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ABSTRACT Evolution has provided many organisms with sophisticated sensory systems that enable them to respond to
signals in their environment. The response frequently involves alteration in the pattern of movement, either by directed
movement, a process called taxis, or by altering the speed or frequency of turning, which is called kinesis. Chemokinesis has
been most thoroughly studied in the peritrichous bacterium Escherichia coli, which has four helical flagella distributed over the
cell surface, and swims by rotating them. When rotated counterclockwise the flagella coalesce into a propulsive bundle,
producing a relatively straight ‘‘run,’’ and when rotated clockwise they fly apart, resulting in a ‘‘tumble’’ which reorients the cell
with little translocation. A stochastic process generates the runs and tumbles, and in a chemoeffector gradient, runs that carry
the cell in a favorable direction are extended. The cell senses spatial gradients as temporal changes in receptor occupancy and
changes the probability of counterclockwise rotation (the bias) on a fast timescale, but adaptation returns the bias to baseline on
a slow timescale, enabling the cell to detect and respond to further concentration changes. The overall structure of the signal
transduction pathways is well characterized in E. coli, but important details are still not understood. Only recently has a source
of gain in the signal transduction network been identified experimentally, and here we present a mathematical model based on
dynamic assembly of receptor teams that can explain this observation.

INTRODUCTION

Escherichia coli has five receptor types, but most is known

about the aspartate receptor Tar, which communicates with

the flagellar motors via a phosphorelay sequence involving

the CheA, CheY, and CheZ proteins. CheA, a kinase, first

autophosphorylates and then transfers its phosphoryl group

to CheY. Counterclockwise is the default state in the absence
of CheYp, which binds to motor proteins and increases

clockwise rotation (Berg and Brown, 1972; Macnab and

Ornston, 1977; Turner et al., 2000). Ligand-binding to Tar

reduces the autophosphorylation rate of CheA and the rate of

phosphotransfer, and thereby increases the bias. This is the

excitation component of the response. Bacteria also adapt to

constant stimuli (Block et al., 1982; Segall et al., 1986), and

this is effected by changes in the methylation state of Tar.

Tar has four residues that are reversibly methylated by

a methyltransferase, CheR, and demethylated by a methyl-

esterase, CheB. CheR activity is unregulated, whereas CheB,

like CheY, is activated by phosphorylation via CheA. Thus,

the receptor methylation level is regulated by feedback

signals from the signaling complex, which can probably shift

between two conformational states having different rates of

CheA autophosphorylation. Attractant binding and deme-

thylation shift the equilibrium toward a low activity state of

CheA, and attractant release and methylation shift the

equilibrium toward a high activity state. These key steps,

excitation via reduction of the autophosphorylation rate of

CheA when Tar is occupied, and adaptation via methylation

of Tar, have been incorporated in mathematical models of

signal transduction (Spiro et al., 1997; Barkai and Leibler,

1997; Morton-Firth et al., 1999).

E. coli can sense and adapt to ligand concentrations that

range over five orders of magnitude (Bourret et al., 1991). In

addition, the transduction pathway from an extracellular

ligand to the flagellar motor is exquisitely sensitive to

chemical stimuli. Bacteria can detect a change in occupancy

of the aspartate receptor as little as 0.1–0.2%, corresponding

to the binding of one or two ligand molecules per cell. The

gain of the system, calculated as the change in rotational bias

divided by the change in receptor occupancy, was found to be

;55 (Segall et al., 1986), and a longstanding question is what

the source of this high sensitivity or gain is. Three main

sources of gain have been suggested: 1), highly cooperative

binding of CheYp to the motor proteins, 2), regulation of

CheZ activity, and 3), indirect activation ofmany receptors by

a ligand-bound receptor. However, it is known that the high

sensitivity is present in CheZ mutants (Kim et al., 2001),

thereby ruling our the second possibility. Furthermore, it was

shown that in the absence of cooperativity in signal

transduction upstream of the motor, a Hill coefficient of at

least 11 was needed in the response of the motor to CheYp to

explain the observed gains of 3–6 (Spiro et al., 1997). Cluzel

et al. (2000) have confirmed this prediction experimentally,

showing that the apparent Hill coefficient in the functional

dependence of the bias on CheYp is ;10. However, this

cannot account for all the observed gain, and Sourjik andBerg

(2002) have shown, using fluorescence resonance energy

transfer, that the stage between aspartate binding and CheYp

concentration has an amplification 35 times greater than

expected. None of the existing models of the full signal
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transduction system (Spiro et al., 1997; Barkai and Leibler,

1997; Morton-Firth et al., 1999) address this source of gain.

Receptor interaction, either directly via clustering, or

indirectly via an intracellular signal, is a likely source of the

upstream component of the gain. Receptors are normally

dimeric, and it has been suggested that ligand-binding affects

the spatial packing of the receptor array (Levit et al., 1998;

J. S. Parkinson, University of Utah, personal communica-

tion, 1999). Recent experiments show that transmembrane

signaling occurs via receptor clusters or teams, probably of

trimers of dimers (Ames et al., 2002; Kim et al., 2002). It was

previously suggested in analogy with Ising models that

clustering may enhance the sensitivity at low signals, but it is

difficult to obtain both high gain and a wide dynamic range in

models of this type (Bray et al., 1998). Moreover, although

these types of models address the possibility of cooperative

interaction as a mechanism for generating gain, the nature of

this interaction is not specified and thus experimental tests are

difficult. More recently an abstract model based on the

energetics of interactions between receptors was proposed

and analyzed by Mello and Tu (2003). The model assumes

that each receptor dimer can be in an active or inactive state,

and that transitions between these states are rapid compared

to ligand-binding. Thus receptors flicker ‘‘on’’ and ‘‘off’’

between these states, according to an equilibrium distribution,

and ligand-binding biases the proportions in the two states.

