
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Nuclear Physics B 798 (2008) 72–88

www.elsevier.com/locate/nuclphysb

A semiclassical string description of Wilson loop
with local operators

Makoto Sakaguchi a,∗, Kentaroh Yoshida b

a Okayama Institute for Quantum Physics, 1-9-1 Kyoyama, Okayama 700-0015, Japan
b Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

Received 16 January 2008; accepted 22 January 2008

Available online 14 February 2008

Abstract

We discuss a semiclassical string description to circular Wilson loops without/with local operator inser-
tions. Type IIB string theory on AdS5 × S5 is expanded around the corresponding classical solutions with
respect to fluctuations and semiclassical quadratic actions are computed. Then the dual corresponding oper-
ators describing the fluctuations are discussed from the point of view of a small deformation of the Wilson
loops. The result gives new evidence for AdS/CFT correspondence.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Almost a decade has passed from a discovery of AdS/CFT correspondence [1,2]. Now it is
firmly supported by enough evidences, but there is no proof of it now. Hence it is still important
to continue to seek further, new confirmation to support it.

One of the difficulties is to analyze type IIB string on AdS5 × S5. The action is constructed
in [3] and its classical integrability is shown in [4]. However, it still seems difficult to quantize
the theory manifestly, simply because the action is quite non-linear. A sensible way is to find a
solvable subsector such as the BMN sector [5]. The BMN sector is pulled out by taking a Penrose
limit [6]. Then the simplified string theory is exactly solvable [7,8], and hence one can test the
duality at stringy level though the argument is restricted to a certain region.
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It is pointed out in [9] that a non-relativistic limit of type IIB string on AdS5 × S5 gives
a new arena to test the AdS/CFT. It is shown in [10] that the limit is regarded as a semiclassi-
cal approximation around a static AdS2 solution [11] like as the Penrose limit is around a BPS
particle [12]. This equivalence holds even for AdS-branes [10,13]. With this semiclassical inter-
pretation it has been shown that the corresponding operator in the gauge theory is nothing but a
small deformation of straight Wilson line [10].

The purpose of this paper is to generalize the result for the straight line to circular Wilson
loops without/with local operator insertions. An AdS2 solution corresponds to a 1/2 BPS circu-
lar Wilson loop without the insertions [14]. A semiclassical approximation around the solution
has already been studied in [15]. We newly compute a quadratic action around the solution corre-
sponding to a circular Wilson loop with the local operators, ZJ and its complex conjugate. Here
Z is a complex scalar composed of the two real scalar fields in N = 4 SYM like Z ≡ φ1 + iφ2.
The resulting quadratic fluctuations describe the action in [15] around σ = 0 while those behave
as a pp-wave string at σ = ∞.

Then we clarify that the fluctuations correspond to a small deformation of the circular Wil-
son loops without/with the insertions. In particular, the dictionary of impurity insertion is derived.
With no local operator the dictionary is the same as in the case of the straight line [10]. This result
is not so surprising since the difference between a straight Wilson line and a circular Wilson loop
is the behavior at infinity and it only gives an anomalous contribution to the expectation value
(and the value of classical action of the corresponding string solution). However the local behav-
ior around a finite point should not be different. With the local operators, it is the same as the case
without them apart from the insertion points while it is nothing but the BMN dictionary [5] on the
inserted local operators. This result nicely agrees with the behavior of the semiclassical action.

This paper is organized as follows. In Section 2 we reproduce a semiclassical action around
an AdS2 solution whose boundary is a circular Wilson loop with no local operator. Then, in
Section 3, we discuss the corresponding operators in the gauge theory from a small deformation
of the circular Wilson loop. In Section 4, as a further generalization, we consider a semiclas-
sical action around the Miwa–Yoneya solution [16], which is a generalization of the solution
constructed by Drukker–Kawamoto [17] in the Lorentzian case. This solution corresponds to a
circular Wilson loop with local operator insertions. The resulting action interpolates the pp-wave
string action and the semiclassical action around the AdS2 as expected. In Section 5 we con-
sider a small deformation of the Wilson loop corresponding to the semiclassical action obtained
in Section 4. The configuration of the Wilson loop is more involved. Section 6 is devoted to a
summary and discussions.

2. Semiclassical limit around a circular solution

In this section, as a warming up, let us consider a classical string solution whose boundary
describes a circular Wilson loop [14] without local operator insertions. Note that the quadratic
string action with respect to the fluctuations has already been computed by Drukker–Gross–
Tseytlin [15]. To make the present paper self-contained, however, we shall rederive the result
of [15] here. Then we show the agreement between the fluctuations around the classical solution
in the string side and those around the circular Wilson loop in the gauge theory.

2.1. Classical solution for a circular Wilson loop

First let us discuss a classical solution describing a circular Wilson loop. We begin with the
string action in the Polyakov formulation and the bosonic part is given by
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(2.1)SB =
√

λ

4π

∫
d2ξ

√
γ γ ij ∂iX

M∂jX
NGMN,

where γij is an auxiliary world-sheet metric and we work in conformal gauge,
√

γ γ ij = δij . The
spacetime metric GMN describes AdS5 × S5 and it is given by

ds2 = 1

z2

(
r2 dθ2 + dr2 + dx2

2 + dx2
3 + dz2) + dΩ2

5 .

Hereafter we will work in Euclidean signature and Poincaré coordinates. See Appendix A for the
detail expressions of vielbeins and spin connections.

The equation of motion reads

(2.2)0 = −∂i

(
δij ∂jX

NGMN

) + 1

2
∂MGPQδij ∂iX

P ∂jX
Q.

