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Let 4 be an Artin algebra and I its Auslander—Reiten quiver. Qur main aim is
to characterize the components of I which contain only preprojective 4-modules
using intrinsic properties of translation quivers  © 1993 Academic Press. Inc.

1. INTRODUCTION

In this article A will denote a connected basic Artin algebra, that is, an
artinian ring with 1 such that its centre contains an artinian subring over
which A is a finitely generated module. Denote by A-mod the category of
all finitely generated left 4-modules and by A-ind the subcategory of A-
mod with one representative of each isomorphism class of indecomposable
A-modules. All modules and maps are in A-mod.

We use here the notions of sink and source maps, irreducible maps,
Auslander—Reiten sequences, and quivers. For their definition and basic
properties we refer to [Ri] (see also [AR3,6]). The Auslander-Reiten
quiver of an algebra A4 is denoted by ,I". All components of ,I" are con-
nected. We denote the Auslander—Reiten translate (respectively the
translate inverse) of X by tX (respectively by 7~ X). The modules in the
7-orbit of a given indecomposable module X are those of the form t"X, for
neZ. An oriented cycle is a chain of irreducible maps through indecom-
posable modules X, — X, — --- = X, where X,=X,.

A component C of ,I"is called a -preprojective component provided that
(1) all modules in C lie in a t-orbit of projectives, and (ii) there are no
oriented cycles in C. In the literature t-preprojective components are
usually referred as preprojective components. We choose to use the term
7-preprojective components mainly to avoid misunderstanding. In this
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article the term preprojective modules is always used in the following sense,
as introduced by Auslander and Smalg [AS].

According to [AS] A-ind has a unique partition P,(A4), ieN =
N {oc }, called the preprojective partition, satisfying the following:

(a) A-ind is equal to the disjoint union of P;(A4), ie N .

(b) For each j<oc, P;(A4) has the following property: for all
XeP,(A) with >/ there are an Yeadd P;(4) and an epimorphism from
Y to X. Moreover P;(4}) is minimal with respect to this property and it is
finite.

An A-module M is called preprojective if all indecomposable summands
of M belong to the union of P;(4), i< oc. Givenan [, 0<i< o¢, and X € 4-
mod we denote by ¢,.X the submodule of X generated by the image of all
morphisms from all indecomposable modules in the union of P;(A), j=>i.

An indecomposable A4-module Y is called an irreducible predecessor
(respectively an irreducible successor) of X e A-ind if there is a chain of
irreducible maps X, - X, - --- = X,, =20, with X,=Y and X,=X
(respectively with X,=2X and X,=Y). We denote by Pr(X) (respectively
by Sc(X)) the set of all nonisomorphic indecomposable irreducible prede-
cessors (respectively successors) of X. Note that the module X is included
in both sets Pr(X) and Sc(X).

1.1. DEFiNITION. A component C of ,I” containing a preprojective
A-module is called a n-component if for every preprojective module X e C,
Pr(X) contains only preprojectives.

Our main aim in this article is to give other descriptions of m-com-
ponents. Some of them have already appeared implicitly in the work of
Auslander and Smalg [AS]. Now we state our main result. We say that
some property holds for almost all modules if it holds for all but a finite
number of the nonisomorphic indecomposable modules.

1.2. THEOREM. Let A be an algebra. The following are equivalent for a
component C of ,I" containing a preprojective A-module.
(a) C is a m-component.
(b) 1,.X=0 for every preprojective module X in C.
{c) C contains only preprojective modules.

(d) (1) Almost all modules in C lie in t-orbits of projectives.
(ii} Only a finite number of modules in C belong to oriented cycles.

(e) For every module X € C, the set Pr(X) is finite.
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Note that condition (d) above generalises that defining t-preprojective
components.

If 4 is an algebra of finite representation type then all 4-modules are
preprojectives. Therefore all five conditions of Theorem 1.2 are clearly
satisfied and there is nothing to prove. The proof of Theorem 1.2 for
algebras of infinite representation type will be given in Sections 3 to 8. In
Section 2 we recall some basic results and established some notations.

The results in this article are part of my Ph. D. thesis written under
Dr. Michael Butler at the University of Liverpool. T thank Dr. Butler for
very stimulating discussions and for his useful remarks during my work.
I also thank Dr. Raimundo Bautista for suggesting some ideas used in
Section 6. This article was written with the financial support of CNPq,
Brazil, and CVCP, Great Britan.

2. PRELIMINARIES

In this section we recall some results and establish some further nota-
tions. We keep those already established in the Introduction.

If Xe A-ind, oX (respectively, o~ X) denotes the domain of a sink map
of X (respectively, source map of X). In particular an Auslander—Reiten
sequence starting at X € A-ind, if defined, has the form 0 5> X -0 X —
1t~ X -0, while one ending at Xe A-ind, if defined, has the form
0—1X > 0X— X —0. A finite chain of irreducible maps is also referred as
a path.

