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Lattice Covering by Semicrosses of Ann Length 2 

S. SZABO 

Using algebraic and graph theoretical methods we provide an algorithm to determine the 
integer lattice covering constant of a certain type of n-dimensional cubistic polyhedron. In 
particular, we verify a special case of a conjecture of S. K. Stein on covering finite abelian 
groups by cyclic subsets. 

1. INTRODUCTION 

Let el' ... , en be the co-ordinate unit vectors in the n-dimensional space. Consider an 
n-dimensional unit cube the edges of which are parallel to el, ... ,en. The union of 
translates of this unit cube by the vectors 

je;, 1 .:;; i .:;; n, 0.:;; j .:;; k 

is called a (k, n) semicross. The (k, n) semicross is the union of kn + 1 n-dimensional 
unit cubes, a corner cube and n attached arms of length k. A family of translates of this 
(k, n) semicross is a covering if its union is the n-space. If the translation vectors have 
only integer co-ordinates and they form a lattice we speak of an integer lattice covering. 

Integer lattice coverings by translates of a (k, n) semicross are in an intimate 
connection with a covering problem of finite abelian groups. Let G be a finite abelian 
group written additively. We say that the subset {gl' ... ' gn} covers G by the 
multiplier set {1, 2, ... , k} if the union of the elements 

jg;, 1 .:;; i .:;; n, 1 .:;; j .:;; k 

contains G\{O}. Let f(k, n) be the order of the largest abelian group which can be 
covered in this way. Clearly, f(k, n).:;;kn + 1. The importance of f(k, n) is that 
(kn + 1)/f(k, n) is the density of the optimal integer lattice covering of n-dimensional 
space by (k, n) semicrosses. For the details see [2). 

S. K. Stein conjectured that to determine f(k, n) we may restrict our investigations 
to the case of cyclic groups. Hickerson [1) verified this conjecture in the special case 
that f(k, n) = kn + 1; that is, when each non-zero element is covered only once. 
However, he showed that the conjecture does not extend to all multiplier sets, since 

{-5, -3, -2, -1, 1,2,3,5, 7} 

covers C(2) Ea C(14) with 3 elements but not C(28). In this paper we verify his 
conjecture in the special case k = 2 and arbitrary n. 

2. PRELIMINARIES 

We consider a finite abelian group G and the multiplier set {1, 2}. Then we construct 
a covering set {gl' ... ,gn} for G with minimal n. To construct such a covering set we 
define a directed graph the vertices of which are the elements of G and the directed 
edges of which are (g, 2g), g E G. (We borrow this idea from [3).) If {gl, ... ,gn} is a 
covering set of G then the vertices of the edges 

(gt> 2g1), ••• , (gn, 2gn) 

occupy all the non-zero vertices of the graph. 
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When I G I is odd define a relation between elements in G by setting g - g' if there is 
an integer m such that g = 2mg'. This is an equivalence relation which breaks G into 
equivalence classes that are cycles of the form (g, 2g, 4g, ... ). If each cycle other than 
the one containing 0 has even cardinality then G can be covered with (IGI- 1)/2 
elements. A cycle of odd length m can be covered with (m + 1)/2 elements. Thus G 
can be covered by (IGI - 1)/2 + y /2 elements, where y is the number of the cycles of 
odd length. 

The directed graph always contains a loop on the zero node since 2 . 0 = O. When 
IGI = 2' then this is the only cycle in the graph; that is, the graph is essentially a 
directed tree. In this case we must construct an optimal covering set for a directed tree. 
The nodes whose in-degrees are zero must belong to each covering set. After deleting 
these elements and their doubles from the graph we have a smaller tree and we may 
repeat the whole process again. 

Finally, we will describe the structure of the graph in the general case, and we see 
that among the abelian groups of a given order the cyclic one admits one of the 
covering sets of smallest order. . 