The Virasoro constraints to be imposed are

(2.3)0 = GMN

(−ẊMẊN + X′MX′N )
, 0 = GMN

(
ẊMX′N )

.

It is easy to see that

(2.4)z = tanhσ, r = 1

coshσ
, θ = τ

solves the equation of motion (2.2) and the Virasoro conditions (2.3). The classical solution (2.4)
at σ = 0 describes a circular Wilson loop with a unit radius on the boundary

z = 0, r = 1, θ = τ.

Here it is valuable to comment on the relation between a circular loop and a straight line. First
we move to Cartesian coordinates,

z = R tanhσ, x0 = R
sin τ

coshσ
, x1 = R

(
cos τ

coshσ
− 1

)
,

where the radius of the circle R has been recovered. Then let us rescale τ and σ as

τ → τ

R
, σ → σ

R

and take the large R limit. As a result, (2.4) is reduced to a static AdS2 solution

z = σ, x0 = τ, x1 = 0.

At the boundary σ = 0 this solution describes a straight Wilson line.

2.2. Semiclassical limit

Next we consider a semiclassical approximation of the full type IIB string on AdS5 × S5

around the classical solution (2.4).
Let us expand the string action (2.1) about the classical solution (2.4)

z = tanhσ + z̃, r = 1

coshσ
+ r̃ , θ = τ + θ̃ ,

x2,3 = 0 + x̃2,3, ϕi = 0 + ϕ̃i (i = 1, . . . ,5),
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where quantum fluctuations are denoted as the symbols with tilde like X̃. Hereafter the overall
factor of the action (2.1),

√
λ is absorbed into the definition of fluctuations by rescaling the

variables as X̃ → λ−1/4X̃. Then the value of λ should be taken to be large in order for the
semiclassical (quadratic) approximation to be valid.

An additional redefinition of the variables is performed as

r̄ = r̃ cothσ, x̄ = x̃ cothσ, z̄ = z̃ cothσ, θ̄ = θ̃
1

sinhσ
,

and the following quadratic action is obtained,

S2B = 1

4π

∫
d2ξ

[
(∂θ̄)2 + (∂r̄)2 + (∂x̄2)

2 + (∂x̄3)
2 + (∂z̄)2 + (∂ϕ̃i)

2

(2.5)+ 2

cosh2 σ
z̄2 − 4

sinhσ

cosh2 σ
z̄r̄ + r̄2 + 4

coshσ
z̄r̄ ′ + 4r̄ ˙̄θ − 4

sinhσ
z̄ ˙̄θ

]
.

Although one should impose the Virasoro constraints to eliminate the longitudinal modes, it is
not an easy task for small fluctuations. Thus we shall take another course following [15] instead.
Note that the action (2.5) can be rewritten with conformal gauge as follows:

S2B = 1

4π

∫
d2ξ

[
δijDiζ

ADjζ
BδAB + XABζAζB

]
,

(2.6)ζA = (θ̄ , r̄, x̄2, x̄3, z̄; ϕ̄i ).

Here the following quantities have been introduced:

Diζ
A = ∂iζ

A + ΩA
i BζB, ΩA

i B = ∂iX
MΩA

MB, EA
i = ∂iX

MEA
M,

Xab = δabδijEc
i E

d
j δcd − δijEa

i Eb
j ,

Xa′b′ = −δa′b′
δijEc′

i Ed ′
j δc′d ′ + δijEa′

i Eb′
j ,

where EA and ΩA
B are vielbein and spin connection of AdS5 × S5 evaluated with the classical

solution (2.4). In the present case we obtain

Diζ
0 =

(
∂τ ζ

0 − 1

s
ζ 4 + ζ 1, ∂σ ζ 0

)
, Diζ

1 =
(

∂τ ζ
1 − ζ 0, ∂σ ζ 1 + 1

c
ζ 4

)
,

Diζ
4 =

(
∂τ ζ

4 + 1

s
ζ 0, ∂σ ζ 4 − 1

c
ζ 1

)
, Diζ

a = ∂iζ
a (a = 2,3,5, . . . ,9),

XAB = diag

(
1

s2
,

2

s2
− 1

c2
,

2

s2
,

2

s2
,

2

s2
− 1

c2s2
;0,0,0,0,0

)
+ 2

c2s
δ
(A
1 δ

B)
4 .

Here the following abbreviations have been introduced:

(2.7)s ≡ sinhσ, c ≡ coshσ.

Then the mass term for ζ 1 and ζ 4 can be expressed as

(
ζ 1, ζ 4)( 2

s2 − 1
c2

1
c2s

1
c2s

2
s2 − 1

c2s2

)(
ζ 1

ζ 4

)
,

and it is diagonalizable by taking the following linear combination(
ζ̃ 1

˜4

)
=

( s
c

− 1
c

1 s

)(
ζ 1

4

)
.

ζ
c c

ζ
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The mass eigenvalues are given by

X̃AB = diag

(
1

s2
,

1

s2
,

2

s2
,

2

s2
,

2

s2
;0,0,0,0,0

)
.

The new linear combination has been introduced and then the covariant derivative accordingly
turn to be

Dζ 0 = ∇ζ 0, Dζ 1 =
(

s

c
∇τ ζ̃

1 + 1

c
∂τ ζ̃

4,
s

c
∇σ ζ̃ 1 + 1

c
∂σ ζ̃ 4

)
,

Dζ 4 =
(

−1

c
∇τ ζ̃

1 + s

c
∂τ ζ̃

4,−1

c
∇σ ζ̃ 1 + s

c
∂σ ζ̃ 4

)
,

where we have defined

∇iζ
0 ≡

(
∂τ ζ

0 − c

s
ζ̃ 1, ∂σ ζ 0

)
, ∇i ζ̃

1 ≡
(

∂τ ζ̃
1 + c

s
ζ 0, ∂σ ζ̃ 1

)
.

