A0, A1, U 0, and U 1. It will be easy to
check as we go along that the following are properties of the construction:
1. For each s∈!, A0

s
∼=A1

s and no component of Ai
s is embeddable in another com-

ponent of Ai
s .

2. Let t¡s. No component of Ai
t isomorphic to one of [6as]+ or [6〈j; as; k〉+l],

j; k ∈!, l∈{1; 2; 4; 5}, participates in an operation at stage t+1.

Stage 0: Let A0
0 and A1

0 be computable structures with co-in"nite domains, each
consisting of one copy of [6k+l] and one of [6k]+ for each k ∈! and 0¡l¡6. For
each ,∈ 2¡!, let r,;0 = 0.

Stage s+1: For ,∈ 2¡!, let recov(,; s) be the number of ,-recovery stages before
stage s+1, let init(,; s) be the number of times , has been initialized before stage
s+1, and let c(,; s) = max(recov(,; s); init(,; s)).

De"ne the string ,[s+1]∈ 2[0; s] by recursion as follows, beginning with n= 0. Let
,= ,[s+1]�n. Say that s+1 is a ,-recovery stage if all of the following conditions
hold:
1. Every - such that -a0⊆ , has recovered at least |,|+1 many times.
2. Gn[s] has a ,-special component isomorphic to some component of A0

s .
3. If -⊇ ,a0 has not yet recovered since the last time it was initialized and |-|6
recov(,; s) then Gn[s] has a component isomorphic to [6〈p-q; init(-; s)〉+3].

4. (Gn[s]),∼= (A0
s),.

5. (Gn[s])⊇,a0
∼= (A0

s)⊇,a0.
6. Let - be such that either -= , or both -⊇ ,a0 and |-|6 recov(,; s). Let j =∈A[s]

be less than or equal to recov(-; s). There is a component of Gn[s] isomorphic to
[6j]+ and, for each l∈{1; 2; 4; 5}, there is a component of Gn[s] isomorphic to
[6〈p-q; j; c(-; s)〉+l].

If s+1 is a ,-recovery stage then let ,[s+1](n) = 0. Otherwise, let ,[s+1](n) = 1.
For each , such that s+1 is a ,-recovery stage, proceed as follows. For i= 0; 1, let

Si,; s be the component of Ai
s that is isomorphic to the ,-special component of G|,|[s].

If s+1 is either the "rst ,-recovery stage ever or the "rst ,-recovery stage since the
last time , was initialized then let r,; s+1 = 0. Otherwise, proceed as follows. Let i= r,; s
and let t+1 be the last ,-recovery stage before stage s+1. If Si,; s extends Si,; t then let
r,; s+1 = i, and otherwise let r,; s+1 = 1 − i.

For each ,∈ 2¡! such that s+1 is not a ,-recovery stage, let r,; s+1 = r,; s.
Declare each , to the right of ,[s+1] to have been initialized. For each ,6L,[s+1],

if there has been a ,-recovery stage since the last time , was initialized, as¿|,|, and
as is less than the number of ,-recovery stages less than or equal to s+1 then say that
, is active at stage s+1.

258 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

For i= 0; 1, let X is be the component of Ai
s isomorphic to [6as]+.

Let ,0; : : : ; ,m be all the strings that are active at stage s+1. For i= 0; 1 and j6m,
let Y i,j; s and Zi,j; s be the components of Ai

s isomorphic to [6〈p,jq; as; c(,j; s)〉+1] and
[6〈p,jq; as; c(,j; s)〉+2], respectively.

For each j6m, let tj+16 s+1 be the last ,j-recovery stage. We say that s+1 is a
,j-9rst stage if it is the "rst stage after stage tj at which ,j is active. We say that s+1
is a ,j-change stage if it is a ,j-"rst stage and one of the following holds: tj+1 was the
"rst ,j-recovery stage ever, tj+1 was the "rst ,j-recovery stage since the last time ,j
was initialized, or r,j; tj+1 = r,j; tj . We say that s+1 is a ,j-isomorphism recovery stage
if it is a ,j-"rst stage but not a ,j-change stage and one of the following conditions
holds:
1. The last ,j-"rst stage before stage s+1 was a ,j-change stage.
2. There has been at least one stage at which ,j was active after the last ,j-isomorphism

recovery stage and before stage s+1.
For each j6m we de"ne components Bi,j; s and Ci,j; s, i= 0; 1. There are two cases:
1. s+1 is a ,j-isomorphism recovery stage. If the "rst condition in the de"nition of
,j-isomorphism recovery stage holds then let t+1 be the last ,j-"rst stage, and
otherwise let t+1 be the "rst stage after the last ,j-isomorphism recovery stage
at which ,j was active. There are two subcases.
(a) If r,j; s+1 = 0 then let C0

,j; s be the component of A0
s that extends B0

,j; t and let
C1
,j; s be its isomorphic image in A1

s . For i= 0; 1, let Bi,j; s be the component
of Ai

s isomorphic to [6〈,j; as; c(,j; s)〉 + 4].
(b) If r,j; s+1 = 1 then let B1

,j; s be the component of A1
s that extends C1

,j; t and let
B0
,j; s be its isomorphic image in A0

s . For i= 0; 1, let Ci,j; s be the component
of Ai

s isomorphic to [6〈,j; as; c(,j; s)〉 + 5].
2. s+1 is not a ,j-isomorphism recovery stage. For i= 0; 1, let Bi,j; s be the component

of Ai
s isomorphic to [6〈,j; as; c(,j; s)〉 + 4] and let Ci,j; s be the component of Ai

s

isomorphic to [6〈,j; as; c(,j; s)〉 + 5].
For each j6m, proceed as follows. Let i= r,j; s+1 and let t+16s+1 be the last

,j-recovery stage. Let Ri,j; s be the component of Ai
s that extends Si,j ; t and let R1−i

,j ; s be
its isomorphic image in A1−i

s .
Now perform

L(Y 0
,0 ; s; : : : ; Y

0
,m; s;X

0
s ;Z0

,0 ; s; : : : ; Z
0
,m; s;B

0
,0 ; s; R

0
,0 ; s; C

0
,0 ; s;

B0
,1 ; s; R

0
,1 ; s; C

0
,1 ; s; : : : ;B

0
,m; s; R

0
,m; s; C

0
,m; s)

on A0
s to get A0

s+1 and perform

R(Y 1
,0 ; s; : : : ; Y

1
,m; s;X

1
s ;Z1

,0 ; s; : : : ; Z
1
,m; s;B

1
,0 ; s; R

1
,0 ; s; C

1
,0 ; s;

B1
,1 ; s; R

1
,1 ; s; C

1
,1 ; s; : : : ;B

1
,m; s; R

1
,m; s; C

1
,m; s)

on A1
s to get A1

s+1. (If no , is active at stage s+1 then, for j= 0; 1, let Y js , Zjs ,
Bjs , R

j
s , and Cjs be the components of A

j
s isomorphic to [6〈0; as; s〉+1], [6〈0; as; s〉+2],

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 259

[6〈0; as; s〉+4], [6〈0; s〉+ 3], and [6〈0; as; s〉+5], respectively. Perform L(Y 0
s ;X 0

s ;Z0
s ;B

0
s ;

R0
s ;C

0
s) on A0

s to get A0
s+1 and perform R(Y 1

s ;X 1
s ;Z1

s ;B
1
s ;R

1
s ;C

1
s) on A1

s to
get A1

s+1.)
Put the coding location of the copy of [6as] in A0

0 into U 0 and put the coding
location of the copy of [6as] in A1

s+1 −A1
s into U 1.

This completes the construction. Let A0 =
⋃
s∈!A

0
s and A1 =

⋃
s∈!A

1
s . De"ne the

true path TP of the construction to be the leftmost path of 2! such that there are
in"nitely many stages s with ,[s]∈TP.

2.6. Veri9cation

Since, for each s∈! and i= 0; 1, all numbers in Ai
s+1 −Ai

s are greater than s, A0

and A1 are computable. We will now argue that properties (2.1) –(2.5) hold. Theorem
1.10 will then follow immediately.

Properties (2.2) and (2.5) are easy to establish, so we deal with them "rst.

Lemma 2.9. U 0 ≡m A and U 1 is computable.

Proof. The numbers in U 0 are all coding locations of components of A0
0 of the form

[6j], j∈!, and the coding location of the copy of [6j] in A0
0 is in U 0 if and only

if j∈A. Since given any number we can computably determine whether it is a coding
location in A0

0 and if so, for what [k], this means that U 0 ≡m A.
Any number put into U 1 at a stage s+1 is a new number, that is, one not in the

domain of A1
s , and hence is greater than s. Thus U 1 is computable.

