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A b e t r a c t - - T h e  identification of parameters  in mode I,, of s t ructural  and mechanical systems k an 
impor tan t  problem. The  usual approaches are sncccaaive approximation ,¢..hemes which require good 
initial guesacs for rapid convergence. T h k  paper  show. how such initial approximatiorm may be 
obtained. Notiona from the field oi artificial neural network,  are uaed. In fact, new adaptive achem~ 
for learning are prmcnted and used in parameter  ¢atimation for bo th  l inear and nonlinear .y.tem~. 

1. INTRODUCTION 

Parameter identification of structural and mechanical systems has become a very important field 
in the area of applied mechanics [1,2]. This is motivated by the need to accurately predict the 
response of such systems and/or to be able to control them so that they can perform their func- 
tions adequately [2]. Areas such as the adaptive control of robot manipulators, and structural 
vibration control of mechanical, aerospace and civil engineering structures [3-5], require that 
the parameters that model the physical system be identified appropriately. Mcmt of the time, 
parameter identification, even for linear mechanical systems, results in a nonlinear optimization 
problem requiring an iterative approach to its solution [6,7]. Several on-line and off-line methods 
have been developed in the past, most of them based on different variants of the Gauss-Newton 
method. Probabilistic formulations such as maximum likelihood and the extended Kalman filter 
have been developed as also continuation and homotopy methods [1,7-9]. Yet, the basic problem, 
when facing the identification of a large number of parameters from input-output data, is caused 
by the fact that the objective function surface may have multiple minima and therefore conver- 
gence to the correct parameters is iteratively possible only when one starts from a close enough 
initial guess of the parameters to be identified [2,10]. Furthermore, for large spatially extended 
complex systems the nature of the inverse problem has in it the inherent possibility of yielding 
nonunique parameter estimates when using response data obtained from a few locations in the 
system; this, even in the absence of measurement noise [11]. 

An alternative method of performing such system identification is to use an associative memory 
approach [12,13]. IIere, rather than iteratively solving the inverse problem for a given input- 
response pair as is commonly done in on-line identification, the forward problem is repeatedly 
solved for various input-response pairs, and a memory matrix is adduced which optimally as- 
sociates the inputs with the outputs. The identification method relies on providing sufficient 
'training' (i.e., expo6ure to different input-response pairs) for an adequate knowledge base to be 
acquired. Thus when the identification scheme is later presented with a given input (output), it 
can then estimate the output (input) that corresponds to it. Different learning schemes that de- 
velop the memory matrix that maps the input to the output have been developed. The literature 
on neural networks, linear associated memories and bidirectional associative memories provides 
procedures for doing this [1,6,12-17]. 
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Yet, the underlying approach provided in this paper differs significantly from those so far 
utilized in the neural network literature. W~hen viewing a dynamic system via a neural net model, 
the system's model is primarily encapsulated in the "connections weights" (which are functions 
of the parameters to be identified). These are usually sought by training the system through 
an appropriate set of input-output training pairs [17]. For mechanical systems, the unknown 
physical parameters, like the stiffness and inertia of a system, are related to the weights; various 
dynamic loads are provided to the system, and its time history of response to these loads is 
used for training the network. Most of the approaches used to date in structural applications 
perform history matching and iteratively update the weights of the neural model, a procedure 
often tantamount to performing a gradient search. For example, Rehak et al. [18] have applied 
the simple back propagation method to identify the parameters of a simple mechanical linear 
dynamic system using a given set of force inputs and response pairs. The weights were functions 
of the stiffness, the damping and the inertial properties of the system. They were unable to 
obtain any meaningful results despite the large number of learning steps that they used. 

In the approach used here the learning 'input' to the system constitutes directly the system 
parameters. This has two important advantages: (1) we always solve forward problems, which are 
usually much easier to handle than their inverse counterparts; (2) the behavior of these forward 
solutions is better understood than tho~e of inverse problems; and (3) we can parameterize the 
dynamic loading, thereby obtaining estimates of both the input to the system as well as its 
parameters (see Example 1 in Section 3 below). It is this conceptual difference involving what 
constitutes an 'input' to the system for purposes of training it, that we believe is responsible for 
the unusually good performance of the technique to be described herein in comparison with some 
of the results of previous investigators that have used procedures that may fall under rubric of 
neural nets. 