We do not distinguish between a component of I, the module class
defined by this component, and the full subcategory of 4-mod defined by
this module class.

Given a functor F from 4-mod to Ab, the category of all abelian groups,
the length of F, I(F), is defined to be the sum ). /{F(X)) taken over all non-
isomorphic indecomposable A-modules X with F(X)#0 and where
I(F(X)) is the length of F(X) as an End X-module. Of special importance
in our work is the length of the functor (-, X) for X e A-ind. The length
I((—, X)) is finite for a module X e 4-ind if and only if there are at most
finitely many indecomposable modules Y with (Y, X)#0. We need the
following result due to Auslander—Reiten.

2.1. ProOPOSITION (Corollary 1.8 in [AR6]). Let X and Y be in A-ind
and assume I((—, X)) < c0.

(a) If Hom (Y, X)#0 then there is a path through indecomposable
A-modules from Y to X with nonzero composition.
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(b) There is a path through indecomposable A-modules from a projec-
tive to X with nonzero composition.

We now establish a result that, though straightforward, will be useful in
the proof of Theorem 1.2.

22 PrOPOSITION. Let Y and X in A-ind and Y¢Pr(X). If
Hom ,(Y, X)#0 then

(a) for each n=1 there are indecomposable A-modules Y=Y, .., Y,
with irreducible maps a;: Y, — Y, for i=1, .., n and fe Hom ,(Y,, X) with
S, -0y #0.

(b) for each n=1 there are indecomposable A-modules X, ..., Xo=X
with irreducible maps B, X, — X,;_, for i=1, .., n and ge Hom ,(Y, X)) with
By---B.g#0.

Proof. We prove part (a) by induction on n > 1. Part (b) follows easily
by dualizing the argument. Suppose n=1 and consider ge Hom ,(Y, X).
Since Y+# X, g is not a split monomorphism; in particular, Y is not a
simple injective. If (4, .., h,) : Y— @ E, is a source map for Y then there
is a morphism (f1, ..., f,): @ E;— X such that (f, ... [, )(h,, .. h) =g In
particular there is a summand of @ E,, say F,, such that f, k, #0 and the
first step of the induction is proved since h; is an irreducible map. For the
induction step the argument is rather similar and we leave it for the
reader. J

Now let {P;(A), ie N} be the preprojective partition of A. It is clear
that Py(A4) is the set of the indecomposable projectives. If XeP,(4),
0<n< oo, then we define n(X) to be #. In the case n< oo, we say that X
is preprojective of level n and #(A) denotes {X e A-ind: 0<n(X)< o0}
Following [AS], P™(A4) denotes {X € A-ind: n(X)<m}. When it is clear
which algebra 4 we are working with, we also use the simpler notations
P,, 2, and P™ instead of P,(4), #(A4), and P™(4).

We need the following results throughout the article. Note that 7 X was
originally denoted by X, in [AS].

2.3. PROPOSITION (Theorem 5.1 and Corollary 9.3 in [AS]). Let Xe
A-ind.
(1) XeP(A)ifand only if t (X #X.
(2) If XeP(A) then there are at most finitely many indecomposable

A-modules, all of them preprojectives, admitting morphisms into X with
image not contained in t_, X.

(3) t . X=01{andonly if I((—, X)) < cc.
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2.4. PrROPOSITION (Proposition 1.2 in [Co]). Let Xe P(A) and Y € A-ind.
If rad(Y, X) contains a morphism with image not contained in t X then
there exists a path from Y to X with nonzero composite.

Now let Xe#(4) and consider its projective cover (p,,..p,):
@ P;— X. Since this is an epimorphism there is an i such that Im p, is not
contained in 7 X. According to Proposition 2.4 there is a path from P,
to X. In particular all components of ,/” containing a preprojective contain
also a projective.

We start now the proof of our main result. Unless otherwise stated the
algebra A is assumed to be of infinite representation type.

3. EQUIVALENCE OF CONDITIONS (a), (b), AND (¢} OF THEOREM 1.2

In this section we establish the equivalence of conditions (a), (b), and (c)
of Theorem 1.2. The equivalence of conditions (b) and (c) were proved by
Auslander and Smalg for the case where C is the union of all components
containing preprojective modules. In fact their proof can be adapted to
components. For the convenience of the reader we give a simplified version
of the equivalence of these conditions and (a) since this contains useful
informations needed on n-components. We will use the following lemma.

