

Available online at www.sciencedirect.com

Discrete Mathematics 292 (2005) 187-191

www.elsevier.com/locate/disc

Note

Disjoint paths in arborescences

Livio Colussi^a, Michele Conforti^a, Giacomo Zambelli^b

^aDipartimento di Matematica Pura ed Applicata, Università di Padova, Via Belzoni 7, 35131 Padova, Italy ^bDepartment of Combinatorics and Optimization, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1

Received 16 October 2002; received in revised form 29 November 2004; accepted 16 December 2004

Abstract

An arborescence in a digraph is a tree directed away from its root. A classical theorem of Edmonds characterizes which digraphs have λ arc-disjoint arborescences rooted at *r*. A similar theorem of Menger guarantees that λ strongly arc disjoint *rv*-paths exist for every vertex *v*, where "strongly" means that no two paths contain a pair of symmetric arcs.

We prove that if a directed graph D contains two arc-disjoint spanning arborescences rooted at r, then D contains two such arborences with the property that for every node v the paths from r to v in the two arborences satisfy Menger's theorem.

© 2005 Published by Elsevier B.V.

Keywords: Disjoint spanning arborescences

1. Introduction

Given a digraph D = (V, A) and a subset *S* of *V*, define $\Delta_D^-(S)$ to be the subset of *A* with the head in *S* and the tail in $V \setminus S$ and $\delta_D^-(S) = |\Delta_D^-(S)|$. Let $\Delta_D^+(S) = \Delta_D^-(V \setminus S)$, $\delta_D^+(S) = |\Delta_D^+(S)|$.

Let *r* be a node of *D*. An *arborescence rooted at r* is a subgraph F = (V(F), E(F)) of *D* which contains *r*, is connected and $\delta_F(r) = 0$, while $\delta_F(v) = 1$ for every other node of V(F). The arborescence *F* is *spanning* if V(F) = V.

E-mail address: conforti@math.unipd.it (M. Conforti).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter @ 2005 Published by Elsevier B.V. doi:10.1016/j.disc.2004.12.005

The following are two basic results on graph connectivity:

Theorem 1 (*Edmonds* [1]). A digraph D = (V, A) with a specified node r contains λ pairwise arc-disjoint spanning arborescences rooted at r if and only if $\delta_D^-(S) \ge \lambda$ for every $\emptyset \ne S \subseteq V \setminus r$.

Two arcs are *symmetric* if they have the same endnodes but have opposite orientations. In a digraph two paths are *strongly arc-disjoint* if they are arc-disjoint and they do not contain a pair of symmetric arcs.

Theorem 2 (Menger [7]). A digraph D = (V, A) with two specified nodes r and v contains λ pairwise strongly arc-disjoint paths from r to v if and only if $\delta_D^-(S) \ge \lambda$ over all $S \subseteq V \setminus r$ with $v \in S$.

The following conjecture, if true, provides a strengthening of both Theorems 1 and 2.

Conjecture 1. A digraph D = (V, A) with a specified node *r* contains λ pairwise arcdisjoint spanning arborescences rooted at *r* such that, for every $v \in V \setminus r$, the λ paths from *r* to *v* in each of these arborescences are strongly arc-disjoint if and only if $\delta_D^-(S) \ge \lambda$ for every $\emptyset \ne S \subseteq V \setminus r$.

Note that Conjecture 1 does not require the λ arborescences to be strongly arc-disjoint.

Conjecture 1 obviously implies Theorem 1. That it implies Theorem 2 can be seen as follows: Let D' = (V, A') be obtained from D by adding λ arcs from v to each node $x \in V \setminus \{r, v\}$. Then $\delta_D^-(S) \ge \lambda$ over all $S \subseteq V \setminus r$ with $v \in S$ if and only if $\delta_{D'}^-(S) \ge \lambda$ over all $S \subseteq V \setminus r$ and D contains λ pairwise strongly arc-disjoint paths from r to v if and only if D' contains λ pairwise arc-disjoint spanning arborescences rooted at r such that, for every $v \in V \setminus r$, the λ paths from r to v in each of these arborescences are strongly arc-disjoint.

Although we cannot settle Conjecture 1 in the general case, we give below a proof when $\lambda = 2$.