We consider here systems whose models we assume are known in structure. The values of 
the parameters describing the models need identification. Furthermore we assume that train- 
ing is constituted by providing to the identification scheme, sets of parameter values and the 
respective time histories of responses. The dynamic inputs are taken to be known or described 
by parameters which also need to be identified. Thus for each vector of parameters p, in a 
training set {Pl ~P3  . . .P ,}  we determine, on the basis of the model we have, the corresponding 
response vector r~. The set of responses ( r , r~ra. . . r . }  along with the set (p,} are then used 
to generate a memory matrix M. Then, for a given observed response vector r ' ,  an estimate of 
the corresponding parameter vector p" is obtained by setting p" = Mr ' .  While not much may 
be expected from such a linear approximation to a highly nonlinear relation between p and r, 
our numerical results show that the idea of a linear associative memory provides dramatically 
accurate parameter identification through the use of a very nominal amount of training. 

In [14], surprisingly accurate estimates of the parameters were obtained by using a linear 
associative memory matrix, M = PR +, where the matrix P -- [Pl P~P3...P-] and the matrix 
R + is the Moore-Penrose [19] generalized inverse of the matrix R = [rl r2 r 3 . . .  r . ] .  However 
when noisy observations were used to estimate the parameters using memory matrices obtained 
from noise-free data, instabilities were found to occur. Furthermore the presence of elements 
having large orders of magnitude relative to the components of the training vectors were found to 
make the parameter estimates extremely sensitive to noise; under these conditions computational 
round-off errors were found to have a considerable effect on the results, even in the absence of 
noise. The ill-conditioning of the memory matrix was reduced in [15] by the use an additional 
criterion, namely, to make the elements of M small. This multi-criterion approach was found to 
perform well on the identification of the coefficients of a nonlinear ordinary differential equation 
that modelled the growth of an economy at the macro level. A large set of training pairs was 
used; the main purpose of the study was to generate improved initial estimates using associative 
memory methods for parameter identification, so that these initial estimates could then be used in 
standard ide,tification procedures like steepest descent, conjugate gradient or MLE formulations. 

In this paper we use the multicriterion approach developed in [15] and extend it to adaptively 
train the ideutification scheme. While we consider our findings preliminary, we show that such 
adaptive training can be used very effectively, not just in obtaining initial parameter estimates but 
in parameter identification of mechanical systems that can be modelled by differential equations. 
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By start ing out  with just  a few training pairs of inputs and responses, and adaptively generating 
more pairs, one can obtain very good estimates of the parameter  vectors to be identified. Nu- 
merical results are shown for two systems, one linear and the other nonlinear, which commonly 
arise in civil and mechanical engineering. Section 2 of the paper provides a short formulation and 
derivation of the memory matr ix  and the adaptive scheme used herein, and Section 3 applies the 
technique to a problem of identifying the parameters of a system modelled by a single degree of 
freedom oscillator, as well as a system described by a nonlinear differential equation. In Section 4 
we present our conclusions and several issues that  the numerical results raise. 

2. D E T E R M I N A T I O N  O F  T H E  M E M O R Y  M A T R I X  
AND T H E  A D A P T I V E  L E A R N I N G  S C H E M E  

a) Estimation of the Memory Matriz 

Consider a set of n training inputs and responses such that  each input Pi consists of a vector 
belonging to I~ ,  and each response ri is a vector belonging to R v. We seek to linearly associate 
the responses to the inputs using a memory matrix M such that  the error of association is as 
small as possible. To prevent M from being ill-conditioned we need also to limit the size of its 
elements. We thus construct a multicriterion coat function [15] 

j = I I M  R - P I I  2 + (1 - a ) I I M I I  2, 0 <__ a _< 1, (1) 

where, the parameter  a indicates the relative emphasis on the the cost associated with mapping 
the input to the output ,  and the cost of M being ill-conditioned. The matrices R and P are u x n 
and v x n, respectively. The euclidean matrix norm of M is defined as 

IIMII = T r { M r M }  • (2) 

Minimizing J with respect to the elements of M, we obtain 

~Q=P [ a R T ( a R R r + ( 1 - a ) I )  - l ]  = P R  ~. (3)  

When a = 1, the matrix R ~ becomes the generalized inverse R +, and the sensitivity to noise and 
computat ional  round-off increases. As the value of a reduces, the ill-conditioning of/t;/ reduces 
but  so does the error in associativity between the input and the response (see [15] for a numerical 
substantiation of these statements).  

b) Estimation of the Parameter Vector 

Having obtained ~/ using the set of n training pairs, the estimate of p" corresponding to an 
observation r" then becomes 

~: = ~'t. r ' ,  (4) 

where the subscript n indicates that  this estimate is predicated upon the use of n prior training 
pairs {PlP2Ps...P.} and {rl r 2 r s . . . r . } .  

