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Palmitic acid is associated with halorhodopsin as a free fatty acid
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analysis of the reaction products of purified halorhodopsin with thiols
and NaBH 4
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Abstract

Halorhodopsin, isolated from Halobacterium salinarium cells incubated with tritiated palmitic acid, co-elutes with
labeled palmitate in phenylsepharose CL-4B chromatography. Halorhodopsin-bound 3H-palmitate is not readily displaced
by prolonged exposure to a large excess of detergents and by re-chromatography of radiolabeled halorhodopsin on
phenylsepharose. On other hand, the association of labeled palmitate with purified halorhodopsin is not resistant to
denaturation induced either by isopropanolrhexane or by SDS gel electrophoresis. We have tested the hypothesis that
tightly associated palmitate is bound to halorhodopsin through a thioester bond, which is unstable in denaturing conditions.
Using GCrMS, we have analysed the reaction products of native halorhodopsin with specific thioester reagents, thiols and
NaBH , which are inactive on free fatty acids. The results of this analytical approach indicate that there is no thioester bond4

between halorhodopsin and palmitic acid and that palmitic acid is associated with halorhodopsin as a free fatty acid. q 1998
Elsevier Science B.V.
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1. Introduction

Fatty acids are only minor lipid components of
Archaea, representing less than 1% of the total cell
lipids. Recent studies have shown that in Archaeal
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cells fatty acids are only used to acylate membrane
w xproteins 1 .

w xIn previous work 2 we have shown that Halobac-
terium salinarium cells are able to synthesize palmi-
tate, and that this fatty acid is associated with purified
halorhodopsin. The quantitative analysis of palmitate
associated with native halorhodopsin indicated that
from one to two fatty acid molecules per protein
molecule were present. Furthermore, we reported that
palmitate strongly affects photoreactivity and depro-
tonation in the dark of the Archaeal chloride pump.
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Here we present further evidence of the association
of palmitate with halorhodopsin and we clarify the
nature of the interaction between this protein and
fatty acids.

This report dem onstrates that purified
halorhodopsin, isolated from halobacterial cells incu-
bated with tritiated palmitate, appears to be labeled
with radioactive palmitate.

To determine if this association represents acyla-
tion we have used a chemical approach in which we
examine the effects of specific reagents of thioesters
on this association.

Because of previous data indicating that fatty acids
are removed from halorhodopsin after denaturation,
for the present investigation we have selected a cou-
ple of specific thioester reagents that are unable to
react with free fatty acids and that, therefore, could
be used on native halorhodopsin, namely thiols and
NaBH .4

In the past, these two reagents have been largely
used to characterize the chemistry of bacterio-

w x w xrhodopsin 3 and bovine rhodopsin 4 .
Hydroxylamine, another typical reagent of

thioesters, was not suitable because it easily reacts
with free fatty acids.

Chemical analyses of the reaction products of na-
tive halorhodopsin with thiols and NaBH were per-4

formed by means of GCrMS.

2. Materials and methods

2.1. Materials

An engineered H. salinarium strain overexpress-
ing halorhodopsin, kindly offered by Richard Needle-
man, was used in this study. These cells have an
insertion in the gene encoding bacteriorhodopsin and
therefore produce no bacteriorhodopsin. The growth

Žmedium, containing neutralized peptone L 34, Ox-
. Žoid and novobiocin from Serva, at final 1 mg

y1. w xml , was prepared as previously described 5 .
w 3 x Ž y1.9,10- H Palmitic acid 50 Ci mmol was from

Amersham. DNase and n-octyl-b-glucopyranoside
Ž .octylglucoside were from Sigma, sodium cholate
from Serva and phenylsepharose CL-4B from Phar-

Ž .m acia. Bis- trim ethylsilyl trifluoroacetam ide
Ž .BSFTA was from Supelco.

2.2. Halorhodopsin isolation and radiolabeling

A concentrated suspension of halobacterial cells in
Ž . 34 M NaCl 10 ml was incubated with H-palmitic

Ž . Ž .acid 200 mCi in ethanol 1% final at 378C for 1 h
with shaking.