Lemma 2.10. If G is a c.e. presentation of A0 with computable equality relation then
G is computable.

Proof. Since the equality relation in G is computable, we can assume without loss of
generality that the enumeration of G is such that, for all s; w; x; y; z ∈!, if w; x; y; z ∈
|G[s]| and the pairs (w; x) and (y; z) satisfy the equality relation in G then there is an
edge from w to y in G[s] if and only if there is an edge from x to z in G[s]. Let
x0; x1 ∈G. Wait until a stage s in the enumeration of G such that, for each i= 0; 1, xi
is in a copy of either [ni] for some ni ≡ 0 mod 6 or [ni]+ for some ni≡ 0 mod 6. It is
easy to check from the de"nition of A0 that, for each i= 0; 1, there is an edge from
xi to x1−i if and only if there already is such an edge at stage s.

In showing that (2.1), (2.3), and (2.4) are satis"ed, we will need a few facts about
the construction. The more obvious ones are given without proof, while the remaining
ones are broken down into easily checked properties of the construction. Figs. 4 and
5 should be helpful here.

We say that a component of Ai participates in an operation at stage s+1 if it extends
a component of Ai

s that participates in an operation at stage s+1.

260 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

Lemma 2.11. Let G∼=A0 be computable. Given x in the domain of G; we can com-
putably determine if x is the coding location of a copy of some [k]; k ∈!; and if so;
for what k. In particular; the set of coding locations of copies of [6j]; j∈!; in G is
computable.

Lemma 2.12. Let K and L be distinct components of Ai
s such that K is not a copy of

[6k+1] or [6k+2] for any k ∈!. K and L are not extended by the same component
of Ai.

Lemmas 2.11 and 2.12 will be used without explicit mention of several times below.

Lemma 2.13. Each component of Ai is rigid and contains at most one copy of [k]
for each k ∈!.

Lemma 2.14. For each s∈!; A0
s
∼=A1

s and no component of A
i
s is embeddable in

another component of Ai
s . Furthermore; if a component of Ai

s participates in an
operation at stage s+1 then so does the (unique) isomorphic component of A1−i

s .

Lemma 2.15. A component of Ai is in9nite if and only if it participates in operations
in9nitely often.

Lemma 2.16. Let k; j∈! and ,∈ 2¡!. Any component of Ai containing a copy of
[6k] or [6〈p,q; j; k〉+l]; l∈{1; 2}; can participate in an operation at most once. Any
component of Ai containing a copy of [6〈p,q; j〉+3] or [6〈p,q; j; k〉+l]; l∈{1; 2; 4; 5};
can participate in operations only at stages at which , is active.

Lemma 2.17. Let x be the coding location of a copy of [6as] in component K of Ai.
Either K contains a copy of [6〈n; as; k〉+1] for some n; k ∈!; in which case x =∈Ui;
or K contains a copy of [6〈n; as; k〉+2] for some n; k ∈!; in which case x∈Ui.

Lemma 2.18. If a component K of (Ai), participates in operations at stages s¡t+1
but does not participate in an operation at any stage in the interval (s; t] then there
are no ,-change stages or ,-isomorphism recovery stages in (s; t].

Proof. Let w be the last ,-"rst stage before stage t+1. If K extends Ri,; t then it is
easy to check that K must have participated in an operation in the interval [w; t], which
means that w6s. Since every ,-change or ,-isomorphism recovery stage is a ,-"rst
stage, in this case we are done.

Otherwise, t is an isomorphism-recovery stage and either r,; t+1 = 0 and K extends
Ci,; t or r,; t+1 = 1 and K extends Bi,; t . Suppose for a contradiction that there is at least
one ,-change stage or ,-isomorphism recovery stage in (s; t], and let u be maximal
among such stages.

If u is a ,-change stage then it must be the last ,-"rst stage before stage t+1,
since the next ,-"rst stage after a ,-change stage is either a ,-change stage or a

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 261

,-isomorphism recovery stage. In this case, by the way components that participate
in an operation at an isomorphism-recovery stage are chosen, K participated in an
operation at stage u.

If u is a ,-isomorphism recovery stage then there must be at least one stage at which
, is active in the interval (u; t], since otherwise t+1 could not be a ,-isomorphism
recovery stage. Let v be the least stage in (u; t] at which , is active. In this case, again
by the way components that participate in an operation at an isomorphism-recovery
stage are chosen, K participated in an operation at stage v.

In either case, we have a contradiction.

Lemma 2.19. Suppose that r,; s = i = r,; s+1. Of all the components of (Ai), that
participate in operations before stage s+1; the only one that can participate in an
operation after stage s is the one that extends Si,; s.

Proof. Let t be the "rst stage after stage s at which , is active. Then t is a
,-change stage, and hence not a ,-isomorphism recovery stage. It follows that, of
all the components of (Ai), that participate in operations before stage s+1, the only
one that participates in an operation at stage t is the one that extends Si,; s. The lemma
now follows from Lemma 2.18.

Lemma 2.20. Suppose that r,; s = i for all s¿t; , is not initialized at any stage
after stage t; and , is active at stages s0+1 and s1+1; where s1¿s0¿ t. Then Ri,; s1
extends Ri,; s0 .

Lemma 2.21. Let u be a stage after which , is never initialized. Let s+1 and t+1
be ,-recovery stages such that s+1¿t+1¿u and there is no ,-recovery stage in
the interval (t + 1; s+ 1). If r,; s = 0 = r,; s+1 then S 0

,; s extends B
0
,; v for some v∈ [t; s).

Similarly; if r,; s = 1 = r,; s+1 then S1
,; s extends C

1
,; v for some v∈ [t; s).

Proof. The two cases, i= 0 and i= 1, are similar. We do the case i= 0.
Since S 0

,; s contains a copy of S 0
,; t and r,; t+1 = r,; s = 0, either S 0

,; s extends S 0
,; t or S 0

,; s

extends B0
,; u for some u such that t6u¡s. But it cannot be the case that S 0

,; s extends
S 0
,; t , since that would imply that r,; s+1 = 0.

Lemma 2.22. Suppose that r,; t = 0 (resp. r,; t = 1) for all t¿s0. Then no component
of (A0), ((A1),) can participate in an operation more than twice after stage s0
unless it extends R0

,; t (R1
,; t) for some t¿s0; while no component of (A1), ((A0),)

can participate in an operation more than twice after stage s0 unless it extends C1
,; t

(B0
,; t) for some t¿s0 such that t + 1 is a ,-isomorphism recovery stage.

Proof. The two cases, i= 0 and i = 1, are similar. We do the case i= 0.
Suppose that component K of (A0), participates in operations at stages s + 1¡

t + 1¡u + 1, where s + 1¿s0, but not at any stage in (t + 1; u + 1). Then either K
extends R0

,; u or u+1 is a ,-isomorphism recovery stage and K extends C 0
,; u. We claim

262 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

that the latter case cannot hold. Indeed, if K extends C 0
,; u then K extends B0

n; v for some
v∈!. Since K does not participate in operations at any stage in (t+1; u+1); v= t. But
since r,; t+1 = 0; B0

,; t is a singleton component, which means that K does not participate
in an operation at stage s+ 1, contrary to hypothesis.

Now suppose that component L of (A1), participates in operations at stages s + 1
¡t + 1¡u+ 1, where s+ 1¿s0, but not at any stage in (t + 1; u+ 1). Then either L
extends R1

,; t or t+ 1 is a ,-isomorphism recovery stage and L extends C1
,; t . But in the

former case, u+1 is a ,-isomorphism recovery stage and, since K does not participate
in operations at any stage in (t + 1; u+ 1); L extends C1

,; u.

Lemma 2.23. Let s0 be a stage after which , is never initialized. Suppose that
s06s¡t¡v are such that s + 1 is a ,-isomorphism recovery stage; r,; u = r,; s+1 for
all u¿s; t + 1 is the next stage after stage s + 1 at which , is active; and v + 1 is
the next ,-isomorphism recovery stage after stage s + 1. For i= 0; 1; let Bi; Ri;
and Ci be the components of A i

t+1 that extend B
i
,; t ; R

i
,; t ; and C

i
,; t ; respectively;

and let B̂i; R̂i; and Ĉi be the components of A i
v that extend B

i; Ri; and Ci; re-
spectively. If r,; s+1 = 0 then B̂0 ∼=B0 and R̂1 ∼=R1; while if r,; s+1 = 1 then Ĉ1 ∼=C1

and R̂0 ∼=R0.