Now consider the mapping that maps the parameter vector p to the response, r, namely 
/ : p - .  r. Assuming that  a local inverse is available, we then have p = f - l ( r ) ,  which we assume 
can be approximately expressed by a memory matrix by the relation p = Mr .  But we only have 
an estimate of the memory matrix, M. ,  so that  

= M.  + 6 M. ,  (5) 

and hence tile estimated parameter  vector in (4) is expressible as 

/5~ = (Mn + 6 M. )  r °. (6) 
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Denoting the true parameter vector corresponding to the respomm r* by lb~ we obtain 

/3~ = Mn r ' ,  (7) 

and 
:~ --/~: + 6 M ,  r ° = (Mn + 6 M , ~ ) r ' .  (8) 

Now if we were to use this estimate ~ to obtain ~ (i.e., solve of the forward problem), we would 
have, locally, 

= M,~ ~ .  (9) 

Using (9) in (8) we then get 

M,, r" = M,, (F~ - r ' ) : =  Mn {6 r~}. (10) 

From this we finally obtain an improved estimate 

15~ = ~ - M., {6r~}. (11) 

However the memory matrix M .  is not available. Noting (5), the updated estimate of the 
parsmeter  vector then becomes 

lb: = p-: - (hTt~ - 6 M~){~ r :}  ~- ~ - h:fn {6 r :} ,  (12) 

where we have assumed that the quantity 6 M,, .  $ r~ is small. 

c) Adapfive Creation of  Trainin 9 Vecfors 

Having thus obtained an updated estimate lb~ using the available training set, we now generate 
a training pair using a parameter vector in the vicinity of this estimate, lb~. Thus we adaptively 
generate the next training input vectors as 

p~), = 151i)" (1 + ~, ~}i)), i = n , n + l , . . . , n + q ;  j = 1 , 2 , . . . , u ,  (13) 

where P~)I is the j t h  component of vector Pi+l, ~?) is a random number, uniformly distributed 
between -0 .5  and +0.5, and l~ is a scaling factor. For each adaptively generated training vector 
pi+l, i > n, a corresponding response vector ri+l, i > n, is obtained. This input-response pair 
is added to the set of available training pairs and the memory matrix is updated,  yielding M~+t, 
i > n, along with a new estimate/}:+l.  This estimate is then updated as described above to 
give lb~+ l . Since each random training vector samples a slightly different region of the parameter 
space, the final parameter vector may then be taken to be the average over the (q + 1) estimates 
obtained. 

Algorithmically then we have: 

Step 1: Obtain an updated estimate/3~ using the training set S,, (which contains n input- 
response pairs) by: 

(a) using relation (4) to o b t a i n / ~ ,  
(b) solving the forward problem to determine ~ ,  
(c) thence finding 6 r~ and, finally, 
(d) using relation (12) to get ibm. 

Step 2: For i = n to n + q 
do 

1. Generate a cio6e-by input pi+l using equation (13); 
2. Generate the corresponding response r,+l; 
3. Add this newly generated input-response pair to the set Si producing the set S~+l 

which has i + 1 pairs on inputs and outputs; 
4. Use the set S,+1 and relation (3! to generate h'lfl+l; 
5. Obtain an estimate ~b~+ l using M,+I as in Step 1. 

end. 

Step 3" Take tile average of the vectors /~,  i = n, n + l , . . . , n  + q. 
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3. N U M E R I C A L  E X A M P L E S  

Consider a s t ructure described as single degree-of-freedom damped oscillator governed by the 
differential equation 

z(t) = O, z(t O) = zo, z(t = O) = zo. ~(t) + 2,~. ~ z( t )  + ~ .  = 

We shall assume that  all quantities are in consistent units. We consider the identification of the 
parameters w,,  ~¢, and x0, starting with a set of 5 training inputs. The true parameter  vector is 
[8 0.09 20] r .  The 5 training vectors use parameters which roughly (heuristically) cover the region 
of the true parameter vector. They are: 

[ 6 , 0 . 0 2 ,  10] T ,  [ 2 0 , 0 . 0 6 , 2 4 ]  T ,  [16,0.03, 18] T, [10,0.01,25] T, and [7,0.10, 15] T. 