3.1. LemMa (Lemma 2.1 in [Co]). If there is an irreducible map X - Y
with i(X)<n(Y)—1 then n(tY) < n(X).

3.2. THEOREM. Let C be a connected component of I containing a
preprojective module. The following are equivalent:

(a) C is a n-component.
(b) t,X=0 for each preprojective A-module X in C.

(c) C contains only preprojective modules.

Proof. (a)=>(b) Assume C is a 7-component and let X e C n 2#(A4) with
t,X#0. Let MeP_ be an indecomposable summand of 7 X. Consider a
source map of M, g: M — ¢~ M. Note that the natural inclusion i: M - X
lifts through g; that is, there is an /> ¢~ M — X such that fg =i We claim
that Imf is not contained in 7, X. Otherwise, since the inclusion
i"M—1t,X is a split monomorphism, we have that g is also a split
monomorphism, which contradicts the fact that g is a source map, and the
claim is proved. Moreover, there exists an indecomposable summand Y of
6~ M and f': Y- X with Im /" not contained in ¢ X. If f"erad(Y, X)
then according to Proposition 2.4 there is a path from Y to X and so
M ePr(X). On the other hand, if /' is an isomorphism it is clear that
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M e Pr(X). Therefore Pr(X) contains a nonpreprojective module M, which
contradicts our hypothesis on C.

(b)==(c) Let C be a connected component containing a preprojec-
tive and satisfying condition (b). To prove that C has only preprojective
modules we prove that for each irreducible map X — ¥ with X' and Y in C,
XeP(A) if and only if YeP(A4). Suppose first that g: X — Y is an
irreducible map with X and Y in C and Ye #(A). If g is an epimorphism
then clearly n(X)<n(Y). Otherwise g is a monomorphism and since
t,. Y=0, by hypothesis X e #(A4). In both cases X € #(A4) and this proves
the part “if.” We now show that all successors of a preprojective in C are
also preprojectives. Suppose this is not the case. Then there exists an
irreducible map f: X —» Y with YeP_ and XeP, for some n. Assume
in addition that » is minimal with respect to this property. Let
0—-1Y—>0Y—-Y—>0 be an Auslander—Reiten sequence ending at Y.
According to Lemma 3.1, n(1Y) < n. Therefore by the minimality property
on n all summands of ¢Y are preprojectives. Moreover, by hypothesis on
the preprojectives in C, ¢, 0Y =0 or, equivalently since ¢Y is artinian,
t,6Y=0 for some k. Comnsider now an epimorphism #4:Z— Y with
Z e add P, (this is possible because YeP_ ). Note that & lifts through the
sink map oY — Y. In particular Hom ,(Z, ¢Y )0 which contradicts the
fact that 1,6 Y =0.

(c)=(a) Trivial. |

We freely use the equivalence of conditions (a), (b), and (c) for the rest of
this article. Amongst them, we will see that the most useful formulation is (b).

4. PrOOF OF (d)=>(e) AND (€)= (b)

In this section we prove the implications (e)=-(b) and (d)=>(e) of
Theorem 1.2. We assume throughout this section that C is a component of 7.

4.1. PROPOSITION ((e}=>(b)). Let Xe€ A-ind such that Pr(X) is a finite
set. Then

(i) Supp((-, X)) = Pr(X).
(i) . X=0.

Proof. Let Xe A-ind be such that Pr(X) is finite. Suppose first that
Supp((-, X)) is not contained in Pr(X); that is, suppose there is a Ye
A-ind\Pr(X) such that Hom (Y, X)#0. According to Proposition 2.2
there are indecomposable A-modules X =X, X, .., X,, .., and irreducible
maps fB;: X;—= X,_,,foriz1,such thatforalln>1§,, .., B,#0. Note that
{X,:ieN}<Pr(X) and thus it is finite. Therefore the radical of the



478 FLAVIO ULHOA COELHO

Artin algebra End(@ X)) is nilpotent and this contradicts the fact that
B.---B;#0 for all n>1. Hence Supp((-, X)) = Pr(X) and this proves (i).
To get (ii) it is enough to note that according to Proposition 2.3 to show
that 1 X =0 is equivalent to prove that /((-, X)) < co. However this is an
easy consequence of part (i) since Pr(X) is finite and the result is
proved. |

The proof of the implication (d)=>(e) is an adaptation of the
Happel-Ringel proof that if C is a t-preprojective component then Pr(X)
is finite for X e C (see (1.3) in [HR]).

4.2. ProPOSITION ((d)=>(e)). Let C be a component of I satisfying:

(d1) Almost all modules in C lie in t-orbits of projectives; and
(d2) Only a finite number of modules in C belong to oriented cycles.

Then for every module X € C the set Pr(X) is finite.