Parameters can be found so that the model reproduces

existing data, but again there is no molecular mechanism

that can be tested. Our goal here is to provide a more

mechanistically based description of the origin of high gain.

The model is based on the idea that teams of receptor dimers

assemble and disassemble dynamically, and that different

types of receptors can assemble in different types of teams. In

our analysis assembly and disassembly may occur on com-

parable timescales, but a static scheme in which teams exist

for long time periods is a limiting case of the model.

Before describing the model, we observe that the large

gain upstream of the motor can be qualitatively understood,

once the experimentally determined activity curves are

known. The output of the signal transduction network as

a function of attractant concentration has been studied in

several recent experiments, both in vitro (Li and Weis, 2000;

Bornhorst and Falke, 2001; Levit and Stock, 2002) and in

vivo (Sourjik and Berg, 2002). In vitro experiments use

receptor-CheW-CheA complexes reconstituted in the pres-

ence of attractant and measure the CheA activity immedi-

ately after the addition of ATP (Li and Weis, 2000;

Bornhorst and Falke, 2001; Levit and Stock, 2002). The in

vivo experiment of Sourjik and Berg (2002) follows the

immediate changes in CheYp dephosphorylation after step

changes in attractant concentration. These experiments show

that the measured decrease of the CheA activity with

increasing attractant concentration is functionally similar,

but not identical, to the decrease of the ligand-free receptor

concentration. The experimental curves of kinase activity as

a function of ligand concentration can be fitted with Hill

functions of the form

AðLÞ 5 A0ð12CÞ 5 A0 12
L
H

K
H

A 1 L
H

 !
; (1)

where A represents the measured kinase activity, A0 is the

maximal activity in the absence of ligand,C is the fraction of

activity suppressed by ligand-binding, L is the ligand

concentration, and KA is the ligand concentration that

produces half-maximal activity. If we assume that there is

no interaction between receptors, the fraction bound with

ligand is

ub 5
L

KD 1 L
5 12 uf ; (2)

where KD is the inverse of the affinity for ligand and uf is the
fraction of receptors free of ligand. If there are only two

possible states of the receptor complex, free and ligand-

bound, and only the former lead to autophosphorylation of

CheA and a measurable activity, then the activity would have

the functional form A(L)5 A0uf. However, the experimental

observations indicate a more complex relationship, in that

KA can be either larger or smaller than KD and the Hill

coefficientH can be between 1 and 3 (see Li and Weis, 2000;

Bornhorst and Falke, 2001; Sourjik and Berg, 2002; Levit

and Stock, 2002).

If the activity is given in the form in Eq. 1, we can

compute the relative change in activity A(L) and the relative

change in receptor occupancy for a small change in ligand

concentration. Then the gain, which we define as the ratio of

relative changes, is given by

g [
d lnA=dL

d ln ub=dL
5 2

H

KD

LHðL1KDÞ
LH 1KH

A

5 2H
C

uf
; (3)

and its absolute value is monotone increasing with L. Thus
high amplification is always possible for a sufficiently large

ligand concentration, e.g., L � KA,KD, and this conclusion

holds even if the ligand occupancy has a more complicated

dependence on L, as long as it approaches one for large L.
The explanation of the high amplification is clear from Eq. 3:

at high ligand concentrations the fraction of the activity

suppressed c approaches 1, whereas the fraction of receptors

free of ligand uf approaches 0. Thus the existence of high

gain near saturation follows from the functional form of the

input-output relation of the upstream signal transduction

network, and even the simplest assumption of output pro-

portional to uf leads to high amplification for L large com-

pared to KD. Accordingly, the objective of a model should be

to predict the maximal activity A0, the apparent dissociation

constant KA, and the Hill coefficient H.
It is found experimentally that A0,KA, andH depend on the

methylation state of the receptors and the presence or absence
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of the methyltransferase CheR and the methylesterase CheB.

A0 increases with the methylation level of the receptors and

varies ;30-fold (Li and Weis, 2000; Bornhorst and Falke,

2001; Sourjik and Berg, 2002). KA also increases with

methylation state, and varies over two orders of magnitude

(Li and Weis, 2000; Bornhorst and Falke, 2001; Sourjik and

Berg, 2002; Levit and Stock, 2002), which implies that the

simplest assumption that ligand-free receptors determine the

output is not valid (Levit and Stock, 2002). The Hill coeffi-

cients of the output curves obtained in different experiments

vary between 1 and 3, and depend very weakly on the me-

thylation level. In vivo experiments also suggest that CheR

and CheB have a direct effect on the network output, in

addition to determining the methylation state of the receptors,

because the CheR and CheB single mutants show a qualita-

tively different response than CheRCheB mutants with fixed

methylation states (Sourjik and Berg, 2002).

Our objective here is to propose a mechanism, based on

receptor clustering to form active teams, that can reproduce

the methylation-induced variability in the network output.

There are several recent indications that the receptor-CheW-

CheA complexes are not static and do not have a one-to-one

stoichiometry, as assumed previously. Instead, an oligomer of

multiple receptor dimers, including different types of recep-

tors, forms the core of an active signaling complex (Ames

et al., 2002; Francis et al., 2002). Since chemotaxis receptors

tend to be clustered at one end of a bacterium (Maddock and

Shapiro, 1993), we assume that individual homodimers exist

in a dynamic equilibrium among singles, teams of two

(twofolds), and teams of three (threefolds), and that the dis-

tribution among these states depends on the ligand concen-

tration. Our central hypothesis is that only threefolds can form

complexes with CheW and CheA and activate the autophos-

phorylation of CheA. Because the experimental results we set

out to explain all focus on the initial changes in kinase activity,

we do not consider the slowermethyl-transfer reactions. Since

phosphotransfer from CheA to CheY is faster than the auto-

phosphorylation of CheA, the concentration of phospho-

CheY is proportional to the concentration of phospho-CheA,

and the output of the network is taken to be proportional to the

concentration of ligand-free threefolds in the model.

