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We consider two novel scenarios of residual symmetries of the lepton mass matrices. Firstly we assume
a Z2 ×Z2 symmetry G� for the charged-lepton mass matrix and a Z2 symmetry Gν for the light neutrino
mass matrix. With this setting, the moduli of the elements of one column of the lepton mixing matrix
are fixed up to a reordering. One may interchange the roles of G� and Gν in this scenario, thereby
constraining a row, instead of a column, of the mixing matrix. Secondly we assume a residual symmetry
group G�

∼= Zm (m > 2) which is generated by a matrix with a doubly-degenerate eigenvalue. Then, with
Gν

∼= Z2 ×Z2 the moduli of the elements of a row of the lepton mixing matrix get fixed. Using the library
of small groups we have performed a search for groups which may embed G� and Gν in each of these
two scenarios. We have found only two phenomenologically viable possibilities, one of them constraining
a column and the other one a row of the mixing matrix.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

A group-theoretical philosophy for explaining the phenomeno-
logical values of the lepton mixing parameters has emerged during
the last few years [1–16]. In that philosophy, those values fol-
low from the distinct Abelian symmetry groups—G� and Gν—under
which the lepton mass matrices—M� and Mν , respectively—are in-
variant.1 Those matrices are defined by the mass terms

Lmass = −�̄L M��R + 1

2
νT

L MνC−1νL + H.c., (1)

where �L,R are the left- and right-handed charged-lepton fields,
νL are the light neutrino fields, and C is the charge-conjugation
matrix in Dirac space. (We assume the neutrinos to be Majo-
rana particles.) Let H� ≡ M�M†

�; if the mass matrices are diag-

onalized as U †
�H�U� = D� ≡ diag(m2

e , m2
μ, m2

τ ) and U T
ν MνUν =

Dν ≡ diag(m1, m2, m3), then the lepton mixing matrix is given
by UPMNS = U †

�Uν . (m1,2,3 denote the three neutrino masses.) Let
the symmetry group G� be generated by a matrix L such that
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1 The possibilities for the experimental investigation of the implications of resid-

ual symmetries are discussed in Refs. [17–20]. Furthermore, residual symmetries
have also been considered in the quark sector [21,22].
http://dx.doi.org/10.1016/j.physletb.2014.03.001
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
L−1 H�L = H� .2 If we choose a basis in which L is diagonal and
if we assume that the diagonal matrix elements of L are all dis-
tinct, then this invariance forces H� to be diagonal. Thus, in that
basis U� = 13 (up to a permutation of the charged leptons) and
UPMNS = Uν . (13 denotes the 3 × 3 unit matrix.) In the same basis,
let a generator N of Gν be a unitary 3 × 3 matrix of order two and
with two different eigenvalues, i.e. N2 = 13 but N �= ±13. Such a
matrix can always be written as

N = γ
(
13 − 2uu†), (2)

where γ = ±1 and u = (u1, u2, u3)
T is a normalized column vec-

tor, viz. u†u = |u1|2 + |u2|2 + |u3|2 = 1. Invariance of Mν under
N means that N T Mν N = Mν . Then, it follows from Nu = −γ u
that N∗(Mνu) = N T (Mνu) = (N T Mν N)(Nu) = −γ (Mνu). But, the
eigenvalue −γ of N∗ is non-degenerate; therefore, Mνu ∝ u∗ .
Since MνUν = U∗

ν Dν and the neutrino masses are non-degenerate,
u must be one of the columns of Uν = UPMNS. It thence follows
that |u1,2,3| are, up to a reordering of the charged leptons, the
moduli of the matrix elements of a column (one may still choose
which column) of UPMNS.