Proof. Suppose there is an indecomposable module X eC such that
Pr(X} is an infinite set. Then there is an infinite chain of irreducible maps
to X

"'Xn“’anl'—""—_)XlﬁX0=X (*)

in A-ind such that X,# X, for i#j. By hypothesis C satisfies conditions
(d1) and (d2). Therefore almost all modules in C lie in t-orbits of projec-
tives and do not belong to any oriented cycle. Hence there is an m such
that (i) for any j > m there exists some ¢; > 0 such that t" X, e Py(4) and (ii)
there is no oriented cycle passing through X, for i = m. Now since there are
only finitely many t-orbits of projectives there exists Pe Py(A4) such that
the set /={j>m:1%X;= P} is infinite. The function from 7/ to N which
assigns £, to ie cannot be strictly decreasing because 7 is an infinite set.
Therefore there are two elements i <j in I such that ¢, <t,. (Note that if
t,=t, then X,=X; and so i=.) Therefore X,=1""""" X, and thus there is
a path from X, to X,. Since there is also a path from X, to X, we obtain
a cycle containing X, which is not possible. Therefore Pr(X) is finite for
XeC. |

5. SoME GENERAL RESULTS

To complete the proof of Theorem 1.2 it remains to prove that n-com-
ponents satisfy condition (d). The strategy to prove this is the following.
First we consider m-components containing no injectives and prove that
they are 7-preprojective components (Theorem 6.7). The next step is to give
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a structural description of algebras with n-components. We show in sec-
tion 7 that the Auslander—Reiten quiver of such an algebra is closely related
with that of an algebra with n-components containing no injectives. Finally
in Section 8, using the results proved in Sections 6 and 7, we give the proof
that nm-components satisfy condition (d) (Theorem 8.1). This completes the
proof of Theorem 1.2.

To prove Theorem 6.7 we need two results which will be established in
the remaining of this section. The first result records informations in the
connection between 7-periodic preprojective modules and injective modules
lying in the same component. We recall that X e 4-ind is t-periodic if there
1s an n such that "X =X, We also need the following resuit due to
Auslander—Reiten.

5.1. LEMMA (Proposition 6.2 in [ARS]). Let Y — X be an irreducible
map between indecomposables. If X is t-periodic then either Y is t-periodic
or there are n, m =0 such that 1Y is a projective and t~™Y is an injective.

5.2. ProrosITION. If X is t-periodic in P(A) then X is a predecessor of
an injective.

Proof. Suppose X e 2(A) is a t-periodic. We shall prove that X e Pr(7)
for some injective I. Suppose this is not the case and assume 7(X) minimal
with respect to this property. Note that z(X)> 1. Therefore there exists an
irreducible map Y — X such that n(Y)<n(X). The minimality of n(X)
implies that either (a) Y is not a 1-periodic module or (b) Y is a prede-
cessor of an injective. If (a) holds then according to Lemma 5.1 there exists
an n 20 such that t ~"Y is an injective. Therefore X is clearly a predecessor
of an injective, which is a contradiction. Suppose now condition (b) holds;
that is, Ye Pr(/) for an injective I. Hence clearly X e Pr(/) since X is a
t-periodic module. This is, however, a contradiction, which finishes the
proof. |

The next result concerns the existence of oriented cycles. To prove it we
use the following result established by Bautista and Smalg in [BS]. We
recall that a path X,—» X, — --- = X,,t>1, is called sectional if for
2<j<t, 1X; 1s not isomorphic to X, _,.

5.3. ProOPOSITION [BS]. There is no sectional path in I which is a cycle.

5.4. PROPOSITION. Suppose X e A-ind belongs to an oriented cycle. If
Sc(X) has no injective modules then for all n>01 "X e Pr(X).

Proof. We prove this result by induction on n>=1. Let X=X,—
X, — «-- = X, =X be an oriented cycle through X. By Proposition 5.3 this
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is not sectional and then there exists a (minimum) j>1 such that
T~ X,=X,,,. Since Sc(X) has no injectives we can apply 1~ to any of the
indecomposable modules X, for i=1, ..., t. Consider now the path

T-Xo“)riX’_} e ")TiXI'—)Xj*_}_) v "‘)XI=X.

Therefore T~ X € Pr(X). Suppose now that for all i, 0<i<n, 17X e Pr(X).
Let us prove that t "X e Pr(X). Since by induction t ="~ "X e Pr(X) there
is a path (*)t " YX - ... 5 X. Note that all modules in (%) are in
Sc(X) and then we can apply t~ to them. Therefore we will end up
with a path from 77"X to t~ X, which is a predecessor of X and so
7~ "X € Pr(X), which proves the result. ||

6. 1-COMPONENTS CONTAINING NO INJECTIVE MODULES

We show in this section that n-components containing no injective
modules are t-preprojective components (Theorem 6.7). Note that since we
have already established the equivalence of the conditions (a), (b), and
(c) of Theorem 1.2 we freely use any of them as a defining property of
n-components.