THE MODEL

The basic units of the model are receptor dimers, and we first

restrict attention to the interdimer association/dissociation

and the ligand-binding and release reactions for a single

receptor type. Homodimers are denoted by R1, twofolds by

R2, and threefolds by R3 (see Fig. 1). Receptor teams can have

asmany ligand-bound states as there are receptor dimers in the

team. For example, the R2L state contains a single ligand-

bound receptor, whereas R2L2 has two ligand-bound

receptors, one on each dimer. We do not consider the state

in which two ligand molecules are bound to a homodimer

because this is energetically unfavorable. We assume that the

ligand-binding affinity of ligand-free homodimers in a team is

the same regardless of the binding state of other homodimers

in the same team. (The proportionality factors 2 and 3 in the

ligand-binding reactions arise from combinatorial effects.)

We allow for the possibility that dimers in receptor teams do

not have the same affinity for ligand as single receptor dimers

(i.e., l2 and l3 can be different than l1). We assume that both

ligand-free and ligand-bound receptor dimers can associate to

form teams, possibly with different rates, i.e., k1 and k3 can be
either equal or different.

The main assumption of our model is that ligand-binding

destabilizes receptor teams and consequently they break into

smaller units. We allow for every combination of resulting

components, but assume that receptors will not release their

ligands in the process (see Fig. 1). In our model only the

ligand-free threefolds lead to CheA activation. As a result,

kinase activity is proportional to the concentration of R3, and

its predicted dependence on ligand concentration can be

compared with the experimental results on kinase activity.

The kinetic equations for the ligand-free states in Fig. 1 are

as follows; equations for the remaining states can be derived

assuming mass-action kinetics:

dR1

dt
5 2 2k1R

2

1 1 2k2 1R2 2 k2R1R2 1 k2 2R3 2 l1R1L

1 l2 1R1L1 k2 3R2L1 k2 4R3L2 k4R1R2L1 2k#6R3L

1 k2 5R3L
2 2 k5R1R2L

2 1 k#7R3L
2 2 k3R1R1L

dR2

dt
5 k1R

2

1 2 k2 1R2 2 k2R1R2 1 k2 2R3 2 2l2R2L

1 l2 2R2L1 k6R3L

dR3

dt
5 k2R1R2 2 k2 2R3 2 3l3R3L1 l2 3R3L (4)

FIGURE 1 The detailed reaction network for team formation and ligand-

binding when there is only one type of receptor. Individual receptor dimers

(R1) can associate to form twofolds (R2) and threefolds (R3). Ligand-binding

to receptor teams leads to the dissociation of the team. Only ligand-free

threefolds can initiate kinase activity.

2652 Albert et al.

Biophysical Journal 86(5) 2650–2659



If we define the equilibrium constant as K1 [ k1/k21 and

K2 [ k2/k22 for the formation of twofolds and threefolds,

respectively, then at L 5 0, R3 satisfies the equation

3R3 1 2
K

1=3
1

K
2=3
2

R
2=3
3 1

1

ðK1 � K2Þ1=3
R
1=3
3 2RT 5 0; (5)

where RT is the total receptor concentration fixed at 8 mM.

This equation has a unique positive root that tends to zero as

K1 and/or K2 tend to zero, approaches its maximum RT/3 as

K1 and/or K2 tend to infinity, and increases monotonically

between these limits along any ray in the K1–K2 plane. Since

the rates of team association/dissociation are not known,

we assume that K1 5 K2 [ K and choose the individual rates

k1, k2, k21, and k22 accordingly. Then R3 is completely

determined by K for fixed RT, and varies with K as shown in

Fig. 2.

There is a close parallel between Fig. 2 and the

experimental observations regarding the dependence of the

ligand-free output, A0, on the methylation state of the re-

ceptors. The output of the model, R3, increases with the team

formation constant K in a very similar way to the increase of

A0 with methylation. Notice that the nonlinear increase of R3

can explain both the observation that the lowest methylation

state’s activity is only a fraction of the activity of the wild-

type (Sourjik and Berg, 2002) and the result that the activity

of the higher methylation states is very close (Levit and

Stock, 2002). Based on this parallel, we identify different

methylation states with different choices for the parameter K,
and we choose these values such that the ligand-free

activities corresponding to these values have approximately

the same proportions as the experimental measurements of

Bornhorst and Falke (2001). Thus we identify the unmethy-

lated (EEEE) state with K(0) 5 1022 mM21 and the totally

methylated (QQQQ) state with the saturation limit K(4) 5
103 mM21. Bornhorst and Falke constructed 16 engineered

states corresponding to all the possible combinations of

glutamate (E) and glutamine (Q) residues. Based on their

results, and similarly to other models (Spiro et al., 1997;

Barkai and Leibler, 1997; Morton-Firth et al., 1999), we

assume that the total methylation level is the crucial

characteristic of a given state, and not the exact residues

that are methylated. We choose the team formation constants

for partially methylated states as follows: methylation level

one (e.g., EEEQ), K(1)5 1021mM21; methylation level two

(e.g., QEQE), K(2) 5 1 mM21; and methylation level three

(e.g., QQQE), K(3) [ 10 mM21.