Proof. The two cases, i= 0 and i = 1, are similar. We do the case i= 0. It is enough
to show that the components of (A0), and (A1), that extend B0 and R1, respectively,
do not participate in operations at any stage in (t + 1; v+ 1).

Suppose that component K of (A0), participates in operations at stages t + 1 and
u + 1, where t¡u¡v. Since no stage in (t + 1; v + 1) is a ,-isomorphism recovery
stage, K extends R0

,; u, which in turn extends R0
,; t . Thus K does not extend B0.

Now suppose that component L of (A1), participates in operations at stages t + 1
and u+1, where t¡u¡v. Again, no stage in (t+1; v+1) is a ,-isomorphism recovery
stage, so L extends R1

,; u, which in turn extends C1
,; t . Thus L does not extend R1.

Lemma 2.24. If , is to the left of TP then (A i)⊇, is 9nite.

Lemma 2.25. If , is initialized at stage s + 1 then no components of (A i), that
participate in operations at stages before stage s + 1 can participate in an oper-
ation after stage s. Thus if , is to the right of TP then (A i), has no in9nite
components.

Proof. Let t be the "rst stage after stage s at which , is active. (If there are no such
stages then we are done.) Then t is a ,-change stage, and hence not a ,-isomorphism
recovery stage. It is easy to check that, together with the fact that , is initialized
at stage s + 1, this implies that none of the components of (A i), that participate in
operations before stage s + 1 can participate in an operation at stage t. Thus the "rst
part of the lemma follows from Lemma 2.18. The second part of the lemma now
follows from Lemma 2.15.

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 263

We are now ready to show that (2.1) holds. In the course of doing so, we will also
be able to show that (2.4) holds. It follows from Lemmas 2.14, 2.15, and 2.17 that,
to show that (2.1) holds, it is enough to show that for each in"nite component of A i

there is a corresponding isomorphic component of A1−i. The "rst step in establishing
this result is characterizing the in"nite components of A i. Clearly, each in"nite com-
ponent of A i is in (A i), for some ,∈ 2¡!. By Lemmas 2.24 and 2.25, if , is not
on TP then no component of (A i), is in"nite. By Lemmas 2.15 and 2.16, if , is not
active in"nitely often then no component of (A i), is in"nite. Thus, we can restrict our
attention to the components of (A i),; ,∈TP, such that , is active in"nitely often.

Lemma 2.26. Let ,∈TP. If r,; s does not have a limit then no component of (A i),
is in9nite.

Proof. Suppose that r,; s = 0 = r,; s+1 and let t + 1 be the last ,-recovery stage before
stage s + 1. By Lemma 2:19; of all the components of (A0), that have participated
in operations before stage s+ 1; the only one that can participate in an operation after
stage s is the component L that extends S 0

,; s. By Lemma 2:21; L extends B0
,; u for some

u∈ [t; s). But the fact that r,; t+1 = 0 means that, for all u∈ [t; s), B0
,; u is a singleton

component, and hence did not participate in an operation at any stage before stage
t + 1.

Thus no component of (A0), that participates in an operation before stage t + 1
can do so again after stage s. A similar argument shows that if r,; s = 1 = r,; s+1 and
t + 1 is the last ,-recovery stage before stage s+ 1 then no component of (A1), that
participates in an operation before stage t+1 can do so again after stage s. The lemma
now follows from Lemma 2.15.

Thus the only components of A i that can be in"nite are those that are in (A i),
for some ,∈TP such that r,; s has a limit and , is active in"nitely often. So, by the
comments preceding Lemma 2.26, to establish that (2.1) holds it is enough to show
that if ,∈TP; r,; s has a limit, and , is active in"nitely often, then there is exactly
one in"nite component Si, of (A i), for each i= 0; 1, and S 0

,
∼= S1

, . Together with the
fact that no two in"nite components of A i are isomorphic, this will also be enough
to show that (2.4) holds.

Lemma 2.27. Let ,∈TP. There are in9nitely many ,-recovery stages if and only if
, is active in9nitely often.

Proof. By de"nition, , is not active at a stage s+1 unless as is less than the number of
,-recovery stages less than or equal to s+1. Thus, if there are "nitely many ,-recovery
stages then , cannot be active in"nitely often.

For the other direction, suppose that there are in"nitely many ,-recovery stages but
only "nitely many stages at which , is active. Let s be a stage after which , is never
active or initialized and such that there has been a ,-recovery stage since the last time

264 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

, was initialized. Now, given x¿|,|, let t+ 1 be the "rst stage after stage s by which
there have been x+ 1 many ,-recovery stages. Then x∈A⇔ x∈A[t], since if x were
equal to au for some u¿t then , would be active at stage u+ 1. But this means that
A is computable, contrary to hypothesis.

Lemma 2.28. If ,∈TP is active in9nitely often and r,; s has a limit then there are
in9nitely many ,-isomorphism recovery stages.

Proof. If , is active in"nitely often then, by Lemma 2.27, there are in"nitely many
,-recovery stages, and thus in"nitely many ,-"rst stages. The fact that r,; s has a
limit and that , is initialized only "nitely often implies that only "nitely many of
these can be ,-change stages. The lemma now follows directly from the de"nition of
,-isomorphism recovery stage.

Lemma 2.29. Suppose that ,∈TP is active in9nitely often and s and i are such that
, is not initialized after stage s and r,; t = r,; s = i for all t¿s. By Lemma 2:28; there
are in9nitely many ,-isomorphism recovery stages. Let s0 + 1¡s1 + 1¡ · · · be the
,-isomorphism recovery stages after stage s. For each j∈!; let tj + 1 be the next
stage after stage sj + 1 at which , is active. (Note that tj¡sj+1 for all j∈!:) For
t¿t0; let Klt be the component of A

l
t that extends R

l
,; t0 . Then K

l
tj =Rl,; tj for all j∈!.

Proof. The two cases, i= 0 and i = 1, are similar. We do the case i= 0.
That K 0

tj =R0
,; tj for all j∈! follows from Lemma 2.20. Now assume by induction

that K1
tj =R1

,; tj . Let B be the component of A0
tj+1 that extends B0

,; tj . By construction,
B∼=K1

tj+1. Since sj+1 + 1 is a ,-isomorphism recovery stage, C 0
,; sj+1

extends B. Thus,
by Lemma 2.23, C 0

,; sj+1
∼=B. By the same lemma, K1

sj+1
∼=K1

tj+1, so C 0
,; sj+1

∼=K1
sj+1

, and
hence C1

,; sj+1
=K1

sj+1
. Let R be the component of A0

sj+1+1 that extends R0
,; sj+1

. Then
R∼=K1

sj+1+1. But, by Lemma 2.16, R0
,; tj+1

∼=R and K1
tj+1

∼=K1
sj+1+1, so K1

tj+1
∼=R0

,; tj+1
, and

hence K1
tj+1

=R1
,; tj+1

.

Now assume the hypotheses of Lemma 2.29 and adopt its notation. For l= 0; 1, let
Sl, be the component of Al that extends Rl,; s0 .

Lemma 2.30. Sl, is the only in9nite component of (Al),.

Proof. This follows immediately from Lemmas 2.15, 2.22, and 2.29 and the observa-
tion that, for all j∈!, if i= 0 in the hypotheses of Lemma 2.29 then R1

,; tj extends
C1
,; sj , while if i= 1 then R0

,; tj extends B0
,; sj .

Lemma 2.31. S 0
,
∼= S1

, .

Proof. This follows immediately from Lemma 2.29, since, by de"nition, R0
,; tj

∼=R1
,; tj

for all j∈!, and Si, =
⋃
j∈! R

i
,; tj for i= 0; 1.

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 265

As we have argued above, Lemmas 2.30 and 2.31 suRce to establish that (2.1)
holds.

Lemma 2.32. A0 ∼=A1 via an isomorphism that carries U 0 to U 1.

To show that (2.4) holds, we need to check that if , = - and (A i), and (A i)- have
in"nite components Si, and S 0

- , respectively, then Si, � S 0
- . This is a consequence of

the following lemma, which will also be useful later on.

Lemma 2.33. No component of A i is embeddable in another component of A i.

Proof. For "nite components this follows from Lemma 2.14. For in"nite components
it follows from Lemma 2.30 and the fact that if (A i)- has an in"nite component S i-
then S i- contains a copy of [6〈p,q; k〉 + 3] for some k ∈! if and only if -= ,.