There is a known conjecture (see [2,6]) that is a undirected counterpart of Conjecture 1. Given a undirected graph G = (V, E) and a subset $S \neq \emptyset$ of V, let $\Delta_G(S)$ be the set of edges of E with one endnode in S and the other in $V \setminus S$ and $\delta_G(S) = |\Delta_G(S)|$.

Conjecture 2. An undirected graph G = (V, E) with a specified node *r* contains λ spanning trees such that, for every $v \in V \setminus r$, the λ paths from *r* to *v* in each of these trees are pairwise edge-disjoint if and only if $\delta_G(S) \ge \lambda$ for every $\emptyset \neq S \subsetneq V \setminus r$.

Indeed, Conjecture 2 is a special case of Conjecture 1. To see this, given a graph G = (V, E) construct a digraph D = (V, A) on the same node set by introducing a pair of symmetric arcs (u, v), (v, u) for every edge uv of G. Given λ spanning arborescences in D satisfying Conjecture 1, the corresponding λ spanning trees in G satisfy Conjecture 2. So Conjecture 1 implies Conjecture 2. In fact, the two conjectures are equivalent if all arcs in D come in symmetric pairs. Again, Conjecture 2 has been proved only for $\lambda = 2$ using depth first search [6].

Similar results are known for the case where "strongly arc-disjoint paths" are replaced by "internally disjoint paths" in Conjecture 1 (where two paths are *internally disjoint* if they have no node in common, except possibly the ends). Whitty [8] proved the internally disjoint version of the conjecture for $\lambda = 2$. A simpler proof is due to Huck [4]. Recently Huck [5] found a counterexample to the internally disjoint version of the conjecture when $\lambda > 2$.

2. Proof of Conjecture 1 for $\lambda = 2$

If *G* contains two arc-disjoint spanning arborescences F_1 , F_2 rooted at *r*, then, for all $S \subseteq V \setminus r$ and $i = 1, 2, |\Delta_D^-(S) \cap A(F_i)| \ge 1$; thus, $\delta_D^-(S) \ge 2$.

For the converse, from Theorem 1 we may assume w.l.o.g. that the digraph D = (V, A) is the union of two arc-disjoint spanning arborescences rooted at r, that is, $\delta_D^-(r)=0$, $\delta_D^-(v)=2$ for every $v \in V \setminus r$, and $\delta_D^-(S) \ge 2$ for every $S \subseteq V \setminus r$. So the arcs of D are partitioned in pairs having the same head. Arcs in the same pair are *mates*. We may also assume w.l.o.g. that $\Delta_D^+(r)$ consists of two parallel arcs, say a and a' with r' as head. If not, we may add a new node \bar{r} and two parallel arcs from \bar{r} to r; one can easily verify that the case $\lambda = 2$ of Conjecture 1 holds for the new digraph D' with specified node \bar{r} if and only if it holds for D with specified node r.

Given an arborescence F = (V(F), A(F)) of D, let $D \setminus F = (V, A \setminus A(F))$. Assume now that F satisfies the following.

Property 1. $\delta_{D\setminus F}^{-}(S) \ge 1$ for every $S \subseteq V \setminus r$.

(That is, $D \setminus F$ contains a spanning arborescence.)

A subset of $V \setminus r$ is *critical* if it satisfies Property 1 with equality; the unique arc of $D \setminus F$ entering a critical set is called *special*. Since $\delta_D^-(v) = 2$, every node v in $V(F) \setminus r$ belongs to a critical set.

By submodularity of function $\delta^-(\cdot)$, if *S* and *S'* are critical sets and $S \cap S' \neq \emptyset$, then $S \cap S'$ and $S \cup S'$ are also critical. So if *e* is a special arc, there is a unique maximal critical set $S_e(F)$ entered by *e*.

Claim 1. Let e=(u, v) and e'=(u', v') be two special arcs. If $u' \in S_e(F)$ then $S_{e'}(F) \subsetneq S_e(F)$.