To compare our results with the experimental results in

Bornhorst and Falke (2001) and Sourjik and Berg (2002), we

assume that the receptor is Tar and that the ligand is methyl-

aspartate. It is known that the affinity of Tar to methyl-

aspartate is ;10 times less than to aspartate; therefore, we

assume that the ligand release rate of a single receptor dimer

is 10 times larger than the release rate of aspartate, which is

70 s21, whereas the ligand-binding rate is the same as the

binding rate to aspartate, which is 70 mM21 s21 (Spiro et al.,

1997). Correspondingly, we assume l1 5 70 mM21 s21 and

l21 5 700 s21. We assume that the ligand release rates of

receptor twofolds and threefolds are the same as the release

rate of a single receptor dimer, i.e., l22 5 l23 5 700 s21.

We consider that the association rate of R1 with R2 is

slightly smaller than the association between two R1 values,

and the dissociation rate of R3 is proportionally smaller than

the dissociation rate of R2, such that the ratios K1 [ k1/k21

and K2 [ k2/k22 are equal. Thus we choose the rates to be

k21 5 0.1 s21 and k22 5 0.05 s21, and we vary k1 and k2
according to k1 5 10221d mM21 s21 and k2 5 5 3 10231d

mM21 s21 for d 5 0, 1, 2, and 4, such that K corresponds to

the different methylation levels described above.

As there is no information about the relative rates with

which free or ligand-bound receptor dimers associate/

dissociate, we assume that the ligand-binding state does not

influence team formation and therefore k3 5 k1, k23 5 k21

and k5 5 k4 5 k2, k25 5 k24 5 k22. For the breakdown of

ligand-bound threefolds we consider that processes involving

a single dissociation are equiprobable, i.e., k65 k75 k85 k9
5 0.7 s21, whereas the processes involving two dissociations

are less likely, k#6 5 k#7 5 k#8 5 0.07 s21.

First we assume that the ligand-binding rate of dimers that

are part of receptor teams is the same as the ligand-binding

rate of separate receptor dimers, i.e., l2 5 l3 5 l1. Fig. 3
shows the steady-state value of R3 as a function of the ligand

concentration for four different K-values corresponding to

four methylation levels. These curves are obtained by

solving the entire system of steady-state equations using

the software package AUTO (Doedel, 1981). All curves can

be fit with Hill functions of Eq. 1, wherein A(L) [ R3(L).

FIGURE 2 The dependence of the active team concentration on the team

association/dissociation characteristics as cumulated into the parameter K. In

the following, we model different methylation levels by choosing K values

such that the ratio of their corresponding activities is close to the

experimental results of Bornhorst and Falke (2001).
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This figure captures many features of the experimentally

observed decay in kinase activity for increasing ligand

concentrations. The curves are in qualitative agreement with

those reported in Li and Weis (2000), Bornhorst and Falke

(2001), Sourjik and Berg (2002), and Levit and Stock

(2002); the apparent KA increases consistently with methyl-

ation level whereas the Hill coefficient does not. Thus our

scheme provides a possible explanation for the apparent

dependence of the receptor affinity on the receptor

methylation level. We do not change the true affinity for

ligand, but varying the affinity of receptor dimers for other

receptor dimers leads to the differential response of kinase

activity to ligand. Unfortunately, the KA values predicted by

the model are lower than the experimental results obtained

for CheRCheB mutants, and the range of their variation is

also much smaller. Note, however, that the wild-type

response measured by Sourjik and Berg (2002) exhibits

a small KA 5 1 mM, close to our result of KA 5 0.48 mM.

It is easily seen that the larger KA values observed in

experiments on CheRCheB mutants could be explained by

assuming that receptor teams have a lower affinity for ligand

than individual receptor dimers. The cause of this lowered

affinity could be the close proximity of receptors in teams.

To illustrate this case we consider l2 5 l3 5 l1/100, while
keeping all other parameters at their previous values. The

resulting activity curves as a function of the ligand

concentration are shown in Fig. 4.

These curves agree well with the results given in Fig. 2 c
of Bornhorst and Falke (2001). The Hill coefficients in

Bornhorst and Falke range from 1.1 to 2.2, and our values are

in this range; the range of KA values are from 15 mM (QEEE)

to 97mM(QQQQ), and ours are around this range, too.More-

over, the apparent KA increases dramatically with methyl-

ation level, whereas the value ofH is approximately the same

for each methylation level, which is consistent with all the

experimental results (Li and Weis, 2000; Bornhorst and

Falke, 2001; Sourjik and Berg, 2002; Levit and Stock, 2002).

Comparing Figs. 3 and 4, we can notice that KA depends

strongly and inversely on the ligand-binding rates of the

receptor teams. Consequently, a possible effect of CheR and/

or CheB that would modify the ligand-binding affinity of

receptor teams would explain the methylation-independent

variation of KA.

To better understand the dynamics of the reaction

network, we consider the changes in the concentrations of

different states on Fig. 1 under changes in parameters and in

the ligand concentration. Because the total amount of

receptor is fixed, changes in ligand propagate through the

network until a new steady state is reached. In Table 1 we

compare the concentrations of the ligand-free and com-

pletely occupied states for two external ligand concentra-

tions, two different methylation levels, and two types of team

ligand-binding behaviors.

As we saw earlier, at L 5 0 the proportions of

concentrations in these states depends strongly on the

methylation state; in the highly methylated case the vast

majority of receptors are in threefolds, whereas in the wild-

type methylation case the states are equilibrated. The

addition of L 5 100 mM induces dramatic changes in the

state occupancies. These changes depend both on the

methylation level and the ligand affinity of receptor teams.