The initial displacement z0 is taken to be zero. We use 20 response data points at various 
times, t, for the determination of the memory matrix A:fs. Of the twenty response data used, I0 
data points were gathered starting at zero time with a spacing of 0.02 units and an additional 
I0 were acquired starting at time 3.3 units with a time spacing of 0.3 units. The parameter a is 
chosen to be 0.9 and the parameters fls := fl = 0.5, for all i. 

We obtain the estimate ~ of the parameter vector [w,~ ~ z0] and then successively generate 
random vectors in the neighborhood of this estimate. Twenty such additional nearby random 
training vectors are used. The resulting initial estimate l~, and the final estimate after adding 
the additional training vectors are shown in Table Ia. We observe that through the use of the 
additional training vectors a considerable improvement in the parameter estimates is obtained 
and the method with just 20 data points has been able to identify the system rather accurately. 
Note that parameters related to both the input and the system are being simultaneously identified. 

Table  la .  Noise to s ignal  rat io  = 0%. 10 d a t a  po in t s  E [0,0.2] t ime  uni ts ;  10 d a t a  
po in t s  E [3.3,6] t ime  un i t s ;  o = 0.9; fl = 0.50. 

Truc par~leter 

valtlt~'~ 

~,~ = 8 . 0  

= 0 . 0 9  

:r0 = 20.0 

E s t i m a t e  us ing  

5 

t r a in ing  vectors  

10.56 

0.106 

19.675 

t~ ErTor 

-32.05% 

- 18.06% 

1.62% 

E s t i m a t e  us ing  

25 

t r a in ing  vectors  

8.29 

0.088 

19.94 

% Error  

- 3 . 6 4 %  

2.32% 

o.3% 

Table  lb.  Noise to s ignal  rat io  = 0%. 20 d a t a  pointa  E [0,0.4] t ime  un i t s ;  o = 0.9; 
,..a = 0.50. 

True  pacaaneter  

V~U~ 

~,, = 8 . 0  

( = 0.09 

~'0 = 20.0 

E s t i m a t e  us ing  

5 

t ra in ing  vectors  

8 . 8 5  

0.053 

19.60 

¢~C Error  

-1o.7% 
-40.75e~ 

1.62% 

E s t i m a t e  us ing  

25 

t ra in ing  vectors  

7.81 

0.034 

19.94 

% Error  

2.33% 

61.7% 

0.3% 

The reason why the data was gathered over two disjoint time intervals is that  the initial response 
of the system is seasitive to the first and third parameters to be estimated while longer time 
responses provide greater detail oll tile damping parameter.  Table lb shows that the collection of 
20 data points spaced at 0.02 time units apart beginning with zero time, while yielding reasonable 
results for the first and third parameters does not provide a good estimate for the damping 
parameter,  as expected. The choice of the times at which the data  is sampled for use in the 
identificatiou scheme is thus crucial to its efficacy. 

The effect of noise is indicated in Tables 21 and 2b, where to each response is added a zero 
mean random i.i.d, variable. Noise-to-signal ratios of 6c~ and 12% are used. We observe that  
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Table 2a. NOIse to . i ~  rst io m 6%. 10 data points E [0,0.2] t ime units; 10 d a t a  
po in t=  E [3.3,6] t ime  u.uJts; ¢= = 0.9; B = 0.50. 

True psrsxaetcr 

values 

w ,  = 8 . 0  

( = 0 . 0 9  

~o = 20.0 

Estimate truing 

5 

training ~c to r s  

9 . 8 4  

0.102 

18.75 

% E r r o r  

- 23.67% 

- 1 3 . 5 4 %  

6 . 2 4 %  

EAtimat¢ using 

25 

training vectors 

8 . 0 6  

0.123 

20.38 

% Error 

-0 .S67% 

37.30% 

- 1.92% 

Table 2b. Noise to silpud ratio = 12%. 10 data  points E [0,0.2] time units; 10 data 
points E [3.3,6] time unite; a = 0.9; B = 0.50. 