Substituting the above quantities into the action, the resulting action is

S2B = 1

4π

∫
d2ξ

[
δijDi ζ̂

ADj ζ̂
A + X̃ABζ̂Aζ̂ B

]
,

ζ̂ A = (
ζ 0, ζ̃ 1, ζ 2, ζ 3, ζ̃ 4, ζ 5, . . . , ζ 9), Dζ̃ 1 = ∇ ζ̃ 1, Dζ̃ 4 = ∂ζ̃ 4.

Let us write it as the action on the two-dimensional induced metric

(2.8)gij = 1

s2
δij , R(2) = −2,

so that

S2B = 1

4π

∫
d2ξ

√
g

[
gijDi ζ̂

ADj ζ̂
A + s2X̃ABζ̂Aζ̂ B

]
.

Imposing Virasoro constraints is equivalent to removing the longitudinal modes by adding the
ghost action

(2.9)Sgh = 1

2

∫
d2ξ

√
g

[
gij∇iε

α∇j ε
α − 1

2
R(2)εαεα

]
.

We choose gij as the induced metric (2.8). The covariant derivative is defined as

∇iε
α ≡ ∂iε

α + ωα
i βεβ,

where ω is the two-dimensional spin connection: ω0
1 = − c

s
dτ , then

∇iε
0 =

(
∂τ ε

0 − c

s
ε1, ∂σ ε0

)
, ∇iε

1 =
(

∂τ ε
1 + c

s
ε0, ∂σ ε1

)
.

The ghost action is the same as that of ζ 0 and ζ̃ 1. Thus these modes may be eliminated by the
constraints. The final gauge-fixed action is

S2B = 1

4π

∫
d2ξ

√
g
[
gij ∂i ζ̂

A∂j ζ̂
A + 2

(
ζ 2)2 + 2

(
ζ 3)2 + 2

(
ζ̃ 4)2]

,

(2.10)ζ̂ A = (
ζ 2, ζ 3, ζ̃ 4, ζ 5, . . . , ζ 9).
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This action contains three massive bosons with m2 = 2 and five massless bosons propagating on
EAdS2. The fluctuations respect an SO(3) × SO(5) symmetry, which is also preserved by the
circular Wilson loop.

The resulting action (2.10) is the same as the straight Wilson line case. This result is not
so surprising since the difference between a straight Wilson line and a circular Wilson loop is
the behavior at infinity and it only gives an anomalous contribution to the value of the action.
However the local behavior around a finite point should not be different.

Finally, let us comment on the fermionic fluctuations. The quadratic action is

S2F = i

2π

∫
d2ξ

[√
ggij δIJ − εij σ IJ

3

]
θ̄ I ρiDjθ

J ,

Diθ
I = ∂iθ

I + 1

4
ΩAB

i ΓABθI − i

2
εIJ

(
Ea

i Γa + iEa′
i Γa′

)
θJ , ρi = EA

i ΓA,

where E and Ω are evaluated with the classical solution. After rotating the spinor basis so that
a two-dimensional spinor covariant derivative is manifest, and fixing κ-symmetry appropriately,
the mass squared for the fermions is m2 = 1 and the mass term is proportional to ϑ̄Γ01ϑ [15]
(where ϑ is the rotated spinor). Thus the SO(3)×SO(5) symmetry is not broken by the fermions.

3. Small deformations of circular Wilson loop

From now on let us discuss the corresponding gauge-theory operator describing the fluctua-
tions obtained in the previous section by following [10,18].

Let us consider a Wilson loop

(3.1)W(C) = TrPW, W ≡ exp
(∮

ds
(
iAμẋμ + φiẏ

i
)) = exp

(∮
ds

(
iAMẎM

))
,

where ẎM = (ẋμ,−iẏi ). The supersymmetry transformation

δεAμ = iΨ̄ Γμε, δεφi = iΨ̄ Γiε,

gives the following expression

δεW(C) = TrP
[
iδεAMẎMW

] = TrP
[−ẎMΨ̄ Γ MεW

]
.

Thus the Wilson loop (3.1) is invariant under supersymmetry transformation if ẎMΓMε = 0. The
locally supersymmetry condition is derived as the integrability

(
ẎMΓM

)2 = ẎMẎNηMN = (
ẋμ

)2 − (
ẏi

)2 = 0.

We are interested in a circular Wilson loop configuration C0,

x
μ
C0

= (
R sin s,R(cos τ − 1),0,0

)
, ẏi

C0
= (0,0,0,0,0,R)

where R is the radius of the loop. Because A0 dx0 + A1 dx1 = Ar dr + Aθr dθ , we have
[
iAμẋμ + φiẏ

i
]∣∣

C0
= R(iAθ + φ6).

Hence the Wilson loop W(C0) is

W(C0) = TrP [WC0 ], WC0 = exp
(∮

ds R(iAθ + φ6)
)
,
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which satisfies the locally supersymmetric condition. We identify W(C0) as the vacuum opera-
tor.

Let us consider a small deformation of C0: C = C0 + δC,

xμ(C) = xμ(C0) + δxμ, ẏi(C) = ẏi (C0) + δẏi .