3. THE CASE WHEN IGI IS ODD 

By the fundamental theorem of finite abelian groups, any finite abelian group is a 
direct sum of cyclic groups of orders that are powers of primes. We start with the cyclic 
group of order p a, where p is an odd prime. It will be convenient to use C(p ",}, which 
is the additive group of the ring of the integers modulo p a. 

The elements which are relatively prime to p a form a cyclic multiplicative group. In 
other words, there is a primitive root modulo p a, say g. The permutation 

c-+gc, C E C(p"'}\{O} 
consists of a cycles: 

(1, g, g2, ... , g(p-l)pa-I ), 

(p, pg, pg2, ... , pg(P_l)pa-2), 

(p2, p2g, p2g2, ... ,p2g(p-l)pa-3), 

(pa-l, pa-lg, pa-lg2, ... , p",-lg(p-l». 

We call the cycles of the permutation c-+ 2g, c E C(p"'}\{O} binary cycles to distinguish 
them from the cycles formed by the powers of g. 

Let 2~g' (modp"'}. (We suggest that the reader draws the corresponding graph 
when G: C(27).) The length of the cycle (1,2,22

, ••• ) is , if , is the least positive 
integer for which 2' ~ gtr = 1 (mod p "'}; that is, for which t, = 0 (mod(p - 1)p"'-I». If d 
is the greatest common divisor of t and (p - 1)p "'-1, then , = (p - 1)p ",-1 / d. Since 2 is 
relatively prime to p, ,is the length of every cycle consisting of elements prime to p. 

The length of the cycle (p, 2p, 22p, ... ) is " if " is the least positive integer with 
2" ~gtr' ~ 1 (modp"'-I); that is, withtr' =0 (mod(p _1)p"'-2). If d' is the greatest 
common divisor of t and (p -1)p",-2, then " = (p -1)p",-2/d'. This " is the length of 
every cycle consisting of elements which are divisible by p but not by p2. Similar 
computations hold for binary cycles of the form (pS, 2ps, 4ps, ... ). 

Note that either d' = d or pd' = d, and so either p,' = , or " = ,. Let '1 < '2 < ... < 's 
be all the different numbers among the lengths of the cycles. Now, 

'2 = P'I, ... , 'S = ps-l'l' 

This means that either all '1' ... , 's are odd or all are even. 
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Let G and H be finite abelian groups of odd orders. The length of the cycle 
containing the element g + h of the direct sum G ED H is the least common multiple of 
the lengths of the cycles containing g and h in G and H respectively. 

Now we show that the number of the cycles in C(pa+l1) is not greater than the 
number of cycles in C(p"') ED C(p 11). To do this, let rv ... ,rs be all the different 
numbers among the lengths of the cycles in C(pa+l1) and let Iv ... , Is be the 
corresponding multiplicities. Similarly, let rv ... , ru and r1, ... , rv be all the different 
numbers among the lengths of the cycles in C(p"') and C(p 11) respectively. We may 
suppose that u ~ v. The lengths of the cycles in C(p"') ED C(p 11) are the least common 
multiples of ri and Tj, 1 ~ i ~ u, 1 ~ j ~ v. All the different number among them are 
rv ... ,rv. Suppose that mv ... ,mv are the corresponding multiplicities. Note that 
m1 ~ Iv ... , mv ~ Iv and v ~ s. If v = s, then clearly 

v s 

L mi~ L I., 
i=l i=l 

what we wanted to prove. If v ~ s, then from 
v s 

L rimi = L r;li 
i=l i=l 

it follows that 
v v s s 

rv L (mi -Ii) ~ L ri(mi -Ii) = L r;li ~ rv+1 L Ii 
i=l i=l i=v+1 i=v+1 

and so 
v s 

L (mi -li)~ L Ii' 
i=l i=v+1 

that is, 
v s 

Lmi~Lli 
i=l i=l 

as we claimed. 
Actually, this argument shows that if G is a finite abelian p-group of odd order n, 

then the number of cycles in C(n) is not greater than the number of cycles in G. 
Furthermore, if H is an abelian group of odd order, then the number of cycles in 
C(n) ED H is not greater than the number of cycles in G ED H. 