Our very first goal, however, is to prove that if C is a z-component con-
taining no injectives then the set Pr(X) is finite for every (preprojective)
module X e C. Before we prove it we establish some general results.

Let A be any Artin algebra, C be a component of ,/, and X € C. Define
F < C to be the union of £, n >0, where ¥ is defined inductively as
follows:

(a) L V= and ¥V ={X}.
(b) Assume &Y' are defined for 0<j<n. Ye A-ind is in ¥ if and
only if
(bl) Yisin &£y "or
(b2) Y i1s a summand of ¢S for an indecomposable
Se e "N\Sy P and 1 Y, if defined, is not in F¢ 2.

The first result we need is that given any module in %, there is a nonzero
morphism from it to X. To prove this we need the following lemma.

6.1. LEMMA. [f Ye LN S% 1) for some k=1 then there exists a
sectional path from Y to X passing through only modules in &%~V

Proof. We use induction on k2 1. For k=1 there is nothing to prove
since by definition of & there is an irreducible map, thus a sectional
path, Y — X as required. Suppose now that k> 1 and that the result is
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true for modules belonging to Z{\&Y~ Y with 1<j<k. Consider
Ye FENFE Y. By definition there is an irreducible map Y — S with
SeFk="M k-2 and 777, if defined, is not in ¥ ¢ ~2. Now by the
inductive hypothesis there is a sectional path from S to X passing through
modules in #¥ 2. Since 1~ Y ¢ &£~ 2 the path resulting from the com-
position of the irreducible map ¥ — S and the sectional path from S to X
is a sectional path from Y to X as required. ||

6.2. LEMMa (e.g., Corollary 134 in [IT]). The composition of
irreducible maps on a sectional path is nonzero.

6.3. COROLLARY. If Ye % then Hom (Y, X)#0.

Proof. Let Ye%. There is nothing to prove if X=Y. Assume
Ye PYNF% D for some k> 1. By Lemma 6.1 there is a sectional path
from Y to X whose composition is nonzero according to Lemma 6.2.
Therefore Hom 4, (Y, X)#0 as required. ||

Our next step is to define a distance from % of a module in Pr(X). For
Y e Pr(X) let dY denote the length of a shortest path from Y to a module
in %. We show that, under suitable conditions, this distance does not
increase along paths in Pr(X).

64. LEMMa. Let X, Ye A-ind. Suppose Pr(X) contains no injective
A-modules, Y e Pr(X), and dY = 1. Then

(i) 1 YePr(X)and dv Y<dY— 1.
(1) If E is a summand of ¢~ Y then dY — 1 <dE<dY.

Proof. We will prove part (i) by induction on d=dY > 1. Suppose
d=1. Then there are a module S e % and an irreducible map ¥ — S. Since
Y¢ %, it follows that 1" Ye %. Hence 1" YePr(X) and d1"Y=0=
dY — 1 as required. Suppose now d> 1. Then there is an irreducible map
Y—Z with dZ=d—1 and ZePr(X). By induction 1~ ZePr(X) and
diZ<dZ— 1.

Since there is an irreducible map t =Y -t~ Z, we have 1~ Y e Pr(X) and
di"Y<dr~Z+1<d—1 as required. Part (ii) follows from the definition
of dand (i). |

Assume now and for the rest of this section that C is a n-component
containing no injective modules. For i>0 let D,(X) denote the set
{YePr(X):dY=1i}.

6.5. LeMMA. Let Xe€C. Then for all i=0 D;(X) is a finite subset of
Pr(X).
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Proof. We prove this by induction on i>0. For i=0 the statement is
equivalent to &, being a finite set. Since C is a n-component, /((—, X)) < o
for each X e C. Using Coroliary 6.3 it follows that % is a finite set. Assume
now that D,(X) is finite for all 0 <j < i Note that if Ye D,(X) then there
is an trreducible map Y — Z with Ze D, _,(X). Since ,I is a locally finite
quiver it follows that D,(X) is finite and the result is proved. ||

6.6. PROPOSITION. Let C be a m-component containing no injective
modules and X € C.

(a) If YePr(X)\ % then there exists a path from Y to a module in %
with nonzero composite.

(b) Pr(X) is a finite set.