Lemma 2.34. A0 is rigid.

Proof. By Lemma 2.13, it is enough to show that no two components of A0 are
isomorphic. By Lemma 2.14, for each s∈!, no component of A0

s is embeddable in
another component of A0

s , which implies that no two "nite components of A0 are
isomorphic. Since the only in"nite components of A0 are the S 0

, de"ned above and,
by Lemma 2.33, S 0

,
∼= S 0

- if and only if -= ,, it is also the case that no two in"nite
components of A0 are isomorphic.

We are left with showing that (2.3) holds. This is where this proof di<ers most sig-
ni"cantly from that of Theorem 1.9. We begin by showing that if ,∈TP and G|,| ∼=A0

then lims r,; s is well-de"ned.

Lemma 2.35. If ,∈TP and G|,| ∼=A0 then there are in9nitely many ,-recovery
stages; and hence the ,-special component of G|,| is in9nite.

Proof. Assume for a contradiction that there are only m many ,-recovery stages and
let s0 be the last ,-recovery stage. (If m= 0 then let s0 = 0.) By Lemma 2.27, there is
a stage s1¿s0 such that , is not active at any stage t¿s1. By the de"nition of TP and
the hypothesis that G|,| ∼=A0, there is a stage s2¿s1 satisfying the following condi-
tions: every - such that -a0⊆ , has recovered at least |,|+ 1 many times by stage s2,
G|,|[s2] has a ,-special component, and , is not initialized at any stage greater than
or equal to s2. If m= au for some u¿s2 then let s= u+ 1; otherwise, let s= s2.

By the de"nition of s, the "rst condition in the de"nition of ,-recovery stage is met
at every stage greater than or equal to s.

Consider the components of A0 that contain a copy of the ,-special component of
G|,|. By Lemma 2.16, each such component is "nite. Thus, if the second condition
in the de"nition of ,-recovery stage is not eventually satis"ed after stage s then the
,-special component of G|,| is not isomorphic to any component of A0.

266 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

Since we are assuming that ,a0 is to the left of TP, there is a stage t¿s after
which no - such that - ⊇ ,a0 is initialized. Any such - that has not recovered since
the last time it was initialized never again recovers, and hence there is a component
of A0 isomorphic to [6〈p-q; init(-; t)〉 + 3]. Since there are only "nitely many - such
that |-|6recov(,; s), if the third condition in the de"nition of ,-recovery stage is not
eventually satis"ed after stage s then G|,| �A0.

Now consider (A0),. Again by Lemma 2.16, (A0), is "nite. So if the fourth
condition in the de"nition of ,-recovery stage is not eventually satis"ed after stage s
then (G|,|), � (A0),.

Since we are assuming that there are only "nitely many ,-recovery stages, ,a1∈TP.
Thus, by Lemma 2.24, (A0

s)⊇,a0 is "nite. So if the "fth condition in the de"ni-
tion of ,-recovery stage is not eventually satis"ed after stage s then (G|,|)⊇,a0 �
(A0)⊇,a0.

Finally, let - be such that either -= , or both -⊇ ,a0 and |-|6recov(,; s). Let
j =∈A[s] be less than or equal to recov(-; s). Clearly, c(-; t) reaches a limit c(-). By the
choice of s, j =∈A[s]⇒ j =∈A. So, for each l∈{1; 2; 4; 5}, there is a unique component of
A0 that contains a copy of [6〈p-q; j; c(-)〉+l], and it is isomorphic to [6〈p-q; j; c(-)〉+l].
Similarly, there is a unique component of A0 that contains a copy of [6j]+, and it is
isomorphic to [6j]+. Thus, if the last condition in the de"nition of ,-recovery stage
is not eventually satis"ed after stage s then there is a component of A0 that is not
isomorphic to any component of G|,|.

In any case, G|,| cannot be isomorphic to A0, contrary to hypothesis. So there are
in"nitely many ,-recovery stages.

Now, let v be a stage after which , is never initialized. Given any two ,-recovery
stages v¡t + 1¡u + 1 such that there is a stage in (t; u] at which , is active, the
,-special component of G|,|[u] properly extends the ,-special component of G|,|[t].
Since, by Lemma 2.27, , is active at in"nitely many stages, this establishes the second
part of the lemma.

Lemma 2.36. If ,∈TP and G|,| ∼=A0 then lims r,; s is well-de9ned.

Proof. This follows immediately from Lemmas 2.26 and 2.35.

Now "x ,∈TP such that G|,| ∼=A0 and let n= |,|. By Lemma 2.36, r= lims r,; s
is well-de"ned. We wish to show that Gn is computably isomorphic to Ar . The two
cases, r= 0 and r = 1, are symmetrical, so we will assume that r= 0.

Let f :A0 ∼=Gn. Since A0 is rigid, f is the unique isomorphism from A0 to
Gn, so we need to show that f is computable. As outlined at the beginning of
this section, our strategy will be to break up the domain of A0 into a "nite num-
ber of c.e. sets and show that the restriction of f to each of these sets is com-
putable. (If P is c.e. then we say that f�P is computable if there exists a partial
computable function ' such that x∈P⇒'(x)↓=f(x).) We will need the following
de"nition.

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 267

Table 1
D0; : : : ; D6

D0 {6〈0; k〉 + 3; 6〈0; j; k〉 + l | j; k ∈!; l∈{1; 2; 4; 5}}
D1 {6〈p-q; k〉 + 3; 6〈p-q; j; k〉 + l | - to the left of , or -a1⊆ ,;

j; k ∈!; l∈{1; 2; 4; 5}}
D2 {6〈p-q; k〉 + 3; 6〈p-q; j; k〉 + l | - to the right of ,a0; j; k ∈!; l∈{1; 2; 4; 5}}
D3 {m∈! | (m) is the unique in"nite component of some (A0)-; -a0⊆ ,}
D4 {6〈p-q; j〉 + 3; 6〈p-q; j; k〉 + l | -a0⊆ ,; j; k ∈!; l∈{1; 2; 4; 5}} − D3

D5 {6k | k¡n} ∪ {6as | as¿recov(,; s + 1) or s is less than
the "rst ,-recovery stage after the last time , is initialized}

D6 {6〈p-q; j〉 + 3; 6〈p-q; j; k〉 + l | -= , or ,a0⊆ -; j; k ∈!; l∈{1; 2; 4; 5}}∪
{6k | k ∈!} − D5

De�nition 2.37. Let k; s∈!. We denote by (k) and (k)s the components of A0 and
A0
s , respectively, that extend the unique copy of [k] in A0

0.

For D⊆!, let PD =
⋃
k∈D(k).

Note that, for any k; s∈!, (k)s is "nite. Note also that, since every component of
A0 extends some component of A0

0 ,
⋃
k∈!(k) =A0; similarly,

⋃
k∈!(k)s =A0

s . It is
not the case that k = l⇒ (k) = (l), but, as we will see, this will not matter for our
purposes.

Lemma 2.38. Let D0; : : : ; Dm be computable subsets of ! such that
⋃m
i= 0 Di =!. If

f�PDi is computable for each i6m then f is computable.

Proof. Since D0; : : : ; Dm are computable, PD0 ; : : : ; PDm are c.e. Since
⋃m
i=0 Di =!;⋃m

i= 0 PDi =A0. Thus, to compute f(x) for some x∈A0, all we need to do is wait
until x is enumerated into some PDi and then compute (f�PDi)(x).

We will partition ! into the pairwise disjoint computable sets D0; : : : ; D6 shown in
Table 1. (The corresponding PDi will not be pairwise disjoint, but this does not mat-
ter, since it was not required to prove Lemma 2.38.) We will then show that, for
each i 6 6; f�PDi is computable, which will enable us to apply Lemma 2.38 to
conclude that f is computable. The following two lemmas provide a useful tool for
our task.

Lemma 2.39. Let k ∈! and suppose there is a stage s such that; for each t ¿ s; (k)t
does not participate in an operation at stage t + 1. Then (k)∼= (k)s.

Proof. Clearly, if (k)t does not participate in an operation at stage t+ 1 then (k)t+1
∼=

(k)t . So, by induction, (k)t ∼= (k)s+1 for all t ¿ s. Since (k) =
⋃
t∈!(k)t , the lemma

follows.

268 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

Lemma 2.40. Let both D ⊆ ! and h :D→! be computable. Suppose that; for each
k ∈D and t ¿ h(k); (k)t does not participate in an operation at stage t + 1. Then
f�PD is computable.