Cells were then disrupted by dialysis overnight in
Žthe cold room. Membranes containing about 2 mg of

.halorhodopsin were collected and washed twice by
centrifugation; membrane solubilization was obtained
by incubation at RT for 1 h with 5% cholate buffer
containing 4 M NaCl, buffered with 25 mM TrisrHCl
pH 7.2. The extract, obtained after spinning the solu-
bilized membranes at 100,000=g for 1 h in an
ultracentrifuge, was incubated for 1 h at RT with
phenylsepharose CL-4B, pre-equilibrated in cholate
buffer, containing 4 M NaCl, 25 mM TrisrHCl pH
7.2, 0.4% sodium cholate. At the end of the incuba-
tion, the gel appeared purple and no halorhodopsin
was left in the buffer. The binding capacity of the
phenylsepharose gel in our experimental conditions
was found to be 5 mg of halorhodopsin per 1 ml of
settled gel. In a typical experiment about 150 ml of
gel was used. The purple gel was then poured in an
insulin syringe and washed with 14 ml cholate buffer;
the washing was interrupted after checking that no
significative radioactivity was present in the washing
fractions. The column was then eluted with octyl-

Žglucoside buffer 4 M NaCl, 25 mM TrisrHCl pH
.7.2, 0.5% octylglucoside ; about 20 fractions, 300 ml

each, were collected from a column packed with
about 150 ml of gel.

The absorbance at 570 and 280 nm of each frac-
tion was measured and its radioactivity was deter-
mined by counting 50 ml aliquots of each fraction.

2.3. Binding of 3H-palmitate to phenylsepharose CL-
4B in the absence of halorhodopsin

In a parallel experiment, the ability of
phenylsepharose CL-4B to bind 3H-palmitate in the
absence of halorhodopsin was tested. 3H-palmitate
Žin 5% cholate buffer and at the same specific activ-

.ity as that of the extract was incubated with
phenylsepharose under the same experimental condi-
tions used for the sample. The amount of 3H-palmi-
tate bound to the gel in the absence of halorhodopsin
was subtracted from the sample.
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2.4. SDS–PAGE of radiolabeled halorhodopsin

3 Ž .H-palmitic acid labeled halorhodopsin 50 mg
was analysed by SDS–PAGE. A 15% acrylamide gel
was run at 108C and the protein visualized by stain-
ing with Coomassie Blue. The broad halorhodopsin
band was excised and incubated overnight at 608C

Ž .with hydrogen peroxide 1 ml at 20% ; the radioac-
tivity of resulting solution was measured in a liquid
scintillation counter.

2.5. Treatment with free thiols

Ž .Pentanethiol 20 ml was added to halorhodopsin
Ž .200 nmol suspended in 1 ml water under nitrogen
flow; the sample was incubated overnight at 378C
under shaking. After this time the sample appeared to
be completely bleached. An aliquot of halorhodopsin
not treated with thiols was run in parallel as a control.
The reaction was performed at room light. Lipids
associated to the control and bleached samples were

Žextracted by addition of isopropanolrhexane 1:2,
.vrv . After addition of organic solvents, the sample

was vigorously shaken for 2 min on a vortex mixer
and, after phase separation, the organic phase was
saved. The extraction was repeated for two more
times and hexane phases combined. Hexane was
removed under nitrogen, the dried residue solubilized

Ž .in ethylether 100 ml and analysed by GCrMS.

2.6. Synthesis of pentanethiolpalmitate

ŽTo a stirred solution of pentanethiol 0.42 g, 4
. Ž .mmol and pyridine 0.24 g, 3 mmol in anhydrous

Ž .benzene 5 ml palmitoyl chloride was added drop-
Ž .wise 0.56 g, 2 mmol at room temperature. The

reaction mixture was continuously stirred overnight.
After filtration and evaporation of the solvent at
reduced pressure, a yellow oil was obtained. The
final product was characterized by GCrMS spec-
trometry. In the following, we report mre values and

Ž .relative heights in brackets of mass spectrum peaks
Ž . Ž . Ž . Ž . Ž . Ž .70 eV : 271 12 , 239 63 , 123 7 , 109 13 , 99 7 ,

Ž . Ž . Ž . Ž . Ž . Ž .98 9 , 97 14 , 85 28 , 83 22 , 71 49 , 69 28 , 57
Ž . Ž . Ž . Ž .78 , 55 71 , 43 100 , 41 68 .

