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Abstract

An arborescence in a digraph is a tree directed away from its root. A classical theorem of Edmonds
characterizes which digraphs ha¥earc-disjoint arborescences rootedraf similar theorem of
Menger guarantees thatstrongly arc disjoint-v-paths exist for every vertex, where “strongly”
means that no two paths contain a pair of symmetric arcs.

We prove that if a directed gragh contains two arc-disjoint spanning arborescences rooted at
thenD contains two such arborences with the property that for every nale paths fronr to v in
the two arborences satisfy Menger's theorem.
© 2005 Published by Elsevier B.V.

Keywords:Disjoint spanning arborescences

1. Introduction

Given a digraphD = (V, A) and a subse$ of V, define4},(S) to be the subset ok
with the head inS and the tail inV\S andé,,(S) = [4,(S)|. Let AJ{)(S) = A, (V\S9),
Sp(8) =145(S)I.

Letr be a node oD. An arborescence rooted atis a subgrapl¥ = (V(F), E(F)) of
D which containg,, is connected and (r) = 0, while 6 (v) = 1 for every other node of
V(F). The arborescendeis spanningf V(F) =V.
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The following are two basic results on graph connectivity:

Theorem 1 (Edmondg[1]). A digraph D = (V, A) with a specified node r contains
pairwise arc-disjoint spanning arborescences rooted at r if and only,ifS) > A for every
@#SCV\r.

Two arcs arsymmetridf they have the same endnodes but have opposite orientations. In
a digraph two paths astrongly arc-disjoinif they are arc-disjoint and they do not contain
a pair of symmetric arcs.

Theorem 2 (Mengei7]). AdigraphD = (V, A) with two specified nodes r anctontains
/ pairwise strongly arc-disjoint paths from r toif and only if6,,(S) > 4 over all§ € V\r
withv € S.

The following conjecture, if true, provides a strengthening of both Theorems 1 and 2.

Conjecture 1. A digraph D = (V, A) with a specified node containsl pairwise arc-
disjoint spanning arborescences rooted such that, for every € V\r, the 1 paths from
r to v in each of these arborescences are strongly arc-disjoint if and odify( &) > 4 for

everyy # S C V\r.

Note that Conjecture 1 does not require tharborescences to be strongly arc-disjoint.
Conjecture 1 obviously implies Theorem 1. That it implies Theorem 2 can be seen as
follows: Let D’ = (V, A’) be obtained fronD by adding4 arcs fromv to each node
x € V\{r,v}. Theno,(S) >/ over allS < V\r with v € S if and only if 6,,,(S) > 4 over
all § € v\r andD containsi pairwise strongly arc-disjoint paths fronto v if and only if
D’ containsi pairwise arc-disjoint spanning arborescences rootedath that, for every
v € V\r, thel paths fronr to v in each of these arborescences are strongly arc-disjoint.
Although we cannot settle Conjecture 1 in the general case, we give below a proof when
A=2.
There is a known conjecture (sg&6]) that is a undirected counterpart of Conjecture 1.
Given a undirected grapfi= (V, E) and a subsef # @ of V, let 45 (S) be the set of edges
of E with one endnode iSand the other iV\ S andog (S) = |46(S)].

Conjecture 2. Anundirected graply =(V, E) with a specified nodecontainsi spanning
trees such that, for everye V\r, thei paths fronr to v in each of these trees are pairwise
edge-disjoint if and only ibg (S) > / for every@ # SCV\r.

Indeed, Conjecture 2 is a special case of Conjecture 1. To see this, given &gtaphE)
construct a digrapt® = (V, A) on the same node set by introducing a pair of symmetric
arcs(u, v), (v, u) for every edgeuv of G. Given . spanning arborescenceshrsatisfying
Conjecture 1, the correspondingpanning trees i satisfy Conjecture 2. So Conjecture
1 implies Conjecture 2. In fact, the two conjectures are equivalent if all arBsdame
in symmetric pairs. Again, Conjecture 2 has been proved only. fer2 using depth first
searcH6].



L. Colussi et al. / Discrete Mathematics 292 (2005) 187—-191 189

Similar results are known for the case where “strongly arc-disjoint paths” are replaced by

“internally disjoint paths” in Conjecture 1 (where two paths eaternally disjointif they
have no node in common, except possibly the ends). WBitfyroved the internally disjoint
version of the conjecture for= 2. A simpler proof is due to Hucld]. Recently HucK5]
found a counterexample to the internally disjoint version of the conjecture wheh

2. Proof of Conjecture 1 for A =2

If G contains two arc-disjoint spanning arborescenEgsF, rooted atr, then, for all
S CV\randi =1,2,]4,(S) NA(F)|>1; thus,6,,(S) > 2.

For the converse, from Theorem 1 we may assume w.l.0.g. that the difraqlv, A) is
the union of two arc-disjoint spanning arborescences rootethet is,0 ,, (r) =0, 6, (v) =2
for everyv € V\r, andé,(S) >2 for everyS € V\r. So the arcs ob are partitioned in
pairs having the same head. Arcs in the same paimates We may also assume w.l.o.g.
thatAJ[,(r) consists of two parallel arcs, sayanda’ with r’ as head. If not, we may add a
new noder and two parallel arcs frormi to r; one can easily verify that the cage= 2 of
Conijecture 1 holds for the new digraph with specified nodé if and only if it holds for
D with specified node.

Given an arborescende= (V(F), A(F)) of D, let D\ F = (V, A\A(F)). Assume how
thatF satisfies the following.

Property 1. 55\F(S) >1for everyS C V\r.

(That is,D\ F contains a spanning arborescence.)