The above-mentioned philosophy assumes that there is a finite
discrete group G which has both G� and Gν as subgroups.3 It tries

2 In our search in Section 2.1, G� is generated by two matrices L1 and L2 instead
of just one.

3 If G is not assumed to be finite (and small), then G� and Gν will be largely
arbitrary and the philosophy will have little predictive power.
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to find a suitable G such that the ensuing |u1,2,3| agree with the
phenomenological values of the moduli of the matrix elements of
one of the columns of UPMNS. This has been done in Ref. [2] un-
der the assumption that G is a subgroup of SU(3) of order smaller
than 512. In Ref. [11] a more complete search has been under-
taken, wherein G was assumed to be a subgroup of U (3) of order
less than 1536. Both Refs. [2] and [11] assume G to possess a faith-
ful three-dimensional irreducible representation. In Ref. [11] it was
moreover assumed that G fully determines UPMNS, because its sub-
group Gν is generated by two commuting matrices N and N ′ , both
of the form in Eq. (2) but with two mutually orthogonal vectors u
and u′ , respectively. (Thus, Gν

∼= Z2 × Z2 instead of Gν
∼= Z2.)

A variant of this philosophy has been employed in Refs. [7,16,21],
where the neutrino mass terms have been assumed to be of the
Dirac type and, correspondingly, the matrix N has been assumed
to generate a group Gν

∼= Zn with n > 2.
In this Letter we report on two group searches that we have un-

dertaken and which might hold promise of relevant results. In the
first search—in Section 2.1—we have assumed that G�

∼= Z2 × Z2
(instead of the usual choice G�

∼= Zm with m > 2) and Gν
∼= Z2.

In the second search—in Section 2.2—we have assumed that
Gν

∼= Z2 × Z2 and that G�
∼= Zm but with a doubly-degenerate

eigenvalue, in such a way that a row (instead of a column) of
UPMNS gets fixed. In Section 3 the results of our searches are con-
fronted with the phenomenological values. Section 4 contains the
conclusions of this work.

2. Group searches

2.1. First search: G�
∼= Z2 ×Z2 , Gν

∼= Z2

We consider in this section a scenario in which the lepton
flavor symmetry group G is broken to two residual symmetry sub-
groups G�

∼= Z2 × Z2 and Gν
∼= Z2. The symmetry group G� holds

in the charged-lepton sector while Gν holds in the neutrino sec-
tor. We require the embedding group G to be finite and to have a
faithful three-dimensional irreducible representation D(G). We assume
that −13 /∈ D(G�) and also −13 /∈ D(Gν). Furthermore, there must
be a mismatch between the residual symmetries G� and Gν , i.e.
we require that Gν �⊂ G� .

To summarize, we have searched for groups G which fulfill the
following conditions:

1. G is finite.
2. G has a faithful three-dimensional irreducible representation

D(G).
3. G has two subgroups, G�

∼= Z2 ×Z2 and Gν
∼= Z2, which have

a trivial intersection, i.e. G� ∩ Gν = {e}.
4. Neither D(G�) nor D(Gν) contain the matrix −13.

Since we are interested in groups G which have a Z2 × Z2 sub-
group, ord(G) must be divisible by four. Since we require G to have
a three-dimensional irreducible representation, ord(G) must be di-
visible by three. Thus, we only need to consider groups of order
divisible by 12.

Since G is finite, there is a basis in which D(G) consists of uni-
tary matrices. Since G�

∼= Z2 ×Z2 is Abelian, a basis can be chosen
in which D(G�) is formed by diagonal matrices. Thus, D(G�) com-
prehends 13 and

L1 = α diag(+1, −1, −1), (3a)

L2 = β diag(−1, +1, −1), (3b)

L1L2 = L2L1 ≡ L3 = αβ diag(−1, −1, +1), (3c)
where both α and β may be either +1 or −1. The residual sym-
metry G� means that L−1

1 H�L1 = L−1
2 H�L2 = H� . Therefore, in the

basis where L1 and L2 are as in Eqs. (3), H� must be diagonal.
In the same basis, the generator N of D(Gν) is a unitary 3 × 3

matrix of order two, i.e. a matrix of the form in Eq. (2), where
u = (u1, u2, u3)