The Wilson loop can be expanded as

W(C) = W(C0) +
∮

ds δxμ(s)
δW(C)

δxμ(s)

∣∣∣∣
C0

+
∮

ds δẏi(s)
δW(C)

δẏi(s)

∣∣∣∣
C0

+ · · ·

= W(C0) +
∮

ds
(
δxμ TrP

[
i
(
FμNẎN

)
W

]∣∣
C0

+ δẏi TrP [φiW]∣∣
C0

) + · · · ,
where ellipsis implies higher order fluctuations. Note that

(3.2)δxμ(s)
δW(C)

δxμ

∣∣∣∣
C0

= δθ(s)TrPR(Dθφ6)sWC0 + δxa(s)TrP(iFaθ + Daφ6)sWC0,

(3.3)δẏi δW(C)

δẏi

∣∣∣∣
C0

= δẏi TrP(φi)sWC0,

where a = r,2,3.
We require that a small deformation should satisfy the locally supersymmetry condition, that

is

0 = (Ẏ + δẎ )2 = (
ẋμ + δẋμ

)2 − (
ẏi + δẏi

)2
.

This condition implies

0 = ẋμδẋμ − ẏiδẏi = R
(
δθ̇ − δẏ6).

On the other hand, by using an SO(2), we can impose the condition to the fluctuations,

0 = δθ̇ + δẏ6,

so that δθ̇ = 0 and δẏ6 = 0. The former means δθ = 0. As a result we are left with impurities

(3.4)R(iFaθ + Daφ6) (a = r,2,3), φa′ (a′ = 1,2, . . . ,5).

Thus the resulting dictionary of impurity insertion is the same as in the case of straight line, up to
the appearance of the radius parameter R. This can be absorbed into the definition of s by s → s

R
which corresponds to τ → τ

R
.

This impurity insertion respects an SO(3)×SO(5) symmetry, which is also a symmetry of the
quadratic action derived in Section 2. As expected, the conformal dimensions of these impurities
agree with the mass dimensions of fluctuations � = 1

2 (1 + √
1 + 4m2 ):

�
(
ζ 2, ζ 3, ζ̃ 4) = 2, �

(
ζ i

) = 1 (i = 1, . . . ,5).

The mass dimensions of fermionic fluctuations � = 1
2 (1 + 2|m|) is

�
(
ϑα

) = 3

2
(α = 1, . . . ,8),

since m2 = 1. Thus we expect that the eight fermionic impurities with conformal dimension 3
2

are inserted in the Wilson loop as well as bosonic impurities (3.4). This expectation is correct as
we show in Appendix B.
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4. Semiclassical limit around Miwa–Yoneya solution

As the second issue we consider a rotating classical solution in which the boundary is a cir-
cular Wilson loop with local operator insertions. The classical solution was constructed in [16].
This solution is a generalization of [17], which was constructed for a straight Wilson line in
Lorentzian signature. We will examine a correspondence between the fluctuation about the clas-
sical solution and small deformation of the circular Wilson loop with local operator insertions.

4.1. Classical solution for a circular Wilson loop with local operator insertions

First of all, let see the classical solution found in [16]. We work in Euclidean AdS5 × S5 with
the Poincaré coordinates (see Appendix A for vielbeins and spin connections)

(4.1)ds2 = 1

z2

(
dx2

i + dz2) + cos2 θ dψ2 + dθ2 + sin2 θ dΩ2
3 .

The solution corresponding to a circular Wilson loop with the local operator insertions is given
by [16]

(4.2)z = � sinhσ

coshσ cosh τ ± α
, x0 = � coshσ sinh τ

coshσ cosh τ ± α
, x1 = ±�

√
1 − α2

coshσ cosh τ ± α

for the AdS5 part, and

(4.3)ψ = τ, cos θ = tanhσ

for the S5 part. The parameter α parametrizes the radius of the loop R like

(4.4)R = �√
1 − α2

.

Note that we have performed a Wick rotation as ψ → −iψ following [16,19]. That is why we
can define a sensible angular momentum even in Euclidean signature. But we should keep it in
mind that the signature of dψ2 in the metric (4.1) is flipped as −dψ2 due to the Wick rotation
of ψ .

We can easily see that (4.2) and (4.3) solve the equation of motion (2.2), and the Virasoro
constraints (2.3). The classical solution for the AdS5 part (4.2) consists of the two patches cor-
responding to the upper and lower signs in (4.2). The parameter α takes the value in 0 � α � 1.
When α 	= 1, it is a circular Wilson loop, while when α = 1, a straight Wilson loop. For α = 1,
we can see that R = ∞ from (4.4).

The boundary of the string worldsheet is at z = 0. The Wilson loop at z = 0 corresponds to
(σ, τ ) = (0, τ ) and (σ, τ ) = (∞,±∞), where local operators are inserted at latter two points.