2.7. Reaction of NaBH with palmitoylCoA, methyl-4

palmitate and palmitic acid

Ž .NaBH 10 mg was added to palmitoylCoA or4
Ž .methylpalmitate or palmitic acid 30 mmol , solubi-

lized in 1 ml water plus 300 ml tetrahydrofuran, and
left for 15 min at 388C.

The reaction of reductant with thioester was
quenched by slowly adding 1 N HCl 700 ml, to
destroy excess NaBH . The resulting mixture was4

Ž .extracted by CHCl 1.5 ml for three times . The3

combined chloroform phases were dried under nitro-
Ž .gen and resolubilised in fresh chloroform 1 ml . One

milliliter of water was added to the chloroform solu-
tion and it was vigorously shaken to remove salts
from the chloroform phase. Finally, dried lipids were

Ž .solubilised in pyridine 100 ml .

2.8. Reaction of NaBH with halorhodopsin4

A quantity of 10 mg NaBH were added to 2004
Žnmol of halorhodopsin resuspended in water 1%

.final , and reduction was carried out at room light as
described above.

2.9. DeriÕatization of alcohols with BSFTA

Ž .BSFTA 100 ml was added to the lipids extracted
from reduced halorhodopsin and solubilized in pyri-
dine; the derivatization was carried out at 1008C for
30 min. The silanised products were analysed by
GCrMS.

2.10. GCrMS apparatus

GCrMS analyses were performed with a
Hewlett-Packard instrument equipped with a mass
selective detector MSD5970 and a SE-30 capillary

Ž .column 30 m=0.25 mm i.d. .

3. Results

3.1. Labeling of halorhodopsin with 3H palmitic acid

Halorhodopsin superproducer H. salinarium cells
were incubated with 3H-palmitic acid.

The membrane extract obtained from these cells
was incubated with phenylsepharose CL-4B gel. The
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Fig. 1. Phenylsepharose CL-4B chromatography of halorhodopsin
extracted from H. salinarium cells that have been incubated with
3 Ž . 3H-palmitic acid. a Co-elution of halorhodopsin and H-palmitic
acid. Radioactivity profile during washing and elution of
phenylsepharose column is shown together with absorbances:

Ž . Ž . Ž .absorbance at 570 nm ` and 280 nm v , radioactivity l .
Ž .Details as in Section 2. b Rechromatography of radiolabeled

halorhodopsin. Part of material collected from the chromatogra-
Žphy in Fig. 1a 1.6 mg of HR, at specific activity 320 cpmr50

.ml was diluted 10-fold in 5% cholate buffer, incubated with gel
and after shifting to octyglucoside halorhodopsin was recollected.

Ž . Ž .Each fraction 300 ml. Absorbance at 570 ` and 280 nm v ,
Ž .radioactivity l .

resulting purple gel was washed in a syringe with 100
bed column volumes of cholate buffer, before shifting
to octylglucoside buffer for halorhodopsin elution.

In parallel, as control, the same amount of
phenylsepharose gel was incubated with cholate buffer
containing 3H-palmitate at the same specific activity

Ž .as the extract i.e., in the absence of halorhodopsin
and used as blank column; the radioactivity collected
from the blank column was never higher than 10% of
sample radioactivity.

In Fig. 1a, the radioactivity of sample fractions
collected during cholate washing together with that of
the octylglucoside fractions is reported on a semilog-

arithmic scale. It can be seen that washing with
cholate removes all non-specific radioactivity bound
to phenylsepharose CL-4B and that after shifting to
octylglucoside buffer a peak of radioactivity is ob-
served.

The radioactivity in octylglucoside fractions co-
eluted with the 570 nm absorbance of the chro-
mophore and the 280 nm absorbance of the protein
portion of halorhodopsin.

Similar results were obtained after repeating the
experiment with halorhodopsin from Natronobac-
terium pharaonis.