Proof. Let x∈PD and let k ∈D be such that x∈ (k). By Lemma 2.39, (k)h(k) ∼= (k),
so (k) is "nite. By Lemma 2.33, there is a unique "nite set T ⊂ Gn such that there is
an isomorphism gx : (k)∼= T . Clearly, gx can be extended to an isomorphism from A0

to Gn. By the uniqueness of f, f(x) = gx(x). Since gx can be computably determined
given x∈PD, this implies that f�PD is computable.

Lemma 2.41. Let D0 consist of all numbers of the form 6〈0; k〉 + 3 or 6〈0; j; k〉 + l;
j; k ∈!; l∈{1; 2; 4; 5}. Then f�PD0 is computable.

Proof. Let m be of the form 6〈0; k〉+3 or 6〈0; j; k〉+ l; j; k ∈!; l∈{1; 2; 4; 5}. Recall
that, for all -∈ 2¡!; p-q = 0. Thus the only time (m) can participate in an operation
is at stage k + 1. (This happens if no element of 2¡! is active at stage k + 1.) So if
we de"ne h(m) = k + 1 then the hypotheses of Lemma 2.40 are satis"ed for D=D0.

Lemma 2.42. There exists a stage s such that if - is either to the left of , or such
that -a1 ⊆ , then - is not active after stage s.

Proof. Let T be the set of all - which are either to the left of , or such that -a1 ⊆ ,.
Since ,∈TP, only "nitely many elements of T ever recover, and those that do recover,
do so only "nitely often. But, by de"nition, no -∈ 2¡! can be active at a stage t + 1
unless at is less than the number of --recovery stages less than or equal to t + 1, and
hence no - can be active more often than it recovers.

Lemma 2.43. Let D1 be the set of all numbers of the form 6〈p-q; k〉 + 3 or
6〈p-q; j; k〉 + l; - to the left of , or -a1 ⊆ ,; j; k ∈!; l∈{1; 2; 4; 5}. Then f�PD1 is
computable.

Proof. Let s be as in Lemma 2.42. By Lemma 2.16, for each m∈D1 and t ¿ s; (m)t
does not participate in an operation at stage t+ 1. So if we let h(m) = s for all m∈D1

then the hypotheses of Lemma 2.40 are satis"ed for D=D1.

Lemma 2.44. Let - be to the right of ,a0. Let m be of the form 6〈p-q; k〉 + 3
or 6〈p-q; j; k〉 + l; l∈{1; 2; 4; 5}. Let s + 1 be a stage by which by - has been
initialized k + 1 many times. Then (m) does not participate in an operation after
stage s.

Proof. If a singleton component of A0
t of the form [6〈p-q; p〉 + 3] participates in an

operation at a stage t + 1¿s then p= init(-; t) ¿ k + 1. If a singleton component
of A0

t of the form [6〈p-q; j; p〉 + l], l∈{1; 2; 4; 5}, participates in an operation at a

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 269

stage t + 1¿s then p= c(-; t) ¿ init(-; t) ¿ k + 1. So if (m) does not participate
in an operation before stage s + 1 then it does not participate in an operation after
stage s.

On the other hand, if (m) participates in an operation before stage s + 1 then
the fact that it does not participate in an operation after stage s follows from
Lemma 2.25.

Lemma 2.45. Let D2 be the set of all numbers of the form 6〈p-q; k〉+3 or 6〈p-q; j; k〉+
l; - to the right of ,a0; j; k ∈!; l∈{1; 2; 4; 5}. Then f�PD2 is computable.

Proof. If m∈D2 is of the form 6〈p-q; k〉 + 3 or 6〈p-q; j; k〉 + l then de"ne h(m) to
be the "rst stage by which - has been initialized k + 1 many times (which exists,
since ,a0∈TP). Then, by Lemma 2.44, the hypotheses of Lemma 2.40 are satis"ed
for D=D2.

If -a0 ⊆ , and r-; s has a limit then, by Lemma 2.30, (A0)- has a unique in"nite
component. On the other hand, if -a0 ⊆ , and r-; s does not have a limit then, by
Lemma 2.26, all components of (A0

-) are "nite. Let D3 be the set of all m∈! such
that (m) is the unique in"nite component of some -a0 ⊆ , such that r-; s has a limit.
Note that D3 is "nite.

Lemma 2.46. f�PD3 is computable.

Proof. Let T = {x0; : : : ; xm} be the tops of the components of PD3 . Let x∈PD3 − T . By
Lemma 2.13, there is a unique k such that x is in a copy K of [k]. The top of K is
xi for some i 6 m. Let L be the unique copy of [k] in Gn with top f(xi) and let gx
be the unique isomorphism form K to L. By the uniqueness of f, f(x) = gx(x). Since
gx can be computably determined given x∈PD3 − T and T is "nite, this implies that
f�PD3 is computable.

Lemma 2.47. Let D4 be the set of all numbers not in D3 that are of the form
6〈p-q; j〉 + 3 or 6〈p-q; j; k〉 + l; -a0 ⊆ ,; j; k ∈!, l∈{1; 2; 4; 5}. Then f�PD4 is com-
putable.

Proof. Let m∈D4. If m is of the form 6〈p-q; j; k〉 + l; l∈{1; 2; 4; 5}, then let s be
the "rst stage by which - has recovered k + 1 many times. If (m) has not partic-
ipated in an operation before stage s then, by the same reasoning as in the proof
of Lemma 2.44, it does not participate in an operation after stage s. In this case,
let h(m) = s.

Now suppose that m is of the form 6〈p-q; j〉 + 3. Let init(-) = lims init(-; s), which
exists since -∈TP. If j¡init(-) then let s be the least stage by which - has been
initialized k + 1 many times. Arguing as in the proof of Lemma 2.44, we see that (m)
does not participate in an operation after stage s. In this case, let h(m) = s. If j¿init(-)
then (m) never participates in an operation. In this case, let h(m) = 0.

270 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

If h(m) has not yet been de"ned then (m) participates in an operation at least once.
However, since (m) is "nite, (m) participates in operations only "nitely often, so there
exist stages s¡t such that (m) does not participate in an operation in the interval (s; t]
and there is a --isomorphism recovery stage in (s; t]. By Lemma 2.18, (m) does not
participate in an operation after stage t. In this case, let h(m) = t.

Now the hypotheses of Lemma 2.40 are satis"ed for D=D4.

Lemma 2.48. Let D′
5 be the set of all numbers of the form 6k; k¡n. Let D′′

5 be set
of all numbers of the form 6as such that as ¿ recov(,; s+1) or s is less than the 9rst
,-recovery stage after the last time , is initialized. Let D5 =D′

5 ∪D′′
5 . Then f�PD5

is computable.

Proof. By Lemma 2.16, there is a stage t such that no (6k); k¡n, participates in an
operation after stage t. For k¡n, let h(6k) = t. For 6as ∈D′′

5 , let h(6as) = s+ 1. Again
by Lemma 2.16, (6as) does not participate in an operation after stage h(6as). Since
D′

5 is "nite, h is computable, and hence the hypotheses of Lemma 2.40 are satis"ed
for D=D5.

Let D′
6 be the set of all numbers of the form 6〈p-q; j〉+3 or 6〈p-q; j; k〉+ l, -= , or

,a0 ⊆ -, j; k ∈!; l∈{1; 2; 4; 5}. Let D′′
6 be the set of all numbers of the form 6k that

are not in D5. Let D6 =D′
6 ∪D′′

6 . In order to show that f is computable, we are left
with showing that f�PD6 is computable. Roughly speaking, the idea is to show that,
once r,; s has reached its "nal value, Gn and A0 always go in the same direction at
stages at which components of PD6 participate in operations.

Lemma 2.49. Let - be such that -= , or ,a0 ⊆ -. Let u be a stage after which
, is never initialized and such that; for all s ¿ u; r,; s = 0. Let s + 1 and t + 1
be ,-recovery stages such that s + 1¿t + 1¿u and there is no ,-recovery stage
in the interval (t + 1; s]; and let s0 + 1¡s1 + 1¡ · · ·¡sm + 1 be the stages in the
interval (t; s] at which - is active. For each k 6 m; let Yk ; Xk ; Zk ; Bk ; Rk ; and Ck be
Y 0
-; sk ; X

0
sk ; Z

0
-; sk ; B

0
-; sk ; R

0
-; sk ; and C

0
-; sk ; respectively; and let Y

′
k ; X

′
k ; Z

′
k ; B

′
k ; R

′
k ; and

C′
k be the components of A

0
s that extend Yk ; Xk ; Zk ; Bk ; Rk ; and Ck; respectively.