4.2. Semiclassical limit

Next lets us consider a semiclassical action around the solution (4.2) and (4.3).
The quadratic action around the classical solution (4.2) and (4.3) is basically given by (2.6),

where the covariant derivatives and mass matrices are replaced by
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Diζ
0 =

(
∂τ ζ

0 − ẋ0

z
ζ 4, ∂σ ζ 0 − x′

0

z
ζ 4

)
, Diζ

1 =
(

∂τ ζ
1 − ẋ1

z
ζ 4, ∂σ ζ 1 − x′

1

z
ζ 4

)
,

Diζ
4 =

(
∂τ ζ

4 + ẋ0

z
ζ 0 + ẋ1

z
ζ 1, ∂σ ζ 4 + x′

0

z
ζ 0 + x′

1

z
ζ 1

)
,

Diζ
5 = (

∂τ ζ
5 − sin θψ̇ζ 6, ∂σ ζ 5), Diζ

6 = (
∂τ ζ

6 + sin θψ̇ζ 5, ∂σ ζ 6),
Diζ

a = ∂iζ
a (a = 2,3,7,8,9),

and

Xab = diag

(
(∂x1)

2 + (∂z)2

z2
,
(∂x0)

2 + (∂z)2

z2
,
(∂x0)

2 + (∂x1)
2 + (∂z)2

z2
,

(∂x0)
2 + (∂x1)

2 + (∂z)2

z2
,
(∂x0)

2 + (∂x1)
2

z2

)

− 2

z2
∂x0∂x1δ

(A
0 δ

B)
1 − 2

z2
∂x0∂zδ

(A
0 δ

B)
4 − 2

z2
∂x1∂zδ

(A
1 δ

B)
4 ,

Xa′b′ = diag
(−θ ′2,− cos2 θψ̇2,− cos2 θψ̇2 − θ ′2,− cos2 θψ̇2 − θ ′2,− cos2 θψ̇2 − θ ′2),

respectively. Here we should note that an additional term should be added to the action because
of the presence of a conserved charge associated with ψ . The only effect of adding the term is to
change the sign of the kinetic term of ψ , and that is why we arrive at the same action even after
the Wick rotation of ψ .

Then we shall diagonalize the mass matrix for ζ 0, ζ 1 and ζ 4,

X =

⎛
⎜⎜⎝

(∂x1)
2+(∂z)2

z2 − ∂x0∂x1
z2 − ∂x0∂z

z2

− ∂x0∂x1
z2

(∂x0)
2+(∂z)2

z2 − ∂x1∂z

z2

− ∂x0∂z

z2 − ∂x1∂z

z2
(∂x0)

2+(∂x1)
2

z2

⎞
⎟⎟⎠ .

For this we need to know the eigenvalues and eigenvectors

Xv(i) = e(i)v(i) (i = 0,1,4).

It is straightforward to derive the eigenvalues

e(0) = 1

sinh2 σ
, e(1) = cosh2 σ

sinh2 σ
, e(4) = 1 + cosh2 σ

sinh2 σ
.

The corresponding eigenvectors are found to be

vT
(0) =

(
α cosh τ + coshσ

a
,−

√
1 − α2 sinh τ

a
,− sinh τ sinσ

a

)
,

vT
(1) =

(
α sinhσ sinh τ

a
,−

√
1 − α2 sinhσ cosh τ

a
,
α coshσ + cosh τ

a

)
,

vT
(4) =

(√
1 − α2 coshσ sinh τ

a
,
α coshσ sinh τ + 1

a
,

√
1 − α2 sinhσ

a

)
,

where

vT
(i)v(j) = δij , a = coshσ cosh τ + α.
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Therefore we find

V −1XV = diag(e(0), e(1), e(4)), V = (v(0), v(1), v(4)).

It follows that

ζ T Xζ = ζ̃ T V −1XV ζ̃ = e(0)

(
ζ̃ 0)2 + e(1)

(
ζ̃ 1)2 + e(4)

(
ζ̃ 4)2

, ζ̃ = V T ζ.

Thus we have obtained the diagonalized mass-matrix

X̃AB = diag

(
1

s2
,
c2

s2
,
c2 + 1

s2
,
c2 + 1

s2
,
c2 + 1

s2
; −1

c2
,
s2

c2
,
s2 − 1

c2
,
s2 − 1

c2
,
s2 − 1

c2

)
.

Here we have used the notation (2.7).
Next let us examine the kinetic terms for ζ 0, ζ 1 and ζ 4. Then we see that

Dζ 0 = 1

a

(
(α cosh τ + coshσ)∇ ζ̃ 0 + α sinhσ sinh τ∇ ζ̃ 1 +

√
1 − α2 coshσ sinh τ∂ζ̃ 4),

Dζ 1 = 1

a

(−√
1 − α2 sinh τ∇ ζ̃ 0 −

√
1 − α2 sinhσ cosh τ∇ ζ̃ 1

+ (α coshσ cosh τ + 1)∂ζ̃ 4),
Dζ 4 = 1

a

(− sinhσ sinh τ∇ ζ̃ 0 + (α coshσ + cosh τ)∇ ζ̃ 1 +
√

1 − α2 sinhσ∂ζ̃ 4),
where the following quantities have been introduced

(4.5)∇ ζ̃ 0 ≡
(

∂τ ζ̃
0 − 1

sinhσ
ζ̃ 1, ∂σ ζ̃ 0

)
, ∇ ζ̃ 1 ≡

(
∂τ ζ̃

1 + 1

sinhσ
ζ̃ 0, ∂σ ζ̃ 1

)
.

These expressions lead us to
(
Dζ 0)2 + (

Dζ 1)2 + (
Dζ 4)2 = (∇ ζ̃ 0)2 + (∇ ζ̃ 1)2 + (

∂ζ̃ 4)2
.

Thus we have obtained

S2B = 1

4π

∫
d2ξ

[
Dζ̃ADζ̃A + X̃ABζ̃Aζ̃ B

]
, Dζ̃ 0,1 = ∇ ζ̃ 0,1, Dζ̃ 4 = ∂ζ̃ 4,

ζ̃ A = (
ζ̃ 0, ζ̃ 1, ζ 2, ζ 3, ζ̃ 4; ζ 5, . . . , ζ 9).