3.2. Characteristics of 3H-palmitic acid labeled
halorhodopsin

3H-palmitic acid labeled halorhodopsin was con-
Žcentrated on an Amicon membrane Microcon cut-off

.10,000 and two volumes of fresh octylglucoside
buffer were added to the protein; the sample was
further concentrated and finally the volume was read-
justed to the starting value. At the end of the ultrafil-
tration process, 85% of starting protein was recovered
together with 70% of starting radioactivity; taking in
account the small loss of protein, no more than 20%
of radiolabeled palmitate was displaced from the

Žhalorhodopsin recovered after this experiment see
.data in Table 1 .

Another interesting piece of information on the
resistance of halorhodopsin radiolabeling to long and

Table 1
Radioactivity associated with halorhodopsin before and after
detergent exchange and after treatment with organic solvents

Ž .Sample Radioactivity %

Halorhodopsin control 100
aAfter detergent exchange 70

Hexane phase after addition 95
bof isopropanolrhexane

aA 300 ml aliquot of 3H-labeled halorhodopsin in octylglucoside
Žbuffer was concentrated on an Amicon membrane Microcon

.cut-off 10,000 . One volume of octylglucoside buffer was added
to the protein on filter and the protein was again concentrated;
after repeating this step once, the volume was readjusted to 300
ml with octylglucoside buffer. Protein yield: 85%.
bIsopropanolrhexane 1:2 was added to another 300 ml HR

Ž .aliquot three times ; after phase separation hexane phases were
collected, dried under nitrogen and resuspended in 300 ml hex-
ane.
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harsh detergent exposure, was obtained from the
re-chromatography of halorhodopsin.

Radiolabeled halorhodopsin fractions were pooled
and diluted 10 fold with 5% cholate buffer. In the
presence of such a large excess of cholate, we assume
that the protein molecules are surrounded by cholate
instead of octylglucoside. Moreover, after binding to
phenylsepharose, halorhodopsin was washed on the
gel with about 100 volumes of bed column of cholate
buffer and finally halorhodopsin elution was obtained
with octylglucoside buffer.

The re-chromatographated halorhodopsin fractions
were found to be still associated with significative

Ž .amounts of labeled palmitate see Fig. 1b .
The yield of the second phenylsepharose chro-

matography was quite low, as only 60% of loaded
protein was recovered and the ratio 3H-palmitic
acidrhalorhodopsin after re-chromatography was
found to be reduced to a half.

The results reported in Table 1 and in Fig. 1b
indicate that the binding of 3H-palmitate to
halorhodopsin is pretty strong, as it is not easily
removed by prolonged treatments with detergents.

On other hand, most of radioactivity found in
association with purified halorhodopsin did not resist
to treatment with organic solvents used to delipidate
proteins, such as CHCl rCH OH or hexanerisopro-3 3

panol. Data in Table 1 confirm previous observations
obtained by analysing the GCrMS fatty acid content

w xof native and delipidated halorhodopsin 2 .
Finally, an aliquot of labeled halorhodopsin was

subjected to SDS polyacrylamide gel electrophoresis;
the halorhodopsin band was excised and the radioac-
tivity in the gel slice measured. Almost all the ra-
dioactivity originally present in the purple fractions

Ž .was lost during SDS–PAGE not shown .

3.3. Reaction of halorhodopsin with thioester reagents

Taken all together, data presented in Section 3.2
seem to indicate that the binding of palmitate to
halorhodopsin is non-covalent.

However, considering that some covalent bonds
are unstable in denaturing conditions—as is the case
with the aldimine bond of retinal to lysine of G helix
in halorhodopsin itself—it cannot be excluded that
palmitate can bind halorhodopsin through a very

reactive covalent bond which is unstable in denatur-
Ž .ing conditions e.g., a thioester bond .

In this section, we describe experiments done to
test the hypothesis that there is a thioester bond
between palmitate and halorhodopsin which has two
cysteines.

Fatty acid acylation of membrane protein is rou-
tinely investigated by gas chromatography of deriva-
tised fatty acids, which are released from delipidated
protein after alkali or hydroxylamine treatment.

w xThe previous data 2 and the data in Table 1
indicate that fatty acids associated to halorhodopsin
are removed by denaturation. Here, we have used
thioester reagents that are inactive on free fatty acids
and are therefore suitable for such an analysis of
native halorhodopsin.