Proof. (a)Let YePr(X)\& and consider its injective envelope
i:Y—I,(Y). Since there are no injectives in C the summands of /,(Y) do
not belong to Sc(Y). Hence according to Proposition 2.2 there are
indecomposable modules Y;, ieN, with Y,=Y and irreducible maps
o Y, =Y, for iz1 such that «, -2, #0 for all n. Suppose now that
Y, ¢ % for all i=0. We claim that Y,e Pr(X)}\.% for all i > 0. Otherwise
there is a j such that Y;¢ Pr(X) and we can choose such j minimal, ie with
Y, ,ePr(X)\+,. But now dY; ;>0 and by Lemma 6.4 dY,>0, which is
a contradiction. Therefore dY,;> 0 for all i>0. Moreover by Lemma 6.4
dY =2 dY, for all i=0. Now according to Lemma 6.5 for all i=0 D,(X) is
finite and this implies that {Y,:je N} has also only finitely many non-
isomorphic modules, say Z,,..,Z,. Hence for all =0, a, ---a, is in
fact a nonzero morphism in rad”(End @ Z,), which is not possible since
rad(End @ Z,) is nilpotent. Therefore there is a j > 0 such that Y,e %, and
(a) is proved since «;---«, is a nonzero path from Y to Y, e &%.

(b) According to Lemma 6.5, %, is a finite set. Let X' be the sum of
all indecomposable modules of &;. Since ¥ is contained in a n-com-
ponent, 7, X' =0 or equivalently Supp((-, X')) is finite. By part(a)
Pr(X) < Supp((—, X")). Therefore Pr(X) is also finite as required. |

We are now able to prove our main result of this section.

6.7. THEOREM. Let A be an Artin algebra and let C be a n-component
containing no injective A-modules. Then C is a t-preprojective component.

Proof. We prove the following two properties for C: (i) all modules in C
belong to t-orbits of projectives and (ii) there are no oriented cycles in C. Let
X e C. By Proposition 6.6 Pr(X) is finite, so is its subset A(X) := {t'X:ie N}.
Therefore either X is t-periodic which is not possible by Proposition 5.2 since
C contains no injectives or X is in a t-orbit of some projective and this
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proves (i). Now suppose there is some X € C which belongs to an oriented
cycle. Since C contains no injectives, by Proposition 54 A (X):=
{t7'X:ieN} = Pr(X), which is finite. Hence either X is t-periodic or
A7 (X)) contains an injective leading to a contradiction in both cases. ||

7. A DESCRIPTION OF ALGEBRAS WITH m-COMPONENTS

Throughout this section C will be a n-component of 7" Let 1,=3 ¢, be
a decomposition of 1, into a sum of primitive idempotents. This sum can
be split in the following way. Consider the sum ¢” of all idempotents e in
the above decomposition such that D(ed)e C, where D denotes the usual
duality. If ¢’ denotes 1 —e” then D(e’A4) is the sum of the indecomposable
injective A-modules not in C. Since C is a n-component all non-
isomorphisms going to a module XeC are sums of composites of
irreducible maps. This fact, together with the fact that the summands of
D(e’A) are not in C, implies that Hom ,(D(e'A), D(e"4))=0, which is
equivalent to e’'Ae”"=0, and so A=¢'Ae’ +e"Ae’ +e"Ae”. Denote the
algebras e’de’ by A’ and e"A4e” by A” and denote the 4"-A'-bimodule
e"Ae’ by M. Hence A is isomorphic to the matrix algebra

A0
I:M A”]'

Note that we do not exclude the possibility of 4” being zero. In this case
obviously A4 is isomorphic to A4".

The category A-mod can be identified with the category # whose
objects and maps are defined as follows (see [Ri]). The objects of
X are triples (X', X", &), where X'eA-mod, X"eA”-mod, and
¢eHom , (X', Hom .. (M, X")). A map from (X', X", £)to (Y', Y",()is a
pair («, B), where «€ Hom ,.(X’, Y’) and $e Hom ,.(X", Y"), such that the
following diagram commutes:

X —— (M, X")
1[ © j(M. i3]
Y —— (M, Y")

We freely use the identification between the categories 4-mod and %
Consider the following natural inclusions:

1" : A’-ind —» A-ind and 1" A"-ind - A-ind
X'~(X,0,0) X" (0, X", 0)
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Note that these inclusions are full.
Now let B denote the set of the indecomposable 4-modules (X', X", £)
such that X” is a nonzero 4”-module.

7.1. PROPOSITION. B contains only finitely many indecomposable
A-modules, all of them A-preprojectives in C.

Proof. Let (X', X", £) e B. Note that the morphism (0, id): (0, X", 0) —»
(X', X", &) is a monomorphism. Therefore the injective envelope
0— (0, X”,0)—I,((0, X",0)) of (0, X",0) can be lifted through (0,id).
In particular, Hom ,({(X", X", &), I,((0, X", 0)))#0. Note that, by con-
struction, I,((0, X", 0)) contains only (injective) modules in C. Hence all
modules in B map to D(e” A). Now since C is a n-component and D(e”A)
is an A-preprojective in C we have that Supp((~, D(e"4))) is finite and
contains only (preprojective) A-modules in C. Therefore B has at most
finitely many indecomposable 4-modules, all of them preprojectives and
in C, and this proves Proposition 7.1. |

Note that in particular we also have that 4" is an algebra of finite
representation type and all indecomposable 4”-modules are in C. This
also implies the next result, which relates preprojective A-modules and
preprojective A’-modules.