We have derived the eigenvalues of the mass matrix in the bosonic sector so far. It seems to be
difficult to add the ghost action so that it should delete the unphysical longitudinal modes in the
matrix. Actually, we have not completed this step and we will leave it as a future problem. Instead
of trying to delete the unphysical modes from the full action, let us consider the Lagrangian
density in the two special regions, (1) σ = 0 and (2) σ = ∞. For the former case we expect that
the Lagrangian density should behave as that in Section 2. For the latter case the Lagrangian
density is expected to be the one for the pp-wave string action.

4.3. The fluctuations near σ = 0

The ghost action (2.9) is introduced as before. Let us consider the two-dimensional metric

(4.6)gij = cosh2 σ

sinh2 σ
dτ 2 + 1

sinh2 σ
dσ 2, R(2) = −2,
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which is AdS2 and corresponds to the induced metric of AdS5 part only. The covariant derivative
is defined by

∇iε
α ≡ ∂iε

α + ωα
i βεβ,

where ω is the two-dimensional spin connection: ω0
1 = − 1

s
dτ , then

∇iε
0 =

(
∂τ ε

0 − 1

sinhσ
ε1, ∂σ ε0

)
, ∇iε

1 =
(

∂τ ε
1 + 1

sinhσ
ε0, ∂σ ε1

)
.

Thus we see that the covariant derivative defined in (4.5) is nothing but two-dimensional covari-
ant derivative.

The mass dimension of a fluctuation is derived through its behavior near the boundary. Hence
we examine fluctuations near σ = 0. Let us rewrite S2B = ∫

d2ξ L2B by using (4.6). Near σ = 0,

L2B ≈ 1

4π

√
g

[
gijDi ζ̃

ADj ζ̃
A + (

ζ̃ 0)2 + (
ζ̃ 1)2 + 2

∑
i=2,3,4

(
ζ̃ i

)2
]
.

Here we note that the contribution of fluctuations ζ̃ 0 and ζ̃ 1 is the same form as the ghost action
near σ = 0, so that it is canceled out by the ghost contribution. In addition we should note that
gijDi ζ̃

aDj ζ̃
a ≈ gij ∂i ζ̃

a∂j ζ̃
a (a = 5,6).

As a result, we are left with three massive bosons with m2 = 2 and five massless bosons
propagating in AdS2. The symmetry preserved by the fluctuations is SO(3) × SO(5). The mass
dimensions � = 1

2 (1 + √
1 + 4m2 ) corresponding to the fluctuations are

�
(
ζ̃ i

) = 2 (i = 2,3,4), �
(
ζ̃ a′) = 1 (a′ = 5,6, . . . ,9).

Thus we have reproduced the dictionary obtained in Section 3 and [13] as expected. As the
induced metric reduces to (2.8) near σ = 0, the fermionic fluctuations are the same as those given
in Section 2.2. The mass dimensions of fermionic fluctuations are �(ϑα) = 3

2 (α = 1, . . . ,8).

4.4. The fluctuations near σ = ∞

In the region near σ = ∞ we should introduce the ghost action (2.9) with flat two-dimensional
metric

(4.7)gij = dτ 2 + dσ 2, R(2) = 0.

Then we can see that the longitudinal modes are canceled out with the ghost action as follows.
First let us consider the fluctuations in the neighbor of σ = ∞. Then by using (4.7) L2B can

be rewritten as

L2B ≈ 1

4π

√
g

[
gijDi ζ̃

ADj ζ̃
A +

∑
i 	=0,5

(
ζ̃ i

)2
]
,

where Diζ̃ ≈ ∂i ζ̃ . The contribution of fluctuations ζ̃ 0 and ζ̃ 5 is the same form as the ghost action,
hence it is canceled out by the ghost contribution. Thus we are left with eight massive bosons with
m2 = 1 propagating in the two-dimensional flat space. The fermionic fluctuations with m2 = 1
break SO(8) to SO(4) × S(4) (see for example [20]). This is nothing but the Lagrangian density
of a pp-wave string.
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5. Small deformations of circular Wilson loop

Let us consider the quadratic fluctuations discussed in the previous section as a small defor-
mation of a circular Wilson loop with local operator insertions.

The classical solution given by (4.2) and (4.3) is attaching to the boundary. The boundary
of the classical string worldsheet can be seen as a circle on R

4. The classical solution on the
boundary is described by

xμ =
(

� sinh τ

cosh τ ± α
,
±�

√
1 − α2

cosh τ ± α
,0,0

)
,

and the circle is represented by

(x0)
2 + (x1 + αR)2 = R2, R = �√

1 − α2
.

That is, the radius of the loop is R and its center is located at (x0, x1) = (0,−αR). It is also
convenient to introduce radial coordinates r and θ

x̃μ = (x0, x1 + αR,x2, x3) = (r sin θ, r cos θ, x2, x3).

Then the circle lies along (r, θ) = (R, s).
We are now considering the local operator insertions ZJ and Z̄J . Here we define Z ≡ φ1 + iφ2

and Z̄ ≡ φ1 − iφ2. As explained in [16], ZJ and Z̄J are inserted at τ = −∞ and τ = +∞,
respectively. That is, ZJ and Z̄J are inserted at s = s1, s2 with (x0, x1) = (−�,0) and (+�,0),
respectively.

Let us consider the Wilson loop

W(C) = TrW, W = P exp
(∮

ds
(
iAμ

(
x(s)

) ˙̃xμ
(s) + φi

(
x(s)

)
ẏi (s)

))
.