True p~rarneter 

values 

~ , t  = 8 . 0  

( = O.0g 

='o = 20.0 

EstimAte using 

5 

training vectors 

9 .84  

0.102 

18.75 

% Error 

- 23.67% 

- 13.54% 

6.24% 

E4timAte uJing 

25 

training vectors 

8 . 9  

0.13 

20.13 

% Error 

- II.29~ 

-so.33% 

-0.672% 

the numerical values are not significantly affected, though the percentage errors have increased 
when compared with the no-noise situation of Table la. 

Table 3 shows the results of identifyin$_all four parameters, [w,~ ~ z0 z0] r .  The true parameter 
vector is taken to be [8.25 0.07 10.0 7.5] "r. Starting with the four training parameter vectors 

[7,0.06,12,6] r ,  [9,0.08,8,8] r ,  [7,0.06,10,7] r ,  [9,0.05,11,91 r ,  

the es t imate /~  is generated and further estimates are obtained using an additional twenty ran- 
domly generated training vectors. The values of a = 0.9 and the parameters ~, := ~ = 0.2 are 
for all i. Two sets of data  are used for the identification. The first set consists of the response at 
twenty time points spaced at 0.02 time units. The second set consists of thirty points, with again 
a spacing of 0.02 time units. Improvement in the identified parameters using an increased amount 
of response data  is noted, despite the fact that  the initial estimate,/5~, is somewhat better in the 
former case. 

T~t~ie 3. Noise to silpnal ratio = 0% a = 0.9; B = 0.50. 

True parameter 

values 

~ n  = 8 . 2 5  

( = 0.07 

J:o = 10.0 

~0 ---- 7.5 

20 data point= E 

Estimate uaing 

2,5 

training vectors 

8.13 

0.059 

9.62 

7.51 

[0.0.2] time unit= 

¢~ E r r o r  

1.4s% 

15.18% 

3.7% 
-0.12% 

30 data point= E 

Estimate using 

25 

training vectors 

8.24 

0.0617 

10.27 

7.47 

[0,0.3] time unit= 

% El=rOE 

0.107% 

11.9% 

- 2 . 7 8 %  

0.28% 

Table 4 shows some results oli tile identification of four parameters of tile nonlinear differential 

equation 

~(t)+plk(t)+p~z(t)+p3z3(t)+p4x(t)lx(t)l=asin(bt), z (0 )  = x (0)  = 0, 

where the parameters a and b are taken to be l0 and 3.3 in appropriate units. The parameters 
p~, i = 1, 2, 3, 4, on the left hand side of tile equation are estimated starting with a set of 4 
training vectors. The true parameter values are [0.06 10 2 0.07] r .  The training vectors used are: 

[0.01, 10,3,0.05] r ,  [0.08,12,1,0.09] r ,  [0.05,14,5,0.02] r ,  [0.03,8,4.0,0.06] T. 
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Five additional training vectors are generated as described in the previous section using in each 
case a ~ value of 0.5. Twenty response data points are gathered st s spacing of 0.10 time units. 
This response data was obtained by numerically integrating the differential equation using 4th 
order Runge-Kutta with an integration tolerance of 0.005 units. As seen from Table 4 the results 
are fairly good considering that only s few training vectors and a relatively small amount of 
response data were used. There is little improvement, in this case, in the parameter estimates 
when the number of data points is doubled from 20 to 40 over the same time interval. As seen 
from Table 4, for smaller values of a, the convergence is somewhat slower, and the estimates 
worsen for comparable numbers of training pairs. 

Table  4. Noise to s ignal  ra t io  = 0%. 

T rue  p a r a m e t e r  

values  

Pz = 0.06 

p~ = 10.0 

p3 = 10.0 

P4 = 0.07 

20 d a t a  points ;  o = 0.97 

E s t i m a t e  u s i ng  

9 

t ra in ing  vectors  

0.049 

10.662 

2.132 

0.073 

% Error 

19.17% 

- 6 . 6 9  % 

-6 .6o% 

-3 .91% 

20 data poings; a = 0.80 

E s t i m a t e  us ing  

9 

t r a in ing  vectors 

0.0460 

9.907'2 

2.20 

0.071 

Error  

23.26% 
0.9278% 

-1o.o5s% 
- 1.54 % 

Table 5a shows the seven initial trial vectors used in the identification of all the parameters 
of the nonlinear system, including the parameters a and b which describe the forcing function. 
Table 5b shows both the initial estimates obtained using these seven vectors, and the final results 
obtained using a total of 17 trial vectors, 10 of them randomly selected according to the algorithm 

Table  5a. 