Then the following hold:
1. For every k 6 m; Yk ; Xk ; Zk ; Bk ; and Ck are components of A0

t ; and so is R0. If
r-; t+1 = 0 then; for every k; l6 m; R′k =R′l. If r-; t+1 = 1 then; for every 0¡k 6 m;
R′k =B′k−1.

2. There exists a component R̂0 of Gn[t] such that R̂0
∼=R0 and; for each k 6 m; there

exist components Ŷk ; X̂k ; Ẑk ; B̂k ; and Ĉk of Gn[t] such that Ŷk ∼= Yk ; X̂k ∼=Xk; Ẑk
∼= Zk ; B̂k ∼=Bk; and Ĉk ∼=Ck .

3. Let R̂′0 be the component of Gn[s] that extends R̂0 and; for each k6m; let Ŷ ′
k ; X̂

′
k ; Ẑ

′
k ,

B̂′k ; and Ĉ
′
k be the components of Gn[s] that extend Ŷk ; X̂k ; Ẑk ; B̂k ; and Ĉk ;

respectively. R̂′0 ∼=R′0 and; for each k 6 m; Ŷ ′
k
∼= Y ′

k ; X̂
′
k
∼=X ′

k ; Ẑ
′
k
∼= Z ′k ; B̂′k ∼=B′k ;

and Ĉ′
k
∼=C′

k .

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 271

Proof. There are no --recovery stages in the interval (t+ 1; s], which implies that if -
is initialized in the interval (t; s] then this initialization happens after stage sm + 1. So
the "rst part of the lemma follows from the way Y 0

-; sk ; X
0
sk , Z

0
-; sk ; B

0
-; sk ; R

0
-; sk , and C 0

-; sk
are de"ned. The second part of the lemma follows from the de"nition of ,-recovery
stage. We prove the third part of the lemma. Figs. 7–9 might be helpful here.

We begin with the -= , case.
By de"nition, R̂0 and R̂′0 are the special components of Gn[t] and Gn[s], respectively.

Thus, since r,; s+1 = r,; s = 0 and s+ 1 is a ,-recovery stage, R̂′0 ∼=R′0. We now proceed
by reverse induction, beginning with m.

It follows from the construction and the "rst part of the lemma that if K is taken
from among R̂′0; Ŷ

′
k , X̂

′
k ; Ẑ

′
k ; B̂

′
k , and Ĉ′

k ; k 6 m, and L =K is taken from among
R̂′0; Ŷ

′
l ; X̂

′
l , Ẑ

′
l ; B̂

′
l , and Ĉ′

l ; l 6 m, then K � L. Furthermore, if K is one of Ŷ ′
k ,

X̂ ′
k ; Ẑ

′
k ; B̂

′
k , or Ĉ′

k , and L is a component of A0
s such that K ∼= L then L is one of

R′0; Y
′
l ; X

′
l ; Z

′
l ; B

′
l, or C′

l ; l¿ k.
Thus, since we assume by induction that, for all j¿k, Ŷ ′

j
∼= Y ′

j ; X̂
′
j
∼=X ′

j , Ẑ
′
j
∼= Z ′j ;

B̂′j ∼=B′j , and Ĉ′
j
∼=C′

j , we may assume that if K is one of Ŷ ′
k ; X̂

′
k ; Ẑ

′
k , B̂

′
k , or Ĉ′

k and L
is a component of A0

s such that K ∼= L then L is one of R′0, Y ′
k ; X

′
k ; Z

′
k ; B

′
k , or C′

k .
The only components among R′0; Y

′
k ; X

′
k ; Z

′
k ; B

′
k , or C′

k that contain copies of Ĉk
are R′0 and C′

k . Since R̂′0 ∼=R′0, it must be the case that Ĉ′
k
∼=C′

k .
The only components among R′0; Y

′
k ; X

′
k ; Z

′
k ; B

′
k , or C′

k that contain copies of
Ŷk are C′

k and Y ′
k . Since Ĉ′

k
∼=C′

k , it must be the case that Ŷ ′
k
∼= Y ′

k .
The only components among R′0; Y

′
k ; X

′
k ; Z

′
k ; B

′
k , or C′

k that contain copies of X̂k
are Y ′

k and X ′
k . Since Ŷ ′

k
∼= Y ′

k , it must be the case that X̂ ′
k
∼=X ′

k .
The only components among R′0; Y

′
k ; X

′
k ; Z

′
k ; B

′
k , or C′

k that contain copies of
Ẑk are X ′

k and Z ′k . Since X̂ ′
k
∼=X ′

k , it must be the case that Ẑ ′k ∼= Z ′k .
The only components among R′0; Y

′
k ; X

′
k ; Z

′
k ; B

′
k , or C′

k that contain copies of B̂k
are Z ′k and B′k . Since Ẑ ′k ∼= Z ′k , it must be the case that B̂′k ∼=B′k .

This completes the -= , case. We now handle the - ⊇ ,a0 case. There are two
subcases.

First suppose that r-; t+1 = 0.
Let k 6 m. Since , is active whenever - is active, it follows from the -= , case

that X̂ ′
k
∼=X ′

k .
The only components of A0

s that contain copies of Ẑk are X ′
k and Z ′k . Since X̂ ′

k
∼=X ′

k ,
it must be the case that Ẑ ′k ∼= Z ′k .

The only components of A0
s that contain copies of B̂k are Z ′k and B′k . Since Ẑ ′k ∼= Z ′k ,

it must be the case that B̂′k ∼=B′k .
The only components of A0

s that contain copies of R̂0 are R′0 and B′0; : : : ; B
′
m. We

have shown that, for every k 6 m; B̂′k ∼=B′k . Thus it must be the case that R̂′0 ∼=R′0.
We now proceed by reverse induction, beginning with m. Let k 6 m. Assume by

induction that, for all j¿k; Ŷ ′
j
∼= Y ′

j ; X̂
′
j
∼=X ′

j ; Ẑ
′
j
∼= Z ′j , B̂′j ∼=B′j , and Ĉ′

j
∼=C′

j . As in
the -= , case, we may assume that if K is one of Ŷ ′

k ; X̂
′
k ; Ẑ

′
k , B̂

′
k , or Ĉ′

k and L is a
component of A0

s such that K ∼= L then L is one of R′0, Y ′
k ; X

′
k ; Z

′
k ; B

′
k , or C′

k .

272 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

We have already seen that X̂ ′
k
∼=X ′

k , Ẑ
′
k
∼= Z ′k ; B̂′k ∼=B′k , and R̂′0 ∼=R′0.

The only components among R′0; Y
′
k ; X

′
k ; Z

′
k ; B

′
k , or C′

k that contain copies of Ĉk
are R′0 and C′

k . Since R̂′0 ∼=R′0, it must be the case that Ĉ′
k
∼=C′

k .
The only components among R′0; Y

′
k ; X

′
k ; Z

′
k ; B

′
k , or C′

k that contain copies of Ŷk
are C′

k and Y ′
k . Since Ĉ′

k
∼=C′

k , it must be the case that Ŷ ′
k
∼= Y ′

k .
This completes the r-; t+1 = 0 case. Now suppose that r-; t+1 = 1.
As before, it follows from the -= , case that X̂ ′

k
∼=X ′

k for all k 6 m.
We "rst proceed by reverse induction, beginning with m, to show that Ẑ ′k∼= Z ′k ; B̂′k ∼=B′k , and R̂′0 ∼=R′0. Let k 6 m. We may assume by induction that, for all

k¡j 6 m; B̂′j ∼=B′j .
The only components of A0

s that contain copies of Ẑk are X ′
k and Z ′k . Since X̂ ′

k
∼=X ′

k ,
it must be the case that Ẑ ′k ∼= Z ′k .

The only components of A0
s that contain copies of B̂k are Z ′k , and B′j ; k 6 j 6 m.

Since Ẑ ′k ∼= Z ′k and, for all k¡j 6 m, B̂′j ∼=B′j , it must be the case that B̂′k ∼=B′k .
The only components of A0

s that contain copies of R̂0 are R′0 and B′0; : : : ; B
′
m. We

have shown that, for every k 6 m; B̂′k ∼=B′k . Thus it must be the case that R̂′0 ∼=R′0.
Now let 0¡k 6 m. The only components of A0

s that contain copies of Ĉk are B′k−1
and C′

k . Since B̂′k−1
∼=B′k−1, it must be the case that Ĉ′

k
∼=C′

k .
The only components of A0

s that contain copies of Ĉ0 are R′0 and C′
0. Since R̂′0 ∼=R′0,

it must be the case that Ĉ′
0
∼=C′

0.
Let k 6 m. The only components of A0

s that contain copies of Ŷk are C′
k and Y ′

k .
Since Ĉ′

k
∼=C′

k , it must be the case that Ŷ ′
k
∼= Y ′

k .
This completes the r-; t+1 = 1 case.