The following expressions are useful later:

δ

δxμ(s)
W = P

(
iFμνẋ

ν(s) + Dμφiẏ
i(s)

)
W,

δ

δẏi(s)
W = Pφi(s)W .

Let us take C0 as

C0:

⎧⎨
⎩

x̃μ = (R sin s,R cos s,0,0), ẏi = (0,0,0,0,0,R), s 	= s1, s2,

x̃μ = (R sin s1,R cos s1,0,0), ẏi = (1, i,0,0,0,0), s = s1,

x̃μ = (R sin s2,R cos s2,0,0), ẏi = (1,−i,0,0,0,0), s = s2,

then

W(C0) = TrP
[
e
∮

Z(s1)e
∮

Z̄(s2) exp
(∮

ds R
(
iAθ

(
θ(s)

) + φ6
(
θ(s)

)))]

=
∑
J,J ′

1

J !J ′! TrP
[
Z(s1)

J Z̄(s2)
J ′

exp
(∮

ds R
(
iAθ

(
θ(s)

) + φ6
(
θ(s)

)))]
,

which does not vanish only when J = J ′.
We may consider three kinds of impurity insertions as depicted in Fig. 1. Let us consider each

of the cases below.
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Fig. 1. The impurity insertions onto the circular Wilson loop with the local operator insertions. Three types of insertions
can be considered. For (i) the insertion obeys the rule for the circular case without the local operators. For (ii) the insertion
rule is given by the BMN dictionary. The case (iii) is a complex conjugate of (ii).

5.1. A small deformation at s 	= s1, s2

Let us consider a small deformation of C0 at s 	= s1, s2. This corresponds to the case (i) in
Fig. 1. The Wilson loop W(C) is expanded as

W(C) = W(C0) +
∮

ds
(
δxμ TrP

[(
iFμνẋ

ν + Dμφiẏ
i
)
W

]∣∣
C0

+ δẏi TrP [φiW]|C0

) + · · ·
where ellipsis are higher order fluctuations. One derives Eqs. (3.2) and (3.3) with

WC0 =
∑
J

1

J !J !Z(s1)
J Z̄(s2)

J exp
(∮

ds R(iAθ + φ6)
)
.

As in Section 3, by requiring that the small deformation should meet locally supersymmetry
condition 0 = (Ẏ + δẎ )2, and by using an SO(2), we have δẏ6 = 0 and δθ = 0. As a result we
are left with impurities (3.4). As expected, the conformal dimensions of these impurities agree
with the mass dimensions of fluctuations � = 1

2 (1 + √
1 + 4m2 ):

�
(
ζ̃ i

) = 2 (i = 2,3,4), �
(
ζ̃ a′) = 1 (a′ = 5, . . . ,9).

This is nothing but the dictionary for the gauge-theory operators corresponding to the fluctuations
around the circular solution (non-relativistic string) [10].

5.2. A small deformation at s = s1, s2

Next let us expand W(C) around C0 at s = s1. This corresponds to the cases (ii) and (iii) in
Fig. 1. The argument here basically follows [18].

In this case the Wilson loop can be expanded as

W(C) = W(C0) +
∮

ds
(
δxμ TrP

[
DμZ(s1)W

]∣∣
C0

+ δẏi TrP
[
φi(s1)W

]∣∣
C0

) + · · · .
By requiring that the small fluctuations should satisfy the locally supersymmetry condition, we
obtain the following condition,

δẏ1 + iδẏ2 = 0.
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In addition a reparametrization invariance allows us to fix the fluctuations as

δẏ1 − iδẏ2 = 0.

Thus we can impose the condition δẏ1 = δẏ2 = 0.
As a result, we are left with impurities inserted at s = s1,

DμZ (μ = 0,1,2,3), φi (i = 3,4,5,6).

Similarly, for a small deformation at s = s2 we have the impurities inserted at s = s2,

DμZ̄ (μ = 0,1,2,3), φi (i = 3,4,5,6).

The impurities respect SO(4) × SO(4) symmetry. This dictionary is nothing but the BMN one.
In summary, the resulting dictionary says that the impurity insertion at the local operators

should follow the BMN-dictionary and other than the position of local operators it should follow
the dictionary we obtained in [10].

6. Summary and discussion

We have discussed a semiclassical approximation around the classical solutions corresponding
to circular Wilson loops without/with local operator insertions ZJ and Z̄J . We have derived a
quadratic action for each of the cases and identified the fluctuations with small deformations of
the Wilson loop. With the local insertions the action behaves as the non-relativistic string around
σ = 0, while it as the pp-wave string around σ = ∞.

The dictionary of operator insertion has been clarified from the viewpoint of a small deforma-
tion of Wilson loops without/out local operator insertions. Without the local operators it is the
same as in the case of straight Wilson line. With them we have discussed it around σ = 0 and
σ = ∞. Near σ = 0 it is the same as in the case of the circular Wilson loop without the local
operators. Near σ = ∞ it is nothing but the BMN one as expected. This result nicely agrees with
the behavior of the quadratic fluctuations.

For the case of the circular Wilson loop with local operator insertions, it remains as a problem
to be solved to find a ghost terms to remove the unphysical longitudinal modes for an arbitrary σ .
It would be interesting to compute a semiclassical partition function after solving these problems.

One may consider a spin chain description for the circular Wilson loop case. The gauge-theory
analysis is discussed in [17]. The remaining work is to construct circular Wilson loop solutions
rotating with two or more spins and compare them with the gauge-theory results. A part of this
issue has already been discussed in [21].