T is a normalized column vector. Then, up to a
reordering, the |uk| (k = 1,2,3) are the moduli of the matrix ele-
ments of one column of UPMNS. Given the matrices L1, L2, and N
in an arbitrary basis, one may compute the |uk|2 without the need
to diagonalize L1 and L2; indeed,

|uk|2 = 1

4

[
1 + tr(Lk N)

tr(Lk) tr(N)

]
. (4)

Eq. (4) is easily verified in the basis where Eqs. (2) and (3) hold;
since it is written in terms of traces, it holds in any other basis—
even in one where D(G) is not formed by unitary matrices. One
may thus compute the moduli of the matrix elements of one col-
umn of UPMNS just from the knowledge of L1, L2, and N in an
arbitrary basis.4

The computer algebra system GAP [24] has access to Small-
Groups [25], a library of all the groups (up to isomorphisms) of
order smaller than 2000—excluding the 49 487 365 422 groups of
order 1024. Since there are 408 641 062 groups of order 1536 =
12 × 128, we have restricted our search to the 1 336 749 groups
of order 12n for n � 127. We have furthermore excluded groups G
which are direct products of the form

G ∼= Zm × G ′ (m � 2), (5)

because such groups do not provide any restrictions beyond those
already following from the smaller group G ′ .

Going through these groups, by constructing their character
tables, we have sieved out the groups which have a faithful three-
dimensional irreducible representation. We have used the GAP
package SONATA [26] to find all the subgroups of the groups
under investigation. For those groups which have a Z2 × Z2 sub-
group and a Z2 subgroup with trivial intersection, we have explic-
itly constructed all the non-equivalent faithful three-dimensional
irreducible representations D and we have computed all the
candidates for pairs (D(G�), D(Gν)). When neither D(G�) nor
D(Gν) contained −13, we have computed the corresponding |uk|2
through Eq. (4). The results can be found in Table 1.

In Table 1 (and in the second column of Table 3) one observes
that, whenever G� and Gν together generate a group Dn with
even n, this leads to (|u1|2, |u2|2, |u3|2) = (0, sin2 2π

m , cos2 2π
m )

with m = 2n and, possibly, smaller (integer) values of m.5 The
group Dn may be defined as consisting of the matrices

X(p) =
( − cos (pαn) − sin (pαn)

− sin (pαn) cos (pαn)

)
and

Y (p) =
(

cos (pαn) − sin (pαn)

sin (pαn) cos (pαn)

)
, (6)

where αn ≡ 2π/n and p = 0,1,2, . . . ,n − 1. For even n, this group
has a Z2 × Z2 subgroup formed by 12, Y (n/2), X(n/2), and X(0).
The group Dn is a subgroup of SO(3) through its reducible triplet
representation

4 The computation of mixing-matrix elements from invariant traces was pio-
neered in Ref. [23].

5 The group D14 is of particular interest, especially for quark mixing, because it
nicely fits Cabibbo mixing [27], as can be seen in the second line before the last of
Table 1.



L. Lavoura, P.O. Ludl / Physics Letters B 731 (2014) 331–336 333
Table 1
In the first column, the groups resulting from the search described in Section 2.1; the symbol [g, j] denotes the j-th group of order
g in the SmallGroups Library. In the second column, the corresponding values for the |uk|2 (k = 1,2,3). In the third column, the
symbol 〈〈G�, Gν 〉〉 denotes the group generated by D(G�) and D(Gν ), i.e. the smallest finite group having G� and Gν as subgroups.
A characterization of the occurring groups can be found in Table 3.

G (|u1|2, |u2|2, |u3|2) 〈〈G�, Gν 〉〉
[24,12]; [96,64]; [168,42]; [216,95]; [384,568]; (0, sin2 2π

8 , cos2 2π
8 ) = (0, 1/2, 1/2) [8,3]

[600,179]; [648,259]; [648,260]; [648,266];
[648,563]; [864,701]; [1080,260]; [1176,243]
[216,95]; [648,259]; [648,260]; [648,266]; (0, sin2 2π

12 , cos2 2π
12 ) = (0, 1/4, 3/4) [12,4]

[648,563]; [864,701]
[384,568] (0, sin2 2π

16 , cos2 2π
16 ) ≈ (0, 0.1464, 0.8536) [16,7]