7.2. LemMa. Let Xe A'-module. XeP(A') if and only if
(X,0,0)eP(A).

Proof. (=) Suppose XeP(A’) but (X,0,0)¢ #(A). Then for every
iz0 there exist Z,eadd(P,(4)) and an epimorphism f;: Z,— (X,0,0).
Note that for i#j, Z, and Z, have no common summands. According to
Proposition 7.1 there are only finitely many modules in A-ind\ A’-ind and
then there is an infinite subset 7 of N such that for iel, Z;€ 4’ —mod and
f; is an A'-epimorphism. Hence X e P _ (A4’), which is a contradiction.

(<) Since 4’-ind can be seen as a full subcategory of 4-ind the non-
preprojective A’-modules are also nonpreprojectives as A-modules. In other
words, 1'(P_.(4')) = P_ (A4). According to Proposition 7.1 B< 2(4) and
then /(P __(A'))=P_ (A) as required. |

Our next step is to show how ,I" and ,.I are related. Denote by C’ the
set {Xe A'-ind: (X, 0,0)e C}. It is clear from our construction that C’ con-
tains no injective A’-modules. We show that C' is a union of n-components
of ,I. We first prove that irreducible maps in A’-ind can be “lifted” to
paths in A-ind.

7.3. PROPOSITION. Let f: X — Y be an irreducible map in A’-ind.
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(i) If Hom((X,0,0),B)=0 then (f,0):(X,0,0)—(Y.0,0) is an
irreducible map in A-ind.

(i1) There exists a path from (X,0,0) to (Y, 0,0).

Proof. (1) Suppose Hom((X,0,0),B)=0but (£,0):(X,0,0)—(Y,0,0)
is not an irreducible map in A4-ind. Then there are a morphism
2(X,0,0)—~Z in A-mod which is not a split monomorphism and a
morphism h: Z—(Y,0,0) in A-mod which is not a split epimorphism,
such that (f, 0)=hg. Since Hom((X, 0, 0), B) =0 we can assume that Z is
of type (Z’,0,0). Therefore f=hg is a decomposition in 4’-mod, which
contradicts our hypothesis that fis irreducible in A-mod. Hence (f, 0) is an
irreducible map in A-ind.

(i) Suppose there is no path from (X, 0, 0) to (Y, 0, 0). In particular
(/,0)erad” ((X,0,0), (Y,0,0)). Therefore for all m=0, (f,0) can be
written as a sum Y A, g;,, where h,erad™ (4-mod) and g,erad™ (4-mod).
Consider now the algebra B=End(ép M;), where the sum is taken over all
indecomposable modules in B. According to Proposition 7.1 B is a finite set
and then B is an Artin algebra and it has nilpotent radical. Therefore there
are a sufficiently large n>0 and a decomposition 4, g; of f such that
h,erad”(A4'-mod) and g,erad™(A4’-mod). Hence f can be decomposed as
an A'-homomorphism, which contradicts our hypothesis of f being an
irreducible map. Therefore there is a path from (X,0,0) to (Y,0,0) as
required. ||

7.4. CorROLLARY. C' is a union of n-components in ,. I

Proof. We first claim that if Xe C’ then X e 2(A"). In fact if Xe C’ then
(X, 0,0)e C. Moreover (X, 0,0)e 2#(A) because C is a n-component. Now
according to Lemma 7.2 Xe #(A’) and the claim is proved. It remains to
prove that C’ is in fact a union of connected components. If this is not the
case there are Y e 4’-ind" C’ and an irreducible map between Y and Xe C'.
According to Proposition 7.3 (Y, 0, 0) and (X, 0, 0) are in the same compo-
nent, which is a contradiction because, by assumption, (X, 0,0)e C but
(Y,0,0)¢C. Therefore C’ is a union of n-components. ||

From now on we use the following convention. When we refer to
Xe A-ind we use the usual notation X, oX, 7 X, ¢ X. To avoid
misunderstanding, however, we use the notations tX, 6X, t "X, ¢ X when
referring to X' e A'-ind.