Trial  P a r a m e t e r s  

vec tor  ps p'2 P3 Pc a b 

1 0.01 I0.0 3.0 0.05 13.0 4.0 

2 0.08 12.0 1.0 0.09 8.0 3.5 

3 0.05 14.0 5.0 0.02 10.0 4.0 

4 0.03 8.0 4.0 0.06 9.0 3.0 

5 0.04 8.0 3.0 0.05 11.25 3.5 

6 0.07 9.0 6.0 0.02 9.25 2.5 

7 0.06 12.0 2.50 0.08 11.0 3.0 

Table  5b. Forty d a t a  po in t s  be longing  to [0,4]; o = 0.9; ~ = 0.3. 

Exac t  p a r a m e t  eT 

values  

Pl = 0.06 

P2 = I0.0 

/)3 = I0.0 

p4 = I0.0 

a -- 10.0 

b=3.3 

E s t i m a t e  us ing  

7 

t r a in ing  vectors  

0.0795 

14.118 

4.04 

0.102 

10.66 

4.17 

% Error  

32.45 

- 4 1 . 1 8  

- 102.0 

-46 .41  

- 6 . 5  

- 2 6 . 4 3  

E s t i m a t e  us ing  

17 

t ra in ing  vectors  

0.0557 

10.03 

1.98 

0.0829 

9.8756 

3.44 

% Error  

7.19 

- 0 . 3 1  

1.03 

- 1 8 . 4 5  

1.24 

- 4 . 2 8  
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proposed herein. The equation is integrated using the fourth order Ruage-Kutta method with 
an integration (local) error tolerance of 0.01 units. Forty equi-spaced response data points in 
the interval t E [0, 4] are used. The values of o and fl are 0.9 and 0.3, respectively. The results 
indicate that the method may be able to simultaneously yield reasonably good estimates of both 
the system parameters as well as the parameters that describe the forcing function. 

It should be noted that the results that have been obtained in this section rely on the generation 
of adaptive training vectors; as this is done with the help of a random number generator, for 
each random sequence of computer generated numbers the resulting parameter estimates will be 
somewhat different. Estimation of the parameters using several different random 'seed' numbers 
was carried out and the results shown in Tables 1 through 5 appear to be typical in terms of the 
percentages of error found. 

Convergence was found to be controlled primarily by the choice of the initial training set, 
and by the parameters o and ft. For large values of fl the training vectors sometimes had large 
excursions leading at times to a divergence of the estimate; on the other hand small excursions, 
caused by small values of fl, led to slow convergence. 

The times at which response data was gathered also had a strong influence on the quality of 
the parameter estimates obtained (see Table 1). Besides this, it was found that large response 
data vectors often led to numerical problems because the matrices were ill-conditioned. 

The updating procedure described in Section 2(b) was found to be very important ill bringing 
about a quick convergence of the procedure. In fact without such updating the adaptive scheme 
was found to diverge in most of the examples illustrated herein. This is especially true when 
the number of initial training vectors used is small, making the initial estimates of M rather 
inaccurate. 

4. CONCLUSIONS 

In this paper we have explored a simple method for parameter identification which relies 
on starting with a set of training inputs and adaptively generating additional inputs, thereby 
estimating the linear associative memory matrix. The inverse problem is thus handled by solving 
a series of forward problems, each forward problem related to training the identification scheme 
through the development of a memory matrix. The solution of forward problems are usually 
substantially easier to obtain and, as such, there is a great wealth of knowledge and insight 
available on the properties (e.g., uniqueness, existence, etc.) of such solutions for a number of 
different classes of systems. Thus the use of forward solution techniques to solve inverse problems 
appears to be an attractive route and may offer considerable insights which might not be obvious 
were one to attack the inverse problem using standard techniques. 

We show that the concept of using an associative linear memory may be a powerful one in 
parameter identification as applied to structural and mechanical systems. The results that have 
been obtained are good considering the small amount of response data that has been used and 
the relatively few training vectors. They are indeed comparable to, if not far better than, those 
that might be obtained by using either the extended Kaiman filter or the RPEM method [9]. In 
addition, the method appears to be capable of simultaneously identifying parameters that describe 
both the system and its excitation. As such, these results have far exceeded our expectations. 

