DISCRETE
MATHEMATICS

Note

Disjoint paths in arborescences

Livio Colussi ${ }^{\text {a }}$, Michele Conforti ${ }^{\text {a }}$, Giacomo Zambelli ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Matematica Pura ed Applicata, Università di Padova, Via Belzoni 7, 35131 Padova, Italy
${ }^{\mathrm{b}}$ Department of Combinatorics and Optimization, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1

Received 16 October 2002; received in revised form 29 November 2004; accepted 16 December 2004

Abstract

An arborescence in a digraph is a tree directed away from its root. A classical theorem of Edmonds characterizes which digraphs have λ arc-disjoint arborescences rooted at r. A similar theorem of Menger guarantees that λ strongly arc disjoint $r v$-paths exist for every vertex v, where "strongly" means that no two paths contain a pair of symmetric arcs.

We prove that if a directed graph D contains two arc-disjoint spanning arborescences rooted at r, then D contains two such arborences with the property that for every node v the paths from r to v in the two arborences satisfy Menger's theorem.

© 2005 Published by Elsevier B.V.
Keywords: Disjoint spanning arborescences

1. Introduction

Given a digraph $D=(V, A)$ and a subset S of V, define $\Delta_{D}^{-}(S)$ to be the subset of A with the head in S and the tail in $V \backslash S$ and $\delta_{D}^{-}(S)=\left|\Delta_{D}^{-}(S)\right|$. Let $\Delta_{D}^{+}(S)=\Delta_{D}^{-}(V \backslash S)$, $\delta_{D}^{+}(S)=\left|\Delta_{D}^{+}(S)\right|$.

Let r be a node of D. An arborescence rooted at r is a subgraph $F=(V(F), E(F))$ of D which contains r, is connected and $\delta_{F}^{-}(r)=0$, while $\delta_{F}^{-}(v)=1$ for every other node of $V(F)$. The arborescence F is spanning if $V(F)=V$.

[^0]The following are two basic results on graph connectivity:
Theorem 1 (Edmonds [1]). A digraph $D=(V, A)$ with a specified node r contains λ pairwise arc-disjoint spanning arborescences rooted at r if and only if $\delta_{D}^{-}(S) \geqslant \lambda$ for every $\emptyset \neq S \subseteq V \backslash r$.

Two arcs are symmetric if they have the same endnodes but have opposite orientations. In a digraph two paths are strongly arc-disjoint if they are arc-disjoint and they do not contain a pair of symmetric arcs.

Theorem 2 (Menger [7]). A digraph $D=(V, A)$ with two specified nodes r and v contains λ pairwise strongly arc-disjoint paths from r to v if and only if $\delta_{D}^{-}(S) \geqslant \lambda$ over all $S \subseteq V \backslash r$ with $v \in S$.

The following conjecture, if true, provides a strengthening of both Theorems 1 and 2.
Conjecture 1. A digraph $D=(V, A)$ with a specified node r contains λ pairwise arcdisjoint spanning arborescences rooted at r such that, for every $v \in V \backslash r$, the λ paths from r to v in each of these arborescences are strongly arc-disjoint if and only if $\delta_{D}^{-}(S) \geqslant \lambda$ for every $\emptyset \neq S \subseteq V \backslash r$.

Note that Conjecture 1 does not require the λ arborescences to be strongly arc-disjoint.
Conjecture 1 obviously implies Theorem 1. That it implies Theorem 2 can be seen as follows: Let $D^{\prime}=\left(V, A^{\prime}\right)$ be obtained from D by adding λ arcs from v to each node $x \in V \backslash\{r, v\}$. Then $\delta_{D}^{-}(S) \geqslant \lambda$ over all $S \subseteq V \backslash r$ with $v \in S$ if and only if $\delta_{D^{\prime}}^{-}(S) \geqslant \lambda$ over all $S \subseteq V \backslash r$ and D contains λ pairwise strongly arc-disjoint paths from r to v if and only if D^{\prime} contains λ pairwise arc-disjoint spanning arborescences rooted at r such that, for every $v \in V \backslash r$, the λ paths from r to v in each of these arborescences are strongly arc-disjoint.

Although we cannot settle Conjecture 1 in the general case, we give below a proof when $\lambda=2$.

There is a known conjecture (see [2,6]) that is a undirected counterpart of Conjecture 1. Given a undirected graph $G=(V, E)$ and a subset $S \neq \emptyset$ of V, let $\Delta_{G}(S)$ be the set of edges of E with one endnode in S and the other in $V \backslash S$ and $\delta_{G}(S)=\left|\Delta_{G}(S)\right|$.