A subset ofV \r is critical if it satisfies Property 1 with equality; the unique arcl@fF
entering a critical set is callespecial Sinced,, (v) = 2, every node in V(F)\r belongs
to a critical set.

By submodularity of functiod™ (-), if SandS’ are critical sets and N S’ # @, then
SN S andS U S are also critical. So i¢is a special arc, there is a unique maximal critical
setS,(F) entered bye.

Claim 1. Lete=(u, v) ande’=(u’, v') be two special arcsf u’e S, (F) thenS, (F)CS.(F).

Proof. If u’ € S,(F) thenS.(F) U S./(F) is critical and is entered bg. SinceS,(F) is
maximal, thenS,(F) = S.(F) U S,/ (F). Sinceu’ ¢ S./(F), thenS, (F)CS.(F). O

A boundary nodés a nodev € V(F) connected by an ai@, w) to a nodew ¢ V (F).
Let|V|=nand letFy, ..., F,_1 be arborescences rooted &ionstructed as follows:
Let Fy be the arborescence with V(F1) ={r,r'}, A(F1) =a and i = 1.

Whilei <n — 1,among all sets, (F;) that contain a boundary nodee S, (F;), pick
one which is inclusionwise minimal and let w) be an arc such thaw ¢ V (F;). Let
F;+1 be obtained fron¥; by adding node w and ar@, w), seti =i + 1.
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We prove thatF,,_1 can indeed be constructed by the above rule andfhatF,,_1 and
F’ = D\F satisfy Conjecture 1. Note that by constructidh,satisfies Property 1 ands
not a boundary node.

AssumeF;, i <n — 1 satisfies Property 1. SB contains at least one boundary node.
Since every node i (F;)\r belongs to a critical set, the above procedure can be carried
out to construct; ;1.

We now show that ifF; satisfies Property 1, thef; 1 satisfies Property 1. This is
equivalent to showing that the alo, w) added toF; by the above procedure is not
special.

Let S, (F;) be the minimal critical set containing Assume(v, w) is special. Then by
Claim 1|S(U,U))(E)§Se(ﬂ)- Let SN = S(v,w)(Fi)\V(Fi) and SF = S(u,w)(Fi) N V(Fi)-
Both Sy andSr are nonempty since ¢ V (F;) andS,, ) (F;) is critical. FurthermoreSy
is not a critical set, for it does not contain any nod&’if¥;). So there exists one a(g, z),
wherey € Sr andz € Sy. Thusyis a boundary node i, ) (F;) andS, w) (F;) S (F;),
contradicting the minimality of, (F;).

This shows thaF and F’ are arc-disjoint spanning arborescenceb of

We finally show that for every nodethe tworz-paths inF and F’ cannot contain a pair
of symmetric arcs.

Assume there exists a nodesuch that therz-pathsPF and PF in F and F’ contain
one of the arc$u v) and (v, u), respectively. Letu’, v) be the mate ofu, v) (obviously
', v) € PI'), let (v, w) be the arc inP} with v as tail (possibly’ = r or w = z) and
assumev, w) € A(Fi 1 )\A(F}).

Letu' =z0,v =21, 4 =22, ..., Zm-1, Zn = 2 theu'z-subpath ofP/". Sincew ¢ V (F;)
both arcs enteringare inD\ F; andz ¢ V (F;). Sinceu € V (F;) there exist two nodeg;,
zx+1 Of lowest index such that is in V(F;) andziy1 is not (clearly,k >2). Thenz; is a
boundary node foF;.

Since, for 1< j <k, all sets{z;} are critical, then all arc$z;_1, z;) are special, and
each setS;; , ;) (F;) contains the head; of the next arc. By Claim 1, for  j <k,
Sj1.) (Fi)SS(e; .25 1) (Fi). SOS(5y g2 (FiI) SSe(Fi) and contains the boundary node
Zk, contradicting the minimality of. (F;). O

The construction in the proof can be implemented in polynomial time. G§Bpgave
an 02%n?) algorithm to find/ arc-disjoint arborescences in a digrdpithus we may find
two arc-disjoint spanning arborescence®af time O(n2), and assumB is just the union
of such arborescences. We claim that our construction can be implemented, d», such
time O(n2) as well.

Notice that, at theth iteration, ife = (u, v) is a special arc such thatis the unique
boundary node iis. (F;), thenS,. (F;) is inclusionwise minimal with such property; in fact,
if for some special are’, S,/ (F;) € S.(F;) contains a boundary node, there S,/ (F;) and
ugS,(F;),soe =e.

Also, for any special are, if we denote byR; (¢) the set of nodes reachable franin
D\(A(F;) Ufe}), Se(Fi) = V\Ri(e).

In order to implement the construction in the proof, we need to show how to compute, at
theith iteration, a minimal, (F;) containing a boundary node.
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Start from any boundary node), let (ug, vo) be the special arc entering, compute
R; (10, vo). Suppose we have computBdu;, v;), wherev; isaboundary node arid;, v;)
is a critical arc, 6< j < |V (F})|.

If Sujvp(Fi) = VAR (uj, vj) does not contain any boundary node exceptthen
S(u;.v;) (Fi) is minimal containing a boundary node.

Otherwise, choose a boundary nage # v; in VAR; (u;, v;), and let(u 11, v;11) be
the unique special arc entering, ;. Compute the set’ of nodes reachable froly (u, v;)
in D\(A(F;) U {(uj11,vj+1)}), and letR; (uj 1, vj11) := Ri(uj, vj) UR'.

Clearly, this procedure takes linear time at each iteration, and there-ateiterations,
so the total running time is @?).
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