For l1 5 l2 5 l3, ligand-free teams all but disappear, in both

methylation states. The majority of the receptors are now in

the ligand-occupied states. In the high methylation case the

totally ligand-bound teams are most abundant, whereas, in

the wild-type methylation case, almost every receptor is in

FIGURE 4 Concentration of ligand-free threefolds, R3, as a function of

external ligand concentration for four different methylation levels, assuming

that the affinity of receptors in teams is 1% of that of isolated receptors. The

KA values and Hill coefficients are: QQQQ, KA5 112.98 mM andH5 1.38;

QQQE, KA 5 37.20 mM and H 5 1.32; QEQE, KA 5 16.57 mM and

H 5 1.30; and QEEE, KA 5 6.68 mM and H 5 1.28.

FIGURE 3 Concentration of ligand-free threefolds, R3, as a function of

external ligand concentration for four different methylation levels, assuming

that receptors in teams have the same ligand-binding affinity as isolated

receptors. s, K 5 1000 mM21 (QQQQ); h, K 5 10 mM21 (QQQE); ),

K5 1 mM21 (QEQE); andn, K5 0.1 mM21 (QEEE). The continuous lines

represent fits of Eq. 1. The apparent dissociation constants and Hill

coefficients are QQQQ, KA 5 1.65 mM and H 5 1.37; QQQE, KA 5 0.84

mM and H5 1.23; QEQE, KA 5 0.48 mM and H5 1.19; and QEEE, KA 5
0.30 mM and H 5 1.23.
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the ligand-bound single dimer state. For l2 5 l3 5 l1/100, the
effect of ligand is much weaker, and it depends crucially on

the methylation state. At high methylation, the ligand-bound

states are sparsely populated, and the majority of receptors is

in the ligand-free teams, R2 and R3. Notice that the

concentration of R2 almost quadruples, and the moderate

value of R1L is the only indication of the presence of ligand.

In the wild-type methylation state the most occupied states

are the ligand-bound isolated receptors and, still, ligand-free

intermediary teams. We can thus conclude that in the l1 5 l2
5 l3 case the most important response to ligand is a vertical

flow from ligand-free to ligand-bound states, while in the

l2 5 l3 5 l1/100 case the most important flow is a horizontal

one from receptor teams to individual receptor dimers.

The complexity of the state space induced by team for-

mation also raises the question whether the fraction of ligand-

bound states is dependent on themethylation level, and how it

compares to the ligand affinity of individual receptor dimers.

We have calculated the dependence of ligand occupancy,

ðR1L12R2L13R3L12R2L213R3L213R3L3Þ=RT on L, and
find that it depends on the assumptions about team affinity and

methylation state. For example, we find that the apparent

dissociation constant corresponding to wild-type methylation

in the l15 l25 l3 case is slightly smaller than theKD5 10mM
of individual receptor dimers, whereas in the l25 l35 l1/100
case the apparent dissociation constant is higher than KD.

Finally, we study how the different rates ki and li change
the activity curves of the model.

1. In our choice of parameters we assumed that the ligand-

binding state does not influence the receptor association

rate. To explore the effects of different rates, we test the

extreme situation when one sets the rates k3 and k23, k4
and k24, or k5 and k25 to zero with the other parameters

and conditions fixed. We find that for each case

individual concentrations were altered but there was

little effect on R3. This suggests that the equality of these

rates is not a strict condition for the success of the model,

and that the association between ligand-free receptors has

the dominant effect on R3.

2. In our model we assumed that the ligand-free threefolds

constitute the kinase-activating state. To test whether our

conclusions are generally valid for teams comprised of

different numbers of receptor dimers, we assume that the

association of twofolds with individual dimers is

prohibited, and ligand-free twofolds are the kinase-

activating state. In other words, we set k2 5 k4 5 k5 5 0.

We find that R2(L 5 0) follows a curve very similar to

Fig. 2, with the only difference that the saturation value

for high K is R0/2 instead of R0/3. Selecting the same

K-values for the different methylation levels as before we

obtain that KA varies between 2.22 mM (QEEE) and 3.44

mM (QQQQ) for l1 5 l2 and in the range 25.3 mM
(QEEE) to 314 mM (QQQQ) for l2 5 l1/100. The

closeness of these results to our original model suggests

that the number of steps involved in kinase-activating

team formation does not have a crucial role.

3. The effect of the single receptor ligand-binding rate l1 on
the activity curve is not as strong as the ligand-binding

rates for receptor teams. When we assume l1 5 l2 5 l3 5
0.7 mM21 s21 rather than l1 5 70 mM21 s21 and l2 5
l3 5 l1/100 as in Fig. 4, KA increases considerably, but

not as much as the change between Figs. 3 and 4. This

suggests that an overall less-than-expected affinity to

methyl-aspartate might be at the root of the large ob-

served KA values.

In conclusion, our results show that a model based on

active threefolds of a pure receptor can explain the in vitro

activity curves (Li and Weis, 2000; Bornhorst and Falke,

2001; Levit and Stock, 2002). The assumptions of methyl-

ation-dependent dynamic team formation and ligand-induced

breakdown lead to differential kinase activity curves without

invoking methylation-induced changes in ligand affinity. We

turn next to the experimental observations on mixed receptor

types (Sourjik and Berg, 2002).