Conjecture 2. An undirected graph $G=(V, E)$ with a specified node r contains λ spanning trees such that, for every $v \in V \backslash r$, the λ paths from r to v in each of these trees are pairwise edge-disjoint if and only if $\delta_{G}(S) \geqslant \lambda$ for every $\emptyset \neq S \subsetneq V \backslash r$.

Indeed, Conjecture 2 is a special case of Conjecture 1. To see this, given a graph $G=(V, E)$ construct a digraph $D=(V, A)$ on the same node set by introducing a pair of symmetric $\operatorname{arcs}(u, v),(v, u)$ for every edge $u v$ of G. Given λ spanning arborescences in D satisfying Conjecture 1, the corresponding λ spanning trees in G satisfy Conjecture 2. So Conjecture 1 implies Conjecture 2. In fact, the two conjectures are equivalent if all arcs in D come in symmetric pairs. Again, Conjecture 2 has been proved only for $\lambda=2$ using depth first search [6].

Similar results are known for the case where "strongly arc-disjoint paths" are replaced by "internally disjoint paths" in Conjecture 1 (where two paths are internally disjoint if they have no node in common, except possibly the ends). Whitty [8] proved the internally disjoint version of the conjecture for $\lambda=2$. A simpler proof is due to Huck [4]. Recently Huck [5] found a counterexample to the internally disjoint version of the conjecture when $\lambda>2$.

2. Proof of Conjecture $\mathbf{1}$ for $\lambda=2$

If G contains two arc-disjoint spanning arborescences F_{1}, F_{2} rooted at r, then, for all $S \subseteq V \backslash r$ and $i=1,2,\left|\Delta_{D}^{-}(S) \cap A\left(F_{i}\right)\right| \geqslant 1$; thus, $\delta_{D}^{-}(S) \geqslant 2$.

For the converse, from Theorem 1 we may assume w.l.o.g. that the digraph $D=(V, A)$ is the union of two arc-disjoint spanning arborescences rooted at r, that is, $\delta_{D}^{-}(r)=0, \delta_{D}^{-}(v)=2$ for every $v \in V \backslash r$, and $\delta_{D}^{-}(S) \geqslant 2$ for every $S \subseteq V \backslash r$. So the arcs of D are partitioned in pairs having the same head. Arcs in the same pair are mates. We may also assume w.l.o.g. that $\Delta_{D}^{+}(r)$ consists of two parallel arcs, say a and a^{\prime} with r^{\prime} as head. If not, we may add a new node \bar{r} and two parallel arcs from \bar{r} to r; one can easily verify that the case $\lambda=2$ of Conjecture 1 holds for the new digraph D^{\prime} with specified node \bar{r} if and only if it holds for D with specified node r.

Given an arborescence $F=(V(F), A(F))$ of D, let $D \backslash F=(V, A \backslash A(F))$. Assume now that F satisfies the following.

Property 1. $\delta_{D \backslash F}^{-}(S) \geqslant 1$ for every $S \subseteq V \backslash r$.
(That is, $D \backslash F$ contains a spanning arborescence.)
A subset of $V \backslash r$ is critical if it satisfies Property 1 with equality; the unique arc of $D \backslash F$ entering a critical set is called special. Since $\delta_{D}^{-}(v)=2$, every node v in $V(F) \backslash r$ belongs to a critical set.

By submodularity of function $\delta^{-}(\cdot)$, if S and S^{\prime} are critical sets and $S \cap S^{\prime} \neq \emptyset$, then $S \cap S^{\prime}$ and $S \cup S^{\prime}$ are also critical. So if e is a special arc, there is a unique maximal critical set $S_{e}(F)$ entered by e.

Claim 1. Lete $=(u, v)$ and $e^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ be two special arcs.If $u^{\prime} \in S_{e}(F)$ then $S_{e^{\prime}}(F) \subsetneq S_{e}(F)$.
Proof. If $u^{\prime} \in S_{e}(F)$ then $S_{e}(F) \cup S_{e^{\prime}}(F)$ is critical and is entered by e. Since $S_{e}(F)$ is maximal, then $S_{e}(F)=S_{e}(F) \cup S_{e^{\prime}}(F)$. Since $u^{\prime} \notin S_{e^{\prime}}(F)$, then $S_{e^{\prime}}(F) \subsetneq S_{e}(F)$.