7.5. COROLLARY. For almost all X e A'-ind, (X, 0, 0) is isomorphic to
(t(X), 0, 0).

Proof. Since B is finite there are only, up to isomorphism, finitely many
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Auslander—Reiten sequences containing a module in B. Therefore almost all
Auslander-Reiten sequences are in fact in A-mod and the result
follows. |

The results proved above give a nice relation between the Auslander-
Reiten quivers of 4 and A’. Let D be a component of , I such that
Hom ,((X, 0,0), B)=0 for all XeD. Note that D can be any component
other than those in C’. Then D can be identified with a component of /-
On the other hand, any component of I other than C can also be
identified with a component of , I

8. PROOF OF (a)=-(d) OF THEOREM 1.2

In this section we give the proof of the remaining implication of
Theorem 1.2; that is, we prove the following result.

8.1. THEOREM. Let A be an algebra of infinite representation type and C
be a n-component. Then

(d1)Y  Almost all modules in C lie in t-orbits of projectives.
(d2) Only a finite number of modules in C belong to oriented cycles.

Suppose throughout this section that C is a m-component. If C contains
no injective A-module then by Theorem 6.7 C is a t-preprojective compo-
nent and so conditions (d1) and (d2) are clearly satisfied for C. Let us now
assume that C contains at least an injective module. Using the results of
Section 7 there are algebras A’ and 4” and an 4”"-A4"-bimodule M such that:

(i) A is isomorphic to the matrix algebra

|:A' 0 ]
M A// ’

(i) C'={XeA~ind:(X,0,0)eC} is a union of w-components
containing no injective modules; and

(iii) the natural inclusion 1’: A’-ind — A-ind given by X' — (X', 0,0)
is cofinite.

According to Theorem 6.7 C’ is a union of t-preprojective components
and then (d1) and (d2) of Theorem 8.1 are true for C'.

According to the results established in Section?7, for almost all
Xe A'-ind, 1(X,0,0)=(tX,0,0). Let now D denote the (finite) union
Bu{X=(X,0,0)e 4-ind: X #1(1X')}. For XeA-ind take A(X):=
{t'X:ieN}. Note that 4(X)< Pr(X) and since C is a n-component, if
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XeC then 4(X)c P(A4). We also have the following result concerning
A(X).

8.2. LEMMA. The set A(X) is finite for every preprojective A-module
XeC.

Proof. Suppose first that 4(X) has a repetition; i.e., t'X = t/X for some
i#j. Then X is a 1-periodic module and then it is clear that A4(X') is a finite
set. Suppose now that A(X) has no repetition. We prove that
MX)NPy(A)# . Since D is finite, there is an 1, > 0 such that 7°X ¢ D for
all i=n,. Take 4'(X):={t'X:i=ny}. If 4'(X)=J then 1'X =0 for some
i< ngy and the result is proved. Suppose 4'(X') contains a nonzero indecom-
posable module Y. Then Y is of the form (Y’,0,0) and tY=1(tY").
Moreover, since 4'(X)= 2(A), Y e #(A’) by Lemma 7.2. Using the fact
that C’ is a union of t-preprojective components and Y’ e C’, there is a j
such that t'Y €Py(A’). Then (t/Y’,0,0)ePy(4). Hence 4'(X)nPy(A4)
# & and so A(X) is finite. ||

We are now able to finish the proof of Theorem 8.1 and therefore of
Theorem 1.2.

Proof of Theorem 8.1, (d1) Let Xe C and suppose X is not in a t-orbit
of any projective, which is equivalent to A4(X)NnPy(4)=¢5. Then
A(X)ynD # ¢ (same argument as in Lemma 8.2 above) and X is t-peri-
odic. Hence X is in a t-orbit of some t-periodic module in D, which is
finite. Therefore there are only finitely many indecomposable modules in C
which are not in a t-orbit of a projective.

(d2) Let(*):X=X,-X,— --- = X,= X be a cycle in C. We claim
that there is an i, 0 <i<¢, such that X,e B. Otherwise (%) is a cycle of A'-
modules in C” which is not possible because C' is a union of t-preprojective
components, and the claim is proved. Suppose now there are infinitely
many indecomposable modules in C lying in oriented cycles. Therefore
since B is finite and ./ is locally finite there exists ¥ e B such that for all
m>1 there is a minimal oriented cycle of length greater than m (a cycle
X=Xy~ X, .- > X,=Xis called minimal if X,# X, for 1 <i<j<1)
Thus using again the finiteness of B, for all n>0 there is a path in
Pr(Y)n1'(C’) of length greater than n, which contradicts the fact that C’
is a union of t-preprojective components, and this finishes the proof of
Theorem 8.1. |

All 1-preprojective components are m-components according to the
results established here. Classes of algebras with t-preprojective com-
ponents include (i) hereditary algebras, (ii) concealed algebras, and (iii)
tubular algebras.

481:157:2-14
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Now let k& be an algebraically closed field and 4 be the path k-algebra
given by the quiver

with all composites of arrows being zero. Note that algebra A is of infinite
representation type and has a m-component which is not t-preprojective.
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