MIXED RECEPTOR TYPES

Bacteria have several types of receptors, and it is possible

that different types of receptor interact to be able to respond

optimally to diverse environmental stimuli. Indeed, the

experiments of Sourjik and Berg (2002) suggest that under

certain conditions both the Tar and Tsr receptors respond to

TABLE 1 The effect of changes in parameters and ligand levels on the distribution of states in the network

K L R1 R2 R3 R1L R2L2 R3L3

l1 5 l2 5 l3 5 70 mM21 103 mM21 0 0.0136 0.1861 2.5381 0 0 0

100 0.0331 0.0079 2.0933e-4 0.3366 1.5849 1.2445

1 mM21 0 1.1337 1.2909 1.4282 0 0 0

100 0.6094 0.0029 1.3973e-6 6.0943 0.5740 0.0083

l2 5 l3 5 l1/100 5 0.7 mM21 103 mM21 0 0.0136 0.1861 2.5381 0 0 0

100 0.0115 0.8169 1.4353 0.1156 0.0164 0.0086

1 mM21 0 1.1337 1.2909 1.4282 0 0 0

100 0.4037 1.3217 0.0815 4.0374 0.0264 4.8547e-4

K 5 1 mM corresponds to QEQE (wild-type), whereas K 5 103 mM corresponds to QQQQ. All concentrations are measured in mM.
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methyl-aspartate. According to these experiments, CheR-

CheB mutants with fixed methylation levels have two ap-

parent dissociation constants corresponding to the Tar and

Tsr receptors, respectively, and can be fit by Hill functions of

the form

AðLÞ
A0

5 12b
L
HT

L
HT 1K

HT

T

2 ð12bÞ L
HS

L
HS 1K

HS

S

: (6)

The simplest model suggested by these results is based on

the assumption that the output of the composite system is the

sum of two individual outputs similar to Eq. 1, one for each

of the two pure receptor populations. For this model the total

output is

AðLÞ
A0

5 12
AT0

A0

L
HT

L
HT 1K

HT

T

2
AS0

A0

L
HS

L
HS 1K

HS

S

; (7)

where A0 5 AT0 1 AS0. If the Tsr methylation level is

constant, as it appears to be experimentally (Sourjik and

Berg, 2002), Eq. 7 predicts that an increase in the Tar

methylation level leads to an increase in b [ AT0/(AT0 1
AS0). However, the experiments indicate that for the

CheRCheB mutants, b decreases from 0.65 to 0.27 as the

methylation state of the Tar receptor changes from EEEE to

QQEQ. Moreover, b appears to be 1 for CheR mutants that

are in the lowest methylation state and it is 0 for the CheB

mutants that are in the highest methylation state (Sourjik and

Berg, 2002). Therefore the experimental results cannot be

explained if it is assumed that receptors act independently,

which strongly suggests that there are interactions between

different receptor types, in addition to the interactions within

pure types. This leads to the possible formation of mixed

teams, and in the following we determine whether the model

for team formation of pure types, extended to two types of

receptor, is able to generate response curves similar to those

in Sourjik and Berg (2002).

We denote the two types of receptors by R and P, and

assume that they have different affinities for ligand. We also

assume that two receptor dimers can associate to form pure

or mixed receptor teams, and in the general case the

association/dissociation constants of two R (respectively,

two P or R and P) receptor dimers, K[ k1/k21, (respectively,

H [ h1/h21 and M [ m1/m21), are different.

The full scheme of all mixed twofold and threefold states

and the transitions between them includes 29 states instead of

the 9 in Fig. 1, and involves 38 unknown rates for the

receptor association/dissociation reactions alone. It is not

worthwhile to tackle this level of computational complexity

in the absence of any experimental information, and our

previous analysis suggested that a reduced scheme with

receptor twofolds as the ligand-activating state leads to

similar results as the original scheme. Thus, to reduce the

complexity of the analysis of mixed team formation, we only

consider receptor twofold formation, and we do not consider

teams with more than one ligand-bound receptor. Conse-

quently, the reaction scheme contains two types of receptor

dimers, R1 and P1, the ligand-bound states of these dimers;

three different twofolds, R2, R1P1, and P2; and six ligand-

bound states of these teams, R1L, R2L, R1LP1, R1P1L, P1L,
and P2L. As in the case of pure receptors, we allow for the

possibility that teams have lower ligand affinity than homo-

dimers. We assume that binding of ligand to either dimer in

a twofold induces the dissociation of the twofold, and that

the rate of dissociation is the same for all teams. Fig. 5 shows

the entire kinetic scheme and the associated rates.

This scheme leads to the following steady-state equations,

2k1ð11 a2LÞ
k2 1 1 k2 2a2L

R
2

1 1
2m1½11 ða2 1 b2ÞL�
m2 1 1 k2 2ða2 1 b2ÞLR1P1

1 ð11 a1LÞR1 5R
t
; (8)

2h1ð11 b2LÞ
h2 1 1 k2 2b2L

P2

1 1
2m1½11 ða2 1 b2ÞL�
m2 1 1 k2 2ða2 1 b2ÞLR1P1

1 ð11 b1LÞP1 5Pt
; (9)

where a1 5 l1/l21 is the affinity of a single R dimer for

ligand, b1 5 i1/i21 is the affinity of a single P dimer, a2 5 l2/
l22 is the affinity of an R dimer that is part of a (pure or

mixed) twofold, and b2 5 i2/i22 is the affinity of a P dimer

that is part of a twofold.

We assume that the kinase-activating output of this system

is the concentration R21R1P11P2 of free twofolds.

FIGURE 5 The kinetic scheme for for-

mation of pure and mixed receptor two-

folds. Both receptor types bind ligand, but

with different affinities, and binding in-

duces team dissociation.
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Expressing each of these terms as a function of single

receptor concentration we obtain

AðLÞ5 k1R
2

1

k2 1 1 k2 2a2L
1

2m1R1P1

m2 1 1 k2 2ða2 1 b2ÞL

1
h1P

2

1

h2 1 1 h2 2k2L
: (10)

The main differences between this output and the simple

assumption of noninteracting receptors are the existence of

the second term depending on R1P1, and the fact that the

steady-state concentrations of R1 and P1 are coupled.