A boundary node is a node $v \in V(F)$ connected by an arc (v, w) to a node $w \notin V(F)$.
Let $|V|=n$ and let F_{1}, \ldots, F_{n-1} be arborescences rooted at r constructed as follows:
Let F_{1} be the arborescence with $V\left(F_{1}\right)=\left\{r, r^{\prime}\right\}, A\left(F_{1}\right)=a$ and $i=1$.
While $i<n-1$, among all sets $S_{e}\left(F_{i}\right)$ that contain a boundary node $v \in S_{e}\left(F_{i}\right)$, pick one which is inclusionwise minimal and let (v, w) be an arc such that $w \notin V\left(F_{i}\right)$. Let F_{i+1} be obtained from F_{i} by adding node w and arc (v, w), set $i=i+1$.

We prove that F_{n-1} can indeed be constructed by the above rule and that $F=F_{n-1}$ and $F^{\prime}=D \backslash F$ satisfy Conjecture 1 . Note that by construction, F_{1} satisfies Property 1 and r is not a boundary node.

Assume $F_{i}, i<n-1$ satisfies Property 1 . So F_{i} contains at least one boundary node. Since every node in $V\left(F_{i}\right) \backslash r$ belongs to a critical set, the above procedure can be carried out to construct F_{i+1}.

We now show that if F_{i} satisfies Property 1, then F_{i+1} satisfies Property 1. This is equivalent to showing that the arc (v, w) added to F_{i} by the above procedure is not special.

Let $S_{e}\left(F_{i}\right)$ be the minimal critical set containing v. Assume ($\left.v, w\right)$ is special. Then by Claim 1, $S_{(v, w)}\left(F_{i}\right) \subsetneq S_{e}\left(F_{i}\right)$. Let $S_{N}=S_{(v, w)}\left(F_{i}\right) \backslash V\left(F_{i}\right)$ and $S_{F}=S_{(v, w)}\left(F_{i}\right) \cap V\left(F_{i}\right)$. Both S_{N} and S_{F} are nonempty since $w \notin V\left(F_{i}\right)$ and $S_{(v, w)}\left(F_{i}\right)$ is critical. Furthermore S_{N} is not a critical set, for it does not contain any node in $V\left(F_{i}\right)$. So there exists one arc (y, z), where $y \in S_{F}$ and $z \in S_{N}$. Thus y is a boundary node in $S_{(v, w)}\left(F_{i}\right)$ and $S_{(v, w)}\left(F_{i}\right) \subsetneq S_{e}\left(F_{i}\right)$, contradicting the minimality of $S_{e}\left(F_{i}\right)$.

This shows that F and F^{\prime} are arc-disjoint spanning arborescences of D.
We finally show that for every node z the two $r z$-paths in F and F^{\prime} cannot contain a pair of symmetric arcs.

Assume there exists a node z such that the $r z$-paths P_{z}^{F} and $P_{z}^{F^{\prime}}$ in F and F^{\prime} contain one of the arcs (u, v) and (v, u), respectively. Let $\left(u^{\prime}, v\right)$ be the mate of (u, v) (obviously $\left(u^{\prime}, v\right) \in P_{z}^{F^{\prime}}$), let (v, w) be the arc in P_{z}^{F} with v as tail (possibly $u^{\prime}=r$ or $w=z$) and assume $(v, w) \in A\left(F_{i+1}\right) \backslash A\left(F_{i}\right)$.

Let $u^{\prime}=z_{0}, v=z_{1}, u=z_{2}, \ldots, z_{m-1}, z_{m}=z$ the $u^{\prime} z$-subpath of $P_{z}^{F^{\prime}}$. Since $w \notin V\left(F_{i}\right)$ both arcs entering z are in $D \backslash F_{i}$ and $z \notin V\left(F_{i}\right)$. Since $u \in V\left(F_{i}\right)$ there exist two nodes z_{k}, z_{k+1} of lowest index such that z_{k} is in $V\left(F_{i}\right)$ and z_{k+1} is not (clearly, $k \geqslant 2$). Then z_{k} is a boundary node for F_{i}.

Since, for $1 \leqslant j \leqslant k$, all sets $\left\{z_{j}\right\}$ are critical, then all arcs $\left(z_{j-1}, z_{j}\right)$ are special, and each set $S_{\left(z_{j-1}, z_{j}\right)}\left(F_{i}\right)$ contains the head z_{j} of the next arc. By Claim 1, for $2 \leqslant j \leqslant k$, $S_{\left(z_{j-1}, z_{j}\right)}\left(F_{i}\right) \subsetneq S_{\left(z_{j-2}, z_{j-1}\right)}\left(F_{i}\right)$. So $S_{\left(z_{k-1}, z_{k}\right)}\left(F_{i}\right) \subsetneq S_{e}\left(F_{i}\right)$ and contains the boundary node z_{k}, contradicting the minimality of $S_{e}\left(F_{i}\right)$.