[600,179] (0, sin2 2π
10 , cos2 2π

10 ) ≈ (0, 0.3455, 0.6545); [20,4]
(0, sin2 2π

20 , cos2 2π
20 ) ≈ (0, 0.0955, 0.9045)

[864,701] (0, sin2 2π
24 , cos2 2π

24 ) ≈ (0, 0.0670, 0.9330) [24,6]
[1176,243] (0, sin2 2π

7 , cos2 2π
7 ) ≈ (0, 0.6113, 0.3887); [28,3]

(0, sin2 2π
14 , cos2 2π

14 ) ≈ (0, 0.1883, 0.8117);
(0, sin2 2π

28 , cos2 2π
28 ) ≈ (0, 0.0495, 0.9505)

[24,12]; [96,64]; [168,42]; [216,95]; [384,568]; (1/4, 1/4, 1/2) [24,12]
[600,179]; [648,259]; [648,260]; [648,266];
[648,563]; [864,701]; [1080,260]; [1176,243]

[60,5]; [1080,260] (1/4, 3−√
5

8 , 3+√
5

8 ) ≈ (0.25, 0.0955, 0.6545) [60,5]
X(p) → X̃(p) ≡
( −1 01×2

02×1 X(p)

)
,

Y (p) → Ỹ (p) ≡
(

1 01×2
02×1 Y (p)

)
. (7)

In this representation of Dn , its Z2 ×Z2 subgroup is formed by{
13, Ỹ (n/2) = L1, X̃(n/2) = L2, X̃(0) = L3

}
, (8)

where the matrices L1,2,3 are as in Eqs. (3) with α = β = +1.
The Gν subgroup is formed by{
13, X̃(p)

}
. (9)

By using Eq. (4) one then obtains |u1|2 = 0 and |u2|2 =
sin2 (pαn/2).

2.2. Second search: G�
∼= Zn, Gν

∼= Z2 ×Z2

One may interchange the roles of Klein’s four group Z2 × Z2
and of the cyclic group Z2 in Section 2.1. When one does that,
the neutrino mass matrix Mν is invariant under Z2 × Z2, viz.
N T

1 Mν N1 = N T
2 Mν N2 = Mν with N2

1 = N2
2 = 13. If we choose

the basis where N1 and N2 are diagonal, then in that basis Mν

will be diagonal too. Let H� possess a residual Z2 symmetry, i.e.
L−1 H�L = H� with L = γ (13 − 2uu†) as in Eq. (2). Consequently,
LH� = H�L and therefore L(H�u) = H�Lu = −γ (H�u). Then, since
the eigenvalue −γ of L is non-degenerate, H�u ∝ u. Now, the
eigenvalues of H� , viz. the squares of the charged-lepton masses,
are non-degenerate. Therefore, u must be a column of the unitary
matrix U� diagonalizing H� . Since we are in the basis where Mν is
diagonal, UPMNS = U †

� up to a permutation of the rows of UPMNS.
We have thus found that in this case the residual symmetries con-
strain a row, rather than a column, of the mixing matrix UPMNS.
The possible restrictions on the moduli of the matrix elements of
the row are of course precisely the same as those obtained in Sec-
tion 2.1, see Table 1.

An important feature of the scenario just described is that the
matrix L generating the residual symmetry group of H� has two
degenerate eigenvalues and the third eigenvalue is different. The
matrix L is, however, restricted by the condition L2 = 13, since it
generates a group Z2. We now lift this restriction and suppose in-
stead that L generates a group Zn with n > 2, i.e. Ln = 13. We thus
assume that in the neutrino sector there is a residual symmetry
Gν

∼= Z2 × Z2, represented by D(Gν) which, in an appropriate ba-
sis, is formed by 13 together with

N1 = α diag(+1, −1, −1), (10a)

N2 = β diag(−1, +1, −1), (10b)

N1N2 = N2N1 ≡ N3 = αβ diag(−1, −1, +1). (10c)