Equations 8 and 9 can be solved numerically to obtain the

output of the network as a function of the ligand

concentration. To account for the results reported in Sourjik

and Berg (2002), we assume that the P receptor corresponds

to Tsr and its affinity for methyl-aspartate is 103 times lower

than the affinity of the R receptor (Tar). The other rates are

chosen to correspond with the rates used in the pure

population. Thus we set a1 5 0.1 mM21, b1 5 1024 mM21,

k21 5 h21 5 m21 5 0.1 s21, and k22 5 70 s21, and

we allow k1 to vary between 1023 mM21 s21 (EEEE) and

102 mM21 s21 (QQQQ).

To model the wild-type activity curve, we assume that Tar

is in its QEQE methylation state, and set k15 0.1 mM21 s21.

To capture the surprisingly fast decay of the wild-type

activity, we assume that receptor teams have the same

ligand-binding affinity as single receptor dimers, i.e., a25 a1
and b2 5 b1. We also assume that the association rate of Tsr

into pure Tsr teams is lower than the association rate of Tar,

i.e., h1 5 k1/100. These assumptions lead to a Hill function

similar to Eq. 1 with a low KA, in good agreement with the

experimental results in Sourjik and Berg (2002) (see ¤ in

Fig. 6). In the CheR mutant both receptors are in their lowest

methylation levels since they lack the methylating enzyme

but have the demethylating enzyme CheB. Again, we

assume that the association rate of Tsr is lower than that of

Tar, i.e., k1 5 m1 5 1023 mM21 s21 (EEEE) and h1 5 1025

mM21 s21. The decrease in Tar methylation state induces the

decrease of both the ligand-free activity and the apparent

dissociation constant; however, the experiments indicate that

the KA of the CheR mutant is close to the KA of the wild-type

curve. We are able to reproduce this result by assuming that

teams have a slightly lower ligand affinity than single

receptors, i.e., a2 5 a1/10 and b2 5 b1/10 (see : in Fig. 6).

Next we consider the CheRCheB mutants, and assume

that a2 5 a1/100 and b2 5 b1/100. We find that for the

majority of choices for k1, h1, and m1 the output curves can

be fit by generalized Hill functions like Eq. 6 with two fast-

decaying regions characterized by apparent dissociation

constants that are several orders-of-magnitude apart. We

identify the lower dissociation constant, KT, with the Tar

receptor, and the higher, KS, with the Tsr receptor.

The experimental results indicate that both the ligand-free

output and the apparent dissociation constants KT and KS

increase with increasing Tar methylation levels. Addition-

ally, the parameter b, indicating the relative weight of the Tar
receptors in the output, decreases with increasing Tar

methylation levels. Our model results in a good agreement

with these conclusions if we assume that interaction between

the two receptor types leads to a moderate variability of the

Tsr team formation rate. The curves marked by open

symbols on Fig. 6 present our results for four different sets

of pure/mixed team formation rates. Different curves have

Tar association rates corresponding to different methylation

states from EEEE to QQQE. We assume that the Tsr-Tsr

association rates are lower than the Tar and Tar-Tsr

association rates, and they also increase with Tar methyla-

tion, but with a slower rate. (Our studies indicate that if we

keep the Tsr team association/dissociation rates constant, the

high-ligand tails of the activity curves coincide, resulting in

normalized activity curves that have a reversed order com-

pared to the experimental curves; thus, the only way to

FIGURE 6 Activity of modeled Tar-Tsr mixtures as a function of ligand

concentration. The Tsr receptors are assumed to be twice as abundant as the

Tar receptors, and their affinity to methyl-aspartate to be 103 less. Open

symbols stand for CheRCheB mutants, and have a2 5 a1/100 and b2 5
b1/100. s, K [ k1/k21 5 10 mM21 (QQQE), H [ h1/h21 5 6 mM21, and

M [ m1/m21 5 10 mM21. h, K 5 1 mM21 (QEQE), H 5 0.5 mM21, and

M 5 1 mM21. ), K 5 0.1 mM21 (QEEE), H 5 0.05 mM21, and M 5 0.1

mM21. n, K 5 1022 mM21 (EEEE), H 5 0.005 mM21, and M 5 1022

mM21. The curves can be fit by Hill functions like Eq. 6 with two transition

regions. QQQE is b5 0.36, KT5 22.5 mM,HT5 1.38,KS5 18.2 mM, and

H5 1.76. QEQE is b5 0.41,KT5 9.44mM,HT5 1.21,KS5 6.5 mM, and

H 5 1.57. QEEE is b 5 0.5, KT 5 3.68 mM, HT 5 1.13, KS 5 2.4 mM,

andH5 1.43. EEEE is b5 0.65, KT5 1.67 mM,HT5 1.09, KS5 1.3 mM,

and H 5 1.35. ¤ (Wild-type), K 5 M 5 1 mM21, H 5 1024 mM21, and

a2 5 a1, b2 5 b1. : (CheR mutant), K 5 M 5 1022 mM21, H 5 1024

mM21, a25 a1/10, and b25 b1/10.d (CheB mutant), K5M5 106 mM21,

H5 100 mM21, a2 5 a1/100, and b2 5 b1/100. These curves can be fit with

single Hill functions like Eq. 1. The KA values and Hill coefficients are

wild-type, KA 5 0.43 mM and H 5 0.82; CheR mutant, KA 5 0.22 mM

and H 5 1.01; and CheB mutant, KA 5 40 mM and H 5 1.1. The ratio

of amplitudes is wt:CheR:EEEE:QEEE:QEQE:QQQE:CheB5 1:0.26:0.35:

0.94:1.35:1.52:1.6.
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capture the systematic upwards shift with methylation is by

assuming a variation of the Tsr methylation levels.) We find

that under these assumptions our results are in excellent

qualitative and good quantitative agreement with the

CheRCheB mutant results of Sourjik and Berg (2002).