While this preliminary study shows encouraging results, tile method described here opens up 
a series of questions dealing with: 

1) The selection of the initial training set and its size; this study found that the associative 
memory matrix appears to be fairly sensitive to these initial trial vectors because they set 
the stage for further adaptive training. 

2) Tile selection of tile times at which response data is sampled; this study found that the 
results of tile estimation procedure are sensitive to the times at which the data are gath- 
ered. 

3) hnproved schemes for adaptive training, and tile provision of rigorous results on conver- 
gence of tile parameter estimates; these are lacking at this time. 

4) The selection of the size of tile response vector; while we have shown (see Table 3) that 
in gc,leral increasing the size of the response vector usually provides improved results, 
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very large sized response vectors were found to give rise to numerical problems due to 
ill-conditioning. 

5) The robustness of the method with respect to corruption of measurements by noise; while 
the method appears to be fairly robust in this regard (see [15] and Table 2), more computer 
experimentation is clearly called for. 

We hope to address some of these issues in our future work. 

REFERENCES 

1. R.E. KahLba and K. Spingarn, Control, Identification and Inp=t Optimization, Plenum, (1982). 
2. G. Rodriguez, Ed., Proceeding# of ~e Work,hop o~ Identification a~d Control of Flcz~ble Str~ctlre#, Vols. 

I and II, JPL Publication, 85-29 (April 1985). 
3. P. Hajela and L. Berke, Neurobiological computations in structural saudysi, and design, 31at AIAA/ASME/  

ASCE Str~ctlrea, Structural Dyn,micJ and MaterialJ Conference (1990). 
4. F.E. Udwadia and H. FIMhner, "I~-adeofl's between identification and control in dynamic ,ystemJ, Joaraal 

of Applied MechanicR 110, 939-945 (1988). 
5. F.E. Udwa~lia, Control of continuous ,ystemJ, Proceedinga o/the XV SECTAM Conference, Atlanta, 1990. 
6. J.J. Hopfield and D.W. Tank, Computing with neural circuits: A model, Science 233, 625-633 (August 

t~6). 
7. A.P. Sage and J.M. Mehta, E,timation Theoe~/ with Applicaiions to Commttnication# and Control, (Mc- 

Graw-Hill 1971). 
8. ~.E. Kahtba and L. Tesfatsion, Solving nonlinear equations by adaptive homotopy continuation, Applied 

Methematics and Compatation (to appear). 
9. L. Ljtmg, S~stem Identification: Thcor?l for the User, McGraw-Hill, (1988). 

10. F.E. Udwadia, J. Garb& and A. Ghodsi, Parameter identification problem., Strl, ctttral and Geotcchnical 
Engineering 110 (9), 1409-1432 (1984). 

11. F.E. Udwadia and D.K. Sharma, Some uniqueness problems in the identification of building structural 
system., SIAM Joarnal of Applied Mathematics 34, 104-118 (1978). 

12. T. Kohonen, Self Organization and Associative Mcmor?l, Sprlnger-Verlag, New York, (1988). 
13. B. Kmko, Bidirectional s~ociative memories, IEEE Trans. Sys., Man, and Cllbern. SMC-18, 49-450 (1988). 
14. B.E. Kalaba, g. Lichtenstein, T. Simchomy mtd L. Tesfatsion, Linear and nonlinear suociative memorie* 

for parameter estimation, Inform. Science. (to appear). 
15. F(.E. Kalaba and L. Tesfateion, Obtaining initial parameter estimates for nonfinear systems using mudticrite- 

ris suocistlve memories, MRG Working Paper No. M9006, University o/Southern California, Los Angeles, 
(i~o). 

16. D. Rumelhart and J. McCielland, F_,ds., Parallel Dimtrib,,ted P~cessing: Erploration in the /tIicro#t1"zctarz 
of Cognition, Vol. 1 and 2, MIT Press, Cambridge, (1988). 

17. S. Sharma and P. Hsjels, Neural network applications in structural analysis, Proceedings of the XV SECTAA( 
Conference, Atlanta, 1990. 

18. D. Rehak, C.H. Thewalt and L.B. Doo, Neural network applications in structural mechanics computations, 
Joarnal Of Compater Utilization (1989). 

19. Ft. Penrose, On best approximate solutions of linear matrix equations, Proc. Cambridge Phil. Society $2, 
17-20 (1956). 