In this basis, Mν is diagonal and therefore UPMNS = U †
� up to a per-

mutation of rows. In the charged-lepton sector the residual sym-
metry is Zn , generated by a matrix L with a degenerate eigenvalue σ
and another eigenvalue ρ �= σ (of course σ n = ρn = 1). Let, in the
basis where Eqs. (10) hold, v = (v1, v2, v3)

T denote the normal-
ized eigenvector of L corresponding to the eigenvalue ρ . One may
then write

L = σ13 + (ρ − σ)v v†. (11)

The |vk| are, up to a reordering, the moduli of the matrix ele-
ments of one row of UPMNS. They may be computed in a basis-
independent way through

|vk|2 = 1

2(ρ − σ)

[
ρ − tr(Nk L)

tr(Nk)

]
. (12)

Thus, we have searched for groups G which fulfill the following
conditions:

1. G is finite.
2. G has a faithful three-dimensional irreducible representation

D(G).
3. G has two subgroups, G�

∼= Zn (n > 2) and Gν
∼= Z2 × Z2,

which have a trivial intersection, i.e. G� ∩ Gν = {e}.
4. D(Gν) does not contain −13.
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Table 2
In the first column, the groups resulting from the search described in Section 2.2 and of order smaller than 1000. In the second
column, the corresponding values of the |vk|2 (k = 1,2,3). The group G� is shown in the third column and the smallest finite group
having G� and Gν as subgroups is listed in the fourth column. A characterization of the occurring groups can be found in Table 3.

G (|v1|2, |v2|2, |v3|2) G� 〈〈G�, Gν 〉〉
[48,30]; [192,182]; [432,260] (0, 1/2, 1/2) Z4 [16,3]
[216,95]; [648,259]; [648,260]; (0, 1/2, 1/2) Z6 [24,10]
[648,266]; [648,563]; [864,701]
[96,64]; [384,568]; [864,701] (0, 1/2, 1/2) Z4 [32,11]
[96,65]; [384,571]; [864,703] (0, 1/2, 1/2) Z8 [32,5]
[648,266] (0, 1/2, 1/2) Z3 [36,12]
[432,260] (0, 1/2, 1/2) Z12 [48,21]
[192,186] (0, 1/2, 1/2) Z16 [64,29]
[648,266] (0, 1/2, 1/2) Z6 [72,30]
[648,563] (0, 1/2, 1/2) Z18 [72,10]
[864,701] (0, 1/2, 1/2) Z12 [96,54]
[864,703] (0, 1/2, 1/2) Z24 [96,48]
[600,179] (0, 1/2, 1/2) Z5 [100,14]
[648,259]; [648,260] (0, 1/2, 1/2) Z9 [108,24]
[384,568] (0, 1/2, 1/2) Z8 [128,67]
[384,581] (0, 1/2, 1/2) Z32 [128,131]
[600,179] (0, 1/2, 1/2) Z10 [200,31]
[648,259]; [648,260] (0, 1/2, 1/2) Z18 [216,58]
[216,95]; [648,259]; [648,260]; (1/4, 1/4, 1/2) Z6 [72,42]
[648,266]; [648,563]; [864,701]
[648,563] (1/4, 1/4, 1/2) Z18 [216,89]
[216,95]; [648,259]; [648,260]; (0, 1/4, 3/4) Z6 [36,12]
[648,266]; [648,563]; [864,701]
[648,563] (0, 1/4, 3/4) Z18 [108,24]
[864,701] (0, sin2 2π

24 , cos2 2π
24 ) ≈ (0, 0.0670, 0.9330) Z6 [72,28]
5. D(G�) is generated by a matrix L which has a twice degen-
erate eigenvalue σ and another eigenvalue ρ which differs
from σ .

6. The group 〈〈G�, Gν〉〉 generated by D(G�) and D(Gν) is non-
Abelian.

Once again, we have excluded groups of the form G ∼= Zm ×G ′ with
m � 2. For each group of order smaller than6 1000 fulfilling the
above requirements, we have computed the corresponding |vk|2
by means of Eq. (12). The results can be found in Table 2.