Thioesters are known to be able to transfer the
Ž .fatty acyl group to free thiols transesterification .

Therefore, if a thioester bond was present in
halorhodopsin between protein cysteine residues and
fatty acids, the products of reaction between
halorhodopsin and thiols should be the thioester
formed between free thiol and palmitate together with
the deacylated protein.

The finding of such newly formed thioester among
the reaction products of purified halorhodopsin with
free thiols would be evidence for the presence of
thioester in halorhodopsin.

In the present study, we have synthesized the
expected product of the reaction of halorhodopsin
with pentanethiol and used GCrMS analysis to de-
tect it.

Although b-mercaptoethanol is the typical reagent
for studying oxidized SH residues of proteins, in this
study we have selected pentanethiol because it does
not contain other functional groups potentially reac-
tive in the course of thioester synthesis.

ŽThe characteristics of pentanethiolpalmitate ob-
tained from the reaction of palmitoyl chloride with

.thiol were checked by means of IR, NMR and
ŽGCrMS spectroscopy peaks and relative heights of

pentanethiolpalmitate mass spectrum are reported in
.Section 2.6 .

Furthermore in preliminary experiments, the effect
of pentanethiol on chloride transport was tested in
cell envelope vesicles, by following light induced
alkalinization of the extravesicular medium. We found
that pentanethiol has the ability to inhibit the pho-
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toactivated Cly transport mediated by halorhodopsin
to a similar extent as observed with b-mercapto-
ethanol.

The results of GCrMS analysis of the lipid extract
obtained from pentanethiol treated halorhodopsin in-
dicated that a thioester bond is not present in signifi-

Ž .cant amounts in halorhodopsin not shown .
NaBH is a quite specific reagent used to deter-4

mine the chemical nature of fatty acid–protein link-
ages, as thioester, but not oxyester, are rapidly
cleaved; the fatty acid involved in the linkage is

w xreduced to the corresponding long chain alcohol 6 .

We have verified that in our experimental condi-
Ž .tions: a palmitic acid is not reduced to the corre-

Ž .sponding long chain alcohol by the reductant and b
palmitoyl-S-CoA, but not methylpalmitate, is easily
reduced, in agreement with a previous observation
w x7 .

Fig. 2 reports the GCrMS of silanised lipid extract
obtained after borohydride reduction of

Ž .halorhodopsin. In chromatogram Fig. 2A a very
small peak, having the retention time of silanised

Ž .cetyl alcohol, is present marked with a . The mass
Ž .spectrum of this component in Fig. 2B was found to

Ž .Fig. 2. GCrMS analysis of silyl derivatives of lipid extract obtained from NaBH reduced halorhodopsin. A Chromatogram of silyl4
Ž . Ž . Ž .derivatives. Peak of silyl derivative of cetyl alcohol marked with a , peak of unreduced silanised palmitic acid marked with b . B Mass

Ž . Ž . Ž .spectrum of peak a . C Mass spectrum of peak b .
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be identical to that of the standard; in addition, a
Ž .much bigger peak can be seen marked with b . It has

the retention time and the mass spectrum of silanised
Ž .unreduced palmitic acid Fig. 2C . These results indi-

cate that most of the palmitate associated with puri-
fied halorhodopsin is present as free fatty acid.

4. Conclusions

In the first part of this work we have shown that
tritiated palmitic acid and halorhodopsin co-elute in
the course of phenylsepharose chromatography.

The association of tritiated palmitic acid with
halorhodopsin was not easily removed by long treat-
ments with detergents or by re-chromatography, but it
did not resist to delipidation by means of organic
solvents or by SDS–PAGE.

w xThese results confirm previous observations 2
obtained with different techniques and seem to indi-
cate that the association between halorhodopsin and
palmitate is due to non-covalent binding.

This conclusion is supported by the analytical data
of this paper which demonstrates that there is no
thioester bond between halorhodopsin and palmitic
acid, therefore excluding the possibility that the asso-
ciation of palmitate with halorhodopsin is due to
protein palmitoylation.

Experiments are in progress to ascertain if the
binding of palmitic acid to halorhodopsin as a free
fatty acid has physiological significance.
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