Finally, we show that if G is an abelian group of order n, then the number of cycles 
of odd lengths in C(n) is not greater than the number of cycles of odd lengths in G. 
Indeed, G is a direct sum of the Pr, ... , Ps-groups Gv ... , G., where Pv ... ,Ps are 
the distinct prime factors of n. We have already seen that the lengths of the cycles of Gi 

are either all odd or all even depending only on the prime Pi. Suppose that the lengths 
of the cycles in H = G1 ED ... ED Gt are odd and the lengths of the cycles in 
K = Gt+1 ED· .. ED Gs are even. We replace the prime components in Hand K by cyclic 
groups to obtain H' and K', and the number of cycles does not increase. Clearly, 
H' ED K' is isomorphic to C(n) and the number of cycles of odd lengths in H' ED K' is 
the number of cycles in H' ED {O}. Thus we have verified the conjecture when IGI is 
odd. 

4 THE CASE IGI = 2t 

Let G be an abelian group of order 2t. By the fundamental theorem of finite abelian 
groups G is the direct sum of cyclic groups of orders that are powers of two. Now, we 
describe the structure of the graph the directed edges of which are (g,2g), g E G. 
There is a loop on the zero element. (We suggest that the reader works out the cases 
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G = C(16) and G = C(2) ED C(8).) Consider the descending chain of subgroups G, 2G, 
4G, 8G, .... The edges ofthe graph the initial points of which are in G \ 2G terminate 
in 2G. The edges the initial points of which are in 2G\4G terminate in 4G, etc. The 
elements of G\2G, 4G\8G, 16G\32G, ... form an optimal covering set. 

When G is cyclic then 212GI = IGI and if a node from 2G is the terminal element of 
an edge then it is the terminal element of two edges. 

When G is the direct sum of s cyclic groups, then 2s 12GI = IGI, and if a node from 
2G is a terminal element of an edge then it is a terminal element of at least two edges. 
Consequently, on the average an element of the covering set is responsible for covering 
at most 3/.2 or precisely 3/2 elements, depending on whether the group is non-cyclic or 
cyclic. (Note that the role of the zero element is exceptional and so we need to 
distinguish two cases dealing with this node.) Thus among the abelian groups of order 
2' the cycle one admits one of the smallest covering sets. 

5. THE GENERAL CASE 

Finite abelian groups are of form G ED H, where IGI = 2' and IHI is odd. In the graph 
corresponding to G ED H the elements of G form a tree with a loop on the zero 
element. Let T be this tree without the loop and call the zero element the root of T. In 
the graph corresponding to G ED H the elements of H form cycles. Using these two 
graphs we can construct the whole graph corresponding to G ED H; namely, consider 
IHI copies of T and identify their roots with the elements of the cycles. (Here working 
out the special case G = C(8) ED C(3) may help the reader to follow the argument.) To 
verify this construction, consider a cycle (ho, hi> ... , hi-I) of H and I copies of the tree 
T. The nodes of the new graph are elements of the direct sum G ED H. Consider the 
tree the root of which coincides with hi' Suppose that the nodes in the jth level in Tare 
labelled by gl, ... ,g,. Now assign 

gl + hs, ... , g, + hs 

to these nodes, where O~s ~/-l and s == -j (modi). 
The arguments we have already used to construct optimal covering sets can now be 

applied. (We should still bear in mind that the root of a tree is always exceptional, and 
so it is reasonable to distinguish two cases depending on whether or not the covering 
set constructed for the tree covers elements of the cycle.) The final conclusion of this 
consideration is that among the finite abelian groups of a given order the cyclic one 
admits one of the optimal covering set. 
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