3. The case (1/4, 1/4, 1/2)

One sees in Tables 1 and 2 that most predicted columns or rows
of UPMNS contain a zero matrix element. Such a situation is phe-
nomenologically excluded7 and therefore most of the data in those
tables seem irrelevant for our purposes.

The remaining cases are more encouraging. The possibility

(|u1|2, |u2|2, |u3|2) = ( 3+√
5

8 , 1/4, 3−√
5

8 ), in the last line of Ta-
ble 1, was recently discovered and constitutes a viable prediction
for the first column of UPMNS [28]. On the other hand, the possi-
bility (|u1|2, |u2|2, |u3|2) = (1/4, 1/4, 1/2) gives a rather poor fit
to the second column of UPMNS.

Here we shall instead consider the case (|v1|2, |v2|2, |v3|2) =
(1/4, 1/4, 1/2) as a prediction for the third row of UPMNS. Using
the standard parametrization for UPMNS, one then has

6 We have stopped this search at a lower group order because the construction
of the irreducible representations becomes, for large groups, extremely expensive in
terms of computer time.

7 One might consider the possibility where our predictions only hold as a first
approximation and are corrected by other effects—for instance, suppressed terms
in the Lagrangian and/or the renormalization-group evolution of the parameters of
UPMNS. We shall not entertain such possibilities here.
Table 3
List of the groups appearing in Tables 1 and 2. Details on those groups in the left
column which are of order smaller than 512 can be found in Ref. [30]. The symbol
D(1)

18,6 denotes an SU(3) subgroup of type D, cf. Ref. [31].

G 〈〈G�, Gν 〉〉
[24,12] ∼= S4 ∼= �(6 × 22) [8,3] ∼= D4

[48,30] ∼= A4 �Z4 [12,4] ∼= D6

[60,5] ∼= A5 [16,3] ∼= (Z4 ×Z2)�Z2

[96,64] ∼= �(6 × 42) [16,7] ∼= D8

[96,65] ∼= A4 �Z8 [20,4] ∼= D10

[168,42] ∼= Σ(168) ∼= PSL(2,7) [24,6] ∼= D12

[192,182] ∼= ((Z4 ×Z4)�Z3)�Z4 [24,10] ∼= Z3 × D4

[192,186] ∼= A4 �Z16 [24,12] ∼= S4

[216,95] ∼= �(6 × 62) [28,3] ∼= D14

[384,568] ∼= �(6 × 82) [32,5] ∼= (Z8 ×Z2)�Z2

[384,571] ∼= ((Z4 ×Z4)�Z3)�Z8 [32,11] ∼= (Z4 ×Z4)�Z2

[384,581] ∼= A4 �Z32 [36,12] ∼= Z6 × S3

[432,260] ∼= ((Z6 ×Z6)�Z3)�Z4 [48,21] ∼= Z3 × ((Z4 ×Z2)�Z2)

[600,179] ∼= �(6 × 102) [60,5] ∼= A5

[648,259] ∼= D(1)
18,6

∼= (Z18 ×Z6)� S3 [64,29] ∼= (Z16 ×Z2)�Z2

[648,260] ∼= ((Z18 ×Z6)�Z3)�Z2 [72,10] ∼= Z9 × D4

[648,266] ∼= ((Z6 ×Z6 ×Z3)� Z3)�Z2 [72,28] ∼= Z3 × D12

[648,563] ∼= ((Z18 ×Z6)�Z3)�Z2 [72,30] ∼= Z3 × ((Z6 ×Z2)�Z2)

[864,701] ∼= �(6 × 122) [72,42] ∼= Z3 × S4

[864,703] ∼= ((Z6 ×Z6)�Z3)�Z8 [96,48] ∼= Z3 × ((Z8 ×Z2)�Z2)

[1080,260] ∼= Σ(360 × 3) [96,54] ∼= Z3 × ((Z4 ×Z4)�Z2)