The following lemma can be easily checked from the way components that participate
in operations in the construction are chosen.

Lemma 2.50. Let m∈! be of the form 6〈p-q; j〉 + 3 or 6〈p-q; j; k〉 + l; -= , or
,a0 ⊆ -; j; k ∈!; l∈{1; 2; 4; 5}. If (m)s participates in an operation at stage s + 1
then it is one of Y 0

-; s; Z
0
-; s; B

0
-; s; R

0
-; s; or C

0
-; s.

Let m∈D′′
6 . If (m)s participates in an operation at stage s + 1 then it is X 0

s and
, is active at stage s+ 1.

Lemma 2.51. Let u be a stage after which , is never initialized and such that; for
all s ¿ u; r,; s = 0. Let s + 1¿u be a ,-recovery stage and let t + 1 be the next
,-recovery stage after stage s + 1. Let m∈D6. Suppose there exists a component L
of Gn[s] that is isomorphic to (m)s. Then the component L′ of Gn[t] that extends L
is isomorphic to (m)t .

Proof. If (m) does not participate in an operation in the interval (s; t] then (m)t ∼= (m)s.
Since L′ ⊇ L; (m)t is not embeddable in another component of A0

t , and, by convention
(see Sections 2.4 and 2.5), Gn[t] is embeddable in A0

t , this means that L′ ∼= (m)t .
Otherwise, the lemma follows from Lemmas 2.49 and 2.50.

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 273

Lemma 2.52. Let x∈PD6 and let u be a stage after which , is never initialized and
such that; for all s¿u; r,; s = 0. There exists a ,-recovery stage s + 1¿u such that
x is contained in (k)s for some k ∈D6 and Gn[s] has a component L∼= (k)s. For any
such s; if we let g be the unique isomorphism from (k)s to L then f(x) = g(x).

Proof. If x is contained in a "nite component of A0 then the existence of s follows
from the fact that Gn∼=A0. Otherwise, there are t¿s¿u such that s+1 is a ,-recovery
stage, there are no ,-recovery stages in the interval (s + 1; t + 1], x is contained in
(k)t , k ∈D6, and (k)t is involved in an operation at stage t + 1. Now it follows from
Lemma 2.49 that x is contained in (k)s and Gn[s] has a component L∼= (k)s.

Let s + 1 = s0 + 1¡s1 + 1¡ · · · be the ,-recovery stages greater than or equal to
s + 1. Let Li be the component of Gn[si] that extends L and let L′ be the component
of Gn that extends L. Using Lemma 2.51 and induction, we see that, for each i¿0,
there exists a unique isomorphism gi : (k)si ∼= Li. Furthermore, if j¿i then gj extends
gi. Thus the limit g′ of the gi is well-de"ned and is an isomorphism from (k) to L′.
By the uniqueness of f, f(x) = g′(x) = g0(x) = g(x).

Lemma 2.53. f�PD6 is computable.

Proof. Let u be a stage after which , is never initialized and such that, for all s¿u,
r,; s = 0. Given x∈PD6 , "nd the least ,-recovery stage s+1¿u such that x is contained
in a component (m)s, m∈D6, of A0

s and there exists a component L of Gn[s] isomorphic
to (m)s. Such a stage exists by Lemma 2.52. Let gx be the unique isomorphism from
(m)s to L. Again by Lemma 2.52, f(x) = gx(x). Since gx can be computably determined
given x∈PD6 , f�PD6 is computable.

By Lemmas 2.41, 2.43, 2.45–2.48, and 2.53, f�PDi is computable for each i 6 6.
As can be easily checked by referring to Table 1, D0; : : : ; D6 are computable and
⋃6
i=0Di =!. Thus, by Lemma 2.38, we have the following result.

Lemma 2.54. The unique isomorphism f :A0 ∼=Gn is computable.

Theorem 1.10 follows from Lemmas 2.9, 2.10, 2.32, 2.34, and 2.54.

3. Proof of Theorem 1.12

In this section we prove the following theorem, using a construction similar to that
of Section 4 of [18].

Theorem 1.12. Let �∈!∪{!} and let b¿0 be an �-c.e. degree. There exists an in-
trinsically �-c.e. relation V on the domain of a computable structure B of computable
dimension 2 such that DgSpB(V) = {0; b}. In addition; B can be picked so that every
c.e. presentation of B is computable; which implies that B has c.e. dimension 2.

274 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

Proof. Let �∈!∪{!} and let B be an �-c.e. set that is not computable. It follows
immediately from De"nition 1.11 that there exist a computable sequence b0; b1; : : : ∈!
and a function f such that
1. either �¡! and f(x) = � for all x∈! or �=! and f is computable,
2. |{s | bs = x}|6 f(x) for all x∈!, and
3. x∈B⇔ |{s | bs = x}|≡ 1 mod 2.
Since the �= 0 case is trivial, we may assume without loss of generality that f(x)¿0
for all x∈!.

We wish to construct computable structures B0 and B1 and unary relations V 0 and
V 1 on the domains of B0 and B1, respectively, so that the following properties hold:
(3.1) B0 ∼=B1 via an isomorphism that carries V 0 to V 1.
(3.2) V 0 ≡m B and V 1 is computable.
(3.3) If G∼=B0 is a computable structure then G is computably isomorphic to either

B0 or B1.
(3.4) B0 is rigid.
(3.5) Every c.e. presentation of B0 with computable equality relation is computable.

For each s∈!, let cs = |{t¡s | bt = bs}| and let as = 〈bs; cs〉. Let A= {a0; a1; : : :}. A
is clearly c.e. but not computable, so we can follow the construction in Section 2 to
obtain computable structures A0 and A1 and relations U 0 and U 1 on the domains
of A0 and A1, respectively, satisfying properties (2.1)–(2.5). (We assume that the
construction has been carried out in such a way that the domains of A0 and A1 are
co-in"nite.)

Now, for i= 0; 1, proceed as follows. Add an element, which we will call the iden-
tifying node of Bi, to the domain of Ai and add an edge from this node to each node
of Ai. For each j∈! and each sequence of components L0; L1; : : : ; Lf(j)−1 such that
each Lk contains a copy of [6〈 j; k〉], add an element x (which will be said to be a
j-coding node) to the domain of Ai, add an edge from x to the coding location of the
copy of [6〈j; k〉] in Lk for each k¡f(j), and add an edge from x to the identifying
node of Bi. The resulting graph is Bi.

Clearly, we can build each Bi so that it is a computable graph, and the following
lemma can be easily checked, using the fact that A0 is rigid.

Lemma 3.1. B0 is rigid.

It is also not hard to establish that (3.5) holds.

Lemma 3.2. If G is a c.e. presentation of B0 with computable equality relation then
G is computable.

Proof. Let z be the image of the identifying node of B0 in G. Let G′ be the subgraph
of G consisting of all elements y of G such that there is an edge from z to y, and let
G′′ be the subgraph of G consisting of all elements y of G such that there is an edge
from y to z. Since |G′| ∩ |G′′|= ∅ and |G′| ∪ |G′′| ∪ {z}= |G|, both |G′| and |G′′| are
computable. Since G′ ∼=A0, it follows from (2.5) that G′ is computable.

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 275

For each element x∈G, there is either an edge from z to x or an edge from x to
z, but not both. Furthermore, there are no edges between elements of G′′ or from an
element of G′ to an element of G′′. Thus it suRces to show that there is an e<ective
procedure for determining, given x∈G′′ and y∈G′, whether there is an edge from x to y.

Fix x and y as above. Then x is a j-coding node for some j∈!, and this j can be
found e<ectively. There are exactly f(j) many elements w = z of G for which there
is an edge from x to w. Since f is computable, we can "nd these elements and check
whether y is among them.

We now de"ne a relation V i on the domain of Bi. Let Ki be the set of coding
nodes in Bi. Let j∈! and let x be a j-coding node in Bi. By construction, there
exist components L0; : : : ; Lf(j)−1 of Ai such that, for each k¡f(j), Lk contains a
copy of [6〈j; k〉] whose coding location yk is attached to x. Let ci(x) be the least
k¡f(j) such that yk =∈Ui, if such a k exists, and let ci(x) =f(j) otherwise. Now let
V i = {x∈Ki | ci(x) is odd}.