The construction in the proof can be implemented in polynomial time. Gabow [3] gave an $\mathrm{O}\left(\lambda^{2} n^{2}\right)$ algorithm to find λ arc-disjoint arborescences in a digraph D; thus we may find two arc-disjoint spanning arborescences of D in time $\mathrm{O}\left(n^{2}\right)$, and assume D is just the union of such arborescences. We claim that our construction can be implemented, on such D, in time $\mathrm{O}\left(n^{2}\right)$ as well.

Notice that, at the i th iteration, if $e=(u, v)$ is a special arc such that v is the unique boundary node in $S_{e}\left(F_{i}\right)$, then $S_{e}\left(F_{i}\right)$ is inclusionwise minimal with such property; in fact, if for some special arc $e^{\prime}, S_{e^{\prime}}\left(F_{i}\right) \subseteq S_{e}\left(F_{i}\right)$ contains a boundary node, then $v \in S_{e^{\prime}}\left(F_{i}\right)$ and $u \notin S_{e^{\prime}}\left(F_{i}\right)$, so $e^{\prime}=e$.

Also, for any special arc e, if we denote by $R_{i}(e)$ the set of nodes reachable from r in $D \backslash\left(A\left(F_{i}\right) \cup\{e\}\right), S_{e}\left(F_{i}\right)=V \backslash R_{i}(e)$.

In order to implement the construction in the proof, we need to show how to compute, at the i th iteration, a minimal $S_{e}\left(F_{i}\right)$ containing a boundary node.

Start from any boundary node v_{0}, let $\left(u_{0}, v_{0}\right)$ be the special arc entering v_{0}, compute $R_{i}\left(u_{0}, v_{0}\right)$. Suppose we have computed $R_{i}\left(u_{j}, v_{j}\right)$, where v_{j} is a boundary node and $\left(u_{j}, v_{j}\right)$ is a critical arc, $0 \leqslant j \leqslant\left|V\left(F_{i}\right)\right|$.

If $S_{\left(u_{j}, v_{j}\right)}\left(F_{i}\right)=V \backslash R_{i}\left(u_{j}, v_{j}\right)$ does not contain any boundary node except v_{j}, then $S_{\left(u_{j}, v_{j}\right)}\left(F_{i}\right)$ is minimal containing a boundary node.
Otherwise, choose a boundary node $v_{j+1} \neq v_{j}$ in $V \backslash R_{i}\left(u_{j}, v_{j}\right)$, and let $\left(u_{j+1}, v_{j+1}\right)$ be the unique special arc entering v_{j+1}. Compute the set R^{\prime} of nodes reachable from $R_{i}\left(u_{j}, v_{j}\right)$ in $D \backslash\left(A\left(F_{i}\right) \cup\left\{\left(u_{j+1}, v_{j+1}\right)\right\}\right)$, and let $R_{i}\left(u_{j+1}, v_{j+1}\right):=R_{i}\left(u_{j}, v_{j}\right) \cup R^{\prime}$.

Clearly, this procedure takes linear time at each iteration, and there are $n-1$ iterations, so the total running time is $\mathrm{O}\left(n^{2}\right)$.

References

[1] J. Edmonds, Edge-disjoint branchings, in: R. Rustin (Ed.), Combinatorial Algorithms, Academic Press, New York, 1973, pp. 91-96.
[2] A. Frank, Connectivity and Network Flows, Handbook of Combinatorics, 1995, pp. 111-177.
[3] H. Gabow, A matroid approach to finding edge connectivity and packing arborescences, J. Comput. System Sci. 50 (1995) 259-273.
[4] A. Huck, Independent trees in graphs, Graphs Combin. 10 (1994) 29-45.
[5] A. Huck, Disproof of a conjecture about independent branchings in k-connected directed graphs, J. Graph Theory 20 (1995) 235-239.
[6] A. Itai, M. Rodeh, The multi-tree approach to reliability in distributed networks, Inform. and Comput. 79 (1988) 43-59.
[7] K. Menger, Zur Allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115.
[8] A. Whitty, Vertex-disjoint paths and edge-disjoint branchings in directed graphs, J. Graph Theory 11 (1987) 349-358.

[^0]: E-mail address: conforti@math.unipd.it (M. Conforti).

 0012-365X/\$ - see front matter © 2005 Published by Elsevier B.V.
 doi:10.1016/j.disc.2004.12.005