[1176,243] ∼= �(6 × 142) [100,14] ∼= Z10 × D5

[108,24] ∼= Z18 × S3

[128,67] ∼= (Z8 ×Z8)�Z2

[128,131] ∼= (Z32 ×Z2)�Z2

[200,31] ∼= Z5 × ((Z10 ×Z2)�Z2)

[216,58] ∼= Z9 × ((Z6 ×Z2)�Z2)

[216,89] ∼= Z9 × S4

c2
23c2

13 = 1/2, (13a)

s2
12s2

23 + c2
12c2

23s2
13 − 2s12c12s23c23s13 cos δ = 1/4, (13b)

c2
12s2

23 + s2
12c2

23s2
13 + 2s12c12s23c23s13 cos δ = 1/4, (13c)

where si ≡ sin θi and ci ≡ cos θi for i = 12,13,23.
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Fig. 1. The area in the sin2 θ12–sin2 θ13 plane allowed by our prediction in Eq. (17).
The dotted lines represent the 2σ phenomenological bounds of Ref. [29] on those
parameters; the shaded area extends to their 3σ bounds.

The sum of Eqs. (13b) and (13c) is equivalent to Eq. (13a).
It makes a prediction for θ23 as a function of θ13:

s2
23 = 1 − 2s2

13

2 − 2s2
13

. (14)

With 0.0169 � s2
13 � 0.0315 at 3σ level [29], this yields 0.4837 �

s2
23 � 0.4914. This means that the atmospheric mixing angle is maxi-

mal for all practical purposes.
The difference between Eqs. (13b) and (13c) yields a prediction

for cos δ:

4s12c12s23c23s13 cos δ = (
s2

12 − c2
12

)(
s2

23 − c2
23s2

13

)
. (15)

Using Eq. (14), this gives

cos δ = − c2
12 − s2

12

4s12c12

1 − 3s2
13√

s2
13 − 2s4

13

. (16)

Since c12 > s12, cos δ is predicted to be negative.8 Moreover, | cos δ|
is quite large; the bound cos2 δ � 1 gives

sin (2θ12)�
1 − 3s2

13

1 − s2
13

≈ 1 − 2s2
13 − 2s4

13 − 2s6
13 − · · · . (17)

This implies that θ12 and θ13 cannot be both within their 1σ in-
tervals of Ref. [29] and can only marginally be both within their
2σ intervals, see Fig. 1. Anyway, the angle δ should be close to ei-
ther 0 or π , i.e. CP violation in lepton mixing is predicted to be
small.

4. Conclusions

In this work, using the software GAP and the SmallGroups
Library, we have looked for finite groups G which have a faith-
ful three-dimensional irreducible representation D(G) and have two
subgroups, Zn and Z2 × Z2, with a trivial intersection. Moreover,

8 This is not very meaningful because it just follows from our choice of fitting
(|v1|2, |v2|2, |v3|2) = (1/4, 1/4, 1/2) to the third row of UPMNS. If we had opted to
fit it to the second row instead, then the predicted value of cos δ would be symmet-
ric to the one in Eq. (16).
D(Zn) should have a twice degenerate eigenvalue and neither D(Zn)

(for n = 2) nor D(Z2 × Z2) should contain the matrix −13. When
n = 2 we have taken the search up to group order 1536 but for
n > 2 we only reached group order 1000.

Applying the results of our search to the prediction of lep-
ton mixing, we have noticed that almost all the groups that we
have found lead to a zero mixing matrix element, which is phe-
nomenologically disallowed. There are only two exceptions. In one
of them, the groups [60,5] ∼= A5 and [1080,260] ⊃ [60,5] may
lead to the first column of the lepton mixing matrix having ele-
ments with moduli squared (0.6545, 0.25, 0.0955); this is viable
and had already been found in a previous paper [28]. In the other
exception, many groups—see Tables 1 and 2—may lead to either
the second or the third row of the lepton mixing matrix having
elements with moduli (1/2, 1/2, 1/

√
2); the consequences of this

prediction are a very close to maximal atmospheric mixing angle
and | cos δ| straddling 1.
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