Lemma 3.3. B0 ∼=B1 via an isomorphism that carries V 0 to V 1.

Proof. By (2.1), A0 ∼=A1 via an isomorphism that carries U 0 to U 1. It is straight-
forward to extend this isomorphism to an isomorphism h :B0 ∼=B1. The fact that
h(U 0) = (U 1) implies that if x∈K0 then c0(x) = c1(h(x)), which in turn implies that
h(V 0) =V 1.

Lemma 3.4. V1 is computable and V0 ≡m B.

Proof. Since U 1 is computable, there is a computable procedure for determining c(x)
given x∈K1, and thus V1 is computable.

Let x∈K0. By construction, there exist components L0; : : : ; Lf(j)−1 of A0 such that,
for each k¡f(j), Lk contains a copy of [6〈j; k〉] whose coding location yk is attached
to x. Let d(x) be the least k such that, for all m¿k, ym is the coding location of the
copy of [6〈 j; m〉] in A0

0 , if such a k exists, and let d(x) =f(j) otherwise. Note that
there is a computable procedure for determining d(x) given x∈K0.

If d(x)¿0 then clearly 〈 j; d(x) − 1〉 ∈A. But this means that, in fact, 〈j; k〉 ∈A for
all k¡d(x). It follows that we can computably determine whether yk ∈U 0 for k¡d(x).
So if we de"ne S = {x∈K0 | c(x)¡d(x)} and T =K0 − S then S, T , and V 0 ∩ S are
computable.

Now let x∈T be a j-coding node and let y0; : : : ; yf(j)−1 be as above. By the de"ni-
tion of T , y0; : : : ; yd(x)−1 ∈U 0, so 〈j; k〉 ∈A for all k¡d(x). But, by the de"nition of
d(x), for each k¿d(x), yk ∈U 0 if and only if 〈 j; k〉 ∈A. So c(x) = |{k | 〈j; k〉 ∈A}|=
|{t | bt = j}|. Thus x∈V 0 if and only if j∈B, and hence V 0 ∩T ≡m B. Since V 0 = (V 0 ∩
S)∪ (V 0 ∩T), it follows that V 0 ≡m B.

Lemma 3.5. If G∼=B0 is a computable structure then G is computably isomorphic
to either B0 or B1.

276 D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277

Proof. Let z be the image of the identifying node of B0 in G. Let G′ be the computable
subgraph of G consisting of all elements y of G such that there is an edge from z
to y. By the de"nition of B0, G′ ∼=A0. Thus, by (2.3), there exists a computable
isomorphism h :Ai∼=G′ for some i 6 1.

To extend this isomorphism to a computable isomorphism ĥ :Bi∼=G, we "rst de-
"ne ĥ�Ai≡ h and ĥ(u) = z, where u is the identifying node of Bi. Now let x∈Bi −
(Ai ∪{u}). Then x is a j-coding node for some j∈!, and we can computably deter-
mine the f(j) many coding locations y0; : : : ; yf(j)−1 attached to x. There is a unique
w∈G−G′ attached to h(y0); : : : ; h(yf(j)−1). De"ne ĥ(x) =w. It is now easy to check
that ĥ is a computable isomorphism from Bi to G.

Theorem 1.12 follows from Lemmas 3.1–3.5.

References

[1] C.J. Ash, Isomorphic recursive structures, in: Ershov et al. (Eds.), Handbook of Recursive Mathematics,
Studies in Logic and the Foundations of Mathematics, vols. 138–139, Elsevier Science, Amsterdam,
1998, pp. 167–182.

[2] C.J. Ash, P. Cholak, J.F. Knight, Permitting, forcing, and copying of a given recursive relation, Ann.
Pure Appl. Logic 86 (1997) 219–236.

[3] C.J. Ash, A. Nerode, Intrinsically recursive relations, in: J.N. Crossley (Ed.), Aspects of E<ective
Algebra, Clayton, 1979, Upside Down A Book Co., Yarra Glen, Australia, 1981, pp. 26–41.

[4] E. Barker, Intrinsically 80
� relations, Ann. Pure Appl. Logic 39 (1988) 105–130.

[5] P. Cholak, S.S. Goncharov, B. Khoussainov, R.A. Shore, Computably categorical structures and
expansions by constants, J. Symbolic Logic 64 (1999) 13–37.

[6] R.G. Downey, Computability theory and linear orderings, in: Ershov et al. (Eds.), Handbook of
Recursive Mathematics, Studies in Logic and the Foundations of Mathematics, vols. 138–139, Elsevier
Science, Amsterdam, 1998, pp. 823–976.

[7] R.L. Epstein, R. Haas, R.L. Kramer, Hierarchies of sets and degrees below 0′, in: M. Lerman,
J.H. Schmerl, R.I. Soare (Eds.), Logic Year 1979–80, Proc. Seminars and Conf. Math. Logic, Univ.
Connecticut, Storrs, Conn., 1979=80, Lecture Notes in Mathematics, vol. 859, Springer, Heidelberg,
1981, pp. 32–48.

[8] Y.L. Ershov, S.S. Goncharov, Elementary theories and their constructive models, in: Ershov et al.
(Eds.), Handbook of Recursive Mathematics, Studies in Logic and the Foundations of Mathematics,
vols. 138–139, Elsevier Science, Amsterdam, 1998, pp. 115–166.

[9] Y.L. Ershov, S.S. Goncharov, A. Nerode, J.B. Remmel (Eds.), Handbook of Recursive Mathematics,
Studies in Logic and the Foundations of Mathematics, vols. 138–139, Elsevier Science, Amsterdam,
1998.

[10] S.S. Goncharov, Computable single-valued numerations, Algebra and Logic 19 (1980) 325–356.
[11] S.S. Goncharov, Problem of the number of non-self-equivalent constructivizations, Algebra and Logic

19 (1980) 401–414.
[12] S.S. Goncharov, Autostable models and algorithmic dimensions, in: Ershov et al. (Eds.), Handbook of

Recursive Mathematics, Studies in Logic and the Foundations of Mathematics, vols. 138–139, Elsevier
Science, Amsterdam, 1998, pp. 261–288.

[13] S.S. Goncharov, B. Khoussainov, On the spectrum of degrees of decidable relations, Dokl. Math. 55
(1997) 55–57, research announcement.

[14] V.S. Harizanov, Degree spectrum of a recursive relation on a recursive structure, Ph.D. Thesis,
University of Wisconsin, Madison, WI, 1987.

[15] V.S. Harizanov, The possible Turing degree of the nonzero member in a two element degree spectrum,
Ann. Pure Appl. Logic 60 (1993) 1–30.

D.R. Hirschfeldt / Annals of Pure and Applied Logic 115 (2002) 233–277 277

[16] V.S. Harizanov, Pure computable model theory, in: Ershov et al. (Eds.), Handbook of Recursive
Mathematics, Studies in Logic and the Foundations of Mathematics, vols. 138–139, Elsevier Science,
Amsterdam, 1998, pp. 3–114.

[17] V.S. Harizanov, Turing degrees of certain isomorphic images of computable relations, Ann. Pure Appl.
Logic 93 (1998) 103–113.

[18] D.R. Hirschfeldt, Degree spectra of intrinsically c.e. relations, J. Symbolic Logic, to appear.
[19] D.R. Hirschfeldt, B. Khoussainov, R.A. Shore, A.M. Slinko, Degree spectra and computable dimension

in algebraic structures, Ann. Pure Appl. Logic, to appear.
[20] B. Khoussainov, R.A. Shore, Computable isomorphisms, degree spectra of relations, and Scott families,

Ann. Pure Appl. Logic 93 (1998) 153–193.
[21] B. Khoussainov, R.A. Shore, E<ective model theory: the number of models and their complexity, in:

S.B. Cooper, J.K. Truss (Eds.), Models and Computability, London Mathematical Society Lecture Note
Series, vol. 259, Cambridge University Press, Cambridge, 1999, pp. 193–239.

[22] B. Khoussainov, R.A. Shore, Solution of the Goncharov–Ash problem and the spectrum problem in
the theory of computable models, Dokl. Math. 61 (2000) 178–179, research announcement (Russian
version in Dokl. Akad. Nauk 371 (2000) 30–31).

[23] J.B. Remmel, Recursive isomorphism types of recursive Boolean algebras, J. Symbolic Logic 46 (1981)
572–594.

[24] R.I. Soare, Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic, Springer,
Heidelberg, 1987.