It is also nice to consider a semiclassical analysis to a dual giant Wilson loop [22]. A ro-
tating dual giant Wilson loop solution has been already constructed in [23]. By following this
paper, one can discuss the semiclassical limit around the solution and it is possible to deduce the
corresponding gauge-theory side.

We believe that our approach would give a new window to test the AdS/CFT duality.
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Appendix A. Vielbeins and spin connections for AdS5 × S5

Let us summarize vielbeins and spin connections of AdS5 × S5. The metric utilized in Sec-
tion 2 is slightly different from the one in Section 4. In both of them we set the common radius
of AdS5 and S5 to be 1.

A.1. The metric in Section 2

The EAdS5 metric in the Poincaré coordinate system, which was used in Section 2, is given
by

ds2 = 1

z2

(
r2 dθ2 + dr2 + dx2

2 + dx2
3 + dz2).

Here the two-dimensional subspace is described by a polar coordinate. The vielbein and spin
connection are

Ea =
(

r

z
dθ,

1

z
dr,

1

z
dx2,

1

z
dx3,

1

z
dz

)
,

Ω1
4 = −1

z
dr, Ω0

4 = − r

z
dθ, Ω0

1 = dθ, Ω2
4 = −1

z
dx2, Ω3

4 = −1

z
dx3.

Then we choose the metric of S5 as

ds2 = dϕ2
1 + cos2 ϕ1

(
dϕ2

2 + cos2 ϕ2
(
dϕ2

3 + cos2 ϕ3
(
dϕ2

4 + cos2 ϕ4 dϕ2
5

)))
.

The vielbein and spin connection are

Ea′ = (dϕ1, cosϕ1 dϕ2, cosϕ1 cosϕ2 dϕ3, cosϕ1 cosϕ2 cosϕ3 dϕ4,

cosϕ1 cosϕ2 cosϕ3 cosϕ4 dϕ5),

Ω6
5 = − sinϕ1 dϕ2, Ω7

5 = − sinϕ1 cosϕ2 dϕ3, Ω7
6 = − sinϕ2 dϕ3,

Ω8
5 = − sinϕ1 cosϕ2 cosϕ3 dϕ4, Ω8

6 = − sinϕ2 cosϕ3 dϕ4, Ω8
7 = − sinϕ3 dϕ4,

Ω9
5 = − sinϕ1 cosϕ2 cosϕ3 cosϕ4 dϕ5, Ω9

6 = − sinϕ2 cosϕ3 cosϕ4 dϕ5,

Ω9
7 = − sinϕ3 cosϕ4 dϕ5, Ω9

7 = − sinϕ4 dϕ5.

A.2. The metric in Section 4

The EAdS5 metric in the Poincaré coordinate system, which was used in Section 4, is given
by

ds2 = 1
2

(
dx2

i + dz2),

z
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where i = 0, . . . ,3 and the four-dimensional subspace is described by Cartesian coordinates. The
vielbein and spin connection are

Ea =
(

1

z
dx0,

1

z
dx1,

1

z
dx2,

1

z
dx3,

1

z
dz

)
,

Ωi
4 = −1

z
dxi (i = 0, . . . ,3).

Then the metric of S5 is chosen as

ds2 = cos2 θ dψ2 + dθ2 + sin2 θ
(
dϕ2

1 + cos2 ϕ1
(
dϕ2

2 + cos2 ϕ2 dϕ2
3

))
.

The vielbein and spin connection are computed as follows:

Ea′ = (cos θ dψ,dθ, sin θ dϕ1, sin θ cosϕ1 dϕ2, sin θ cosϕ1 cosϕ2 dϕ3),

Ω5
6 = − sin θ dψ, Ω7

6 = cos θ dϕ1, Ω8
6 = cos θ cosϕ1 dϕ2, Ω8

7 = − sinϕ1 dϕ2,

Ω9
6 = cos θ cosϕ1 cosϕ2 dϕ3, Ω9

7 = − sinϕ1 cosϕ2 dϕ3, Ω9
8 = − sinϕ2 dϕ3.

Appendix B. Fermionic fluctuations of Wilson loop

A supersymmetrized Wilson loop, which is proposed in [24], is given by

W = 1

N
TrP

[
e
∫

ζ̄ (s)Qdse
∫
(iAμẋμ+φi ẏ

i ) dse− ∫
ζ̄ (s)Qds

]
.

Here the loop includes a superpartner of (xμ(s), yi(s)), which couples to the fermion Ψ . The
supersymmetry transformation in N = 4 SYM is given by

[Q,AM ] = i

2
ΓMΨ, {Q,Ψ } = −1

4
ΓMNFMN,

and the following relation may also be included:

[Q, ẋM ] = i

4
ΓMζ̇ .

A small deformation for the fermionic variables may be considered. By setting that ζ = ζ̄ = 0
on C0, the only contribution is evaluated as

δW |fermion = 1

N

∫
ds TrP

[
δζ̄ (s)RΓθ (1 − iΓθ6)Ψ e

∫
(iAμẋμ+φi ẏ

i ) ds
]
.

Here note that the matrix defined as

P ≡ 1

2
(1 − iΓθ6)

is a projection operator. The original fermionic variable Ψ has 16 components but it projects out
half of it. As a result, the physical eight components of the fermionic variables remain.

Thus the operator insertion for the fermionic fluctuations are described by the eight fermionic
variables. We have discussed the circular case so far, but the argument for the straight line is
the same. It is also the same even for the BMN case, where the eight fermions iΓ1h+Ψ (h+ =
1 (1 + iΓ12)) are inserted.
2
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