In a CheB mutant the receptors are in the highest

methylation state, since the action of the methylating enzyme

CheR is not balanced by CheB. We assume that Tar has

a very high association rate, both in pure and mixed teams,

whereas the Tsr-Tsr association rate is somewhat lower. As

in the case of CheRCheB mutants, we assume that a2 5 a1/
100 and b25 b1/100. We find that the output of such mixture

has a single apparent dissociation constant in the millimolar

range (see d in Fig. 6).

DISCUSSION

We have shown that the high upstream sensitivity of the

signal transduction network is caused by the negative

regulation between ligand occupancy of the receptors and

kinase activity. Since kinase activity decreases with in-

creasing ligand occupancy, at sufficiently high attractant

concentrations the relative change in kinase activity is much

larger than the relative change in occupancy. A related

general argument indicates that the sensitivity of the signal

transduction network, defined as the relative change in

kinase activity in response to a certain percentage change in

ligand concentration, depends only on the kinase activity

suppressed by ligand,

S5 2Hc5 2H
L
H

K
H

A 1 L
H ; (11)

and consequently approaches 2H at L � KA. This implies

that the marked differences between the sensitivity of the

wild-type and CheRCheB mutants found by Sourjik and

Berg (2002) are caused by the fact that for the ambient ligand

concentrations studied the wild-type receptors have reached

the maximum sensitivity, whereas the CheRCheB mutants

have not.

To illustrate this point we include a figure (Fig. 7)

depicting the absolute value of the sensitivity of two receptor

populations to a 10% change in ligand concentration (similar

to Fig. 3 b in Sourjik and Berg, 2002). The first population’s

kinase response is described by a Hill function like Eq. 1

with the parameters KA 5 1 mM, H 5 1, whereas the

second’s kinase response follows Eq. 6, with KT 5 150 mM,

KS 5 100 mM, and HT 5 HS 5 1. In the ambient ligand

concentration range 10 mM, L, 104 mM, the sensitivity of

the first population is constant inasmuch as L. KA, whereas

the second population, having L , KS, has a varying and

much smaller sensitivity. This behavior is in excellent

qualitative agreement with the experimental observations of

Sourjik and Berg (2002).

We have demonstrated that a model based on the

assumption that homodimers of a receptor must aggregate

into teams of three to activate the autophosphorylation of

CheA can adequately explain the observed dependence of

the kinase activity on the ligand concentration for a pure

receptor. Our model is in qualitative agreement with the

experimental results, and shows that methylation-dependent

kinase activity does not necessarily imply methylation-

dependent ligand affinity. We also showed that the concen-

tration corresponding to half-maximal kinase activity need

not coincide with the apparent ligand dissociation constant

of the receptor population, nor does the latter coincide

with the dissociation constant of an isolated homodimer.

Our model assumes that receptor populations possess

a dynamic balance between homodimer, twofold, and three-

fold states, as opposed to an ordered threefold structure. This

prediction, along with our assumptions for team formation

and dissociation rates could be tested experimentally in the in

vitro receptor preparations. Furthermore, to quantitatively

reproduce the experimental results on CheRCheB mutants

(Bornhorst and Falke, 2001) within the framework of the

detailed model it is necessary that twofolds and threefolds of

receptors have a lower affinity for ligand than an isolated

homodimer. This theoretical prediction could be verified

experimentally by testing the affinity of homogeneous

receptor preparations (i.e., only dimers or only teams).

When there are multiple receptor types, the experimentally

determined activity curves display complex dependence on

the ligand concentration, but they can be satisfactorily

reproduced by our model. One consistent assumption that

was needed is that the association rate of Tsr teams is lower

than the association rate of Tar and Tar-Tsr teams. This

assumption was vital in reproducing the wild-type, CheR,

and CheB mutant curves, and it suggests the existence of

receptor specificity in team-formation capabilities. This

feature could be caused by receptor-specific methyl-accept-

ing activities that were confirmed experimentally (Barnakov

et al., 1998).

FIGURE 7 Sensitivity of two receptor populations to a 10% increase in

ligand concentration. The sensitivity is defined as the ratio of the relative

change in kinase activity and the relative change in ligand concentration.
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Our results also confirm earlier suggestions that changes

in methylation state (or association/dissociation rates) alone

cannot explain the qualitative difference between the wild-

type and CheRCheB mutant activity curves. We were able to

reproduce the shift by assuming that, in CheR or CheB

mutants, receptor teams have lower affinity for ligand than

individual receptor dimers. Note that this effect is weaker in

CheR mutants, but still existent.

Our analysis deals only with the early response to changes

in ligand concentration, since we have neglected methylation

of receptors and downstream phosphotransfer reactions. It

remains for someone to integrate the model for the early

response developed here with a complete model such as given

in Spiro et al. (1997) for later events. It is of course feasible to

do this computationally, but given the complexity of the

association scheme for the formation of signaling teams

shown in Fig. 1, it may be difficult to extract qualitative

insights analytically. Some simplification exploiting the

disparity in timescales of the various processes will certainly

be needed.

We thank Sandy Parkinson for helpful discussions at various stages of the

model development.
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