Proof. If $u' \in S_e(F)$ then $S_e(F) \cup S_{e'}(F)$ is critical and is entered by *e*. Since $S_e(F)$ is maximal, then $S_e(F) = S_e(F) \cup S_{e'}(F)$. Since $u' \notin S_{e'}(F)$, then $S_{e'}(F) \subsetneq S_e(F)$. \Box

A *boundary node* is a node $v \in V(F)$ connected by an arc (v, w) to a node $w \notin V(F)$. Let |V| = n and let F_1, \ldots, F_{n-1} be arborescences rooted at *r* constructed as follows:

Let F_1 be the arborescence with $V(F_1) = \{r, r'\}, A(F_1) = a$ and i = 1.

While i < n - 1, among all sets $S_e(F_i)$ that contain a boundary node $v \in S_e(F_i)$, pick one which is inclusionwise minimal and let (v, w) be an arc such that $w \notin V(F_i)$. Let F_{i+1} be obtained from F_i by adding node w and arc (v, w), set i = i + 1. We prove that F_{n-1} can indeed be constructed by the above rule and that $F = F_{n-1}$ and $F' = D \setminus F$ satisfy Conjecture 1. Note that by construction, F_1 satisfies Property 1 and r is not a boundary node.

Assume F_i , i < n - 1 satisfies Property 1. So F_i contains at least one boundary node. Since every node in $V(F_i) \setminus r$ belongs to a critical set, the above procedure can be carried out to construct F_{i+1} .

We now show that if F_i satisfies Property 1, then F_{i+1} satisfies Property 1. This is equivalent to showing that the arc (v, w) added to F_i by the above procedure is not special.

Let $S_e(F_i)$ be the minimal critical set containing v. Assume (v, w) is special. Then by Claim 1, $S_{(v,w)}(F_i) \subsetneq S_e(F_i)$. Let $S_N = S_{(v,w)}(F_i) \setminus V(F_i)$ and $S_F = S_{(v,w)}(F_i) \cap V(F_i)$. Both S_N and S_F are nonempty since $w \notin V(F_i)$ and $S_{(v,w)}(F_i)$ is critical. Furthermore S_N is not a critical set, for it does not contain any node in $V(F_i)$. So there exists one arc (y, z), where $y \in S_F$ and $z \in S_N$. Thus y is a boundary node in $S_{(v,w)}(F_i)$ and $S_{(v,w)}(F_i) \subsetneq S_e(F_i)$, contradicting the minimality of $S_e(F_i)$.

This shows that F and F' are arc-disjoint spanning arborescences of D.

We finally show that for every node z the two rz-paths in F and F' cannot contain a pair of symmetric arcs.

Assume there exists a node z such that the rz-paths P_z^F and $P_z^{F'}$ in F and F' contain one of the arcs (u, v) and (v, u), respectively. Let (u', v) be the mate of (u, v) (obviously $(u', v) \in P_z^{F'}$), let (v, w) be the arc in P_z^F with v as tail (possibly u' = r or w = z) and assume $(v, w) \in A(F_{i+1}) \setminus A(F_i)$.

Let $u' = z_0$, $v = z_1$, $u = z_2$, ..., z_{m-1} , $z_m = z$ the u'z-subpath of $P_z^{F'}$. Since $w \notin V(F_i)$ both arcs entering z are in $D \setminus F_i$ and $z \notin V(F_i)$. Since $u \in V(F_i)$ there exist two nodes z_k , z_{k+1} of lowest index such that z_k is in $V(F_i)$ and z_{k+1} is not (clearly, $k \ge 2$). Then z_k is a boundary node for F_i .

Since, for $1 \leq j \leq k$, all sets $\{z_j\}$ are critical, then all arcs (z_{j-1}, z_j) are special, and each set $S_{(z_{j-1},z_j)}(F_i)$ contains the head z_j of the next arc. By Claim 1, for $2 \leq j \leq k$, $S_{(z_{j-1},z_j)}(F_i) \subsetneq S_{(z_{j-2},z_{j-1})}(F_i)$. So $S_{(z_{k-1},z_k)}(F_i) \subsetneq S_e(F_i)$ and contains the boundary node z_k , contradicting the minimality of $S_e(F_i)$. \Box

The construction in the proof can be implemented in polynomial time. Gabow [3] gave an $O(\lambda^2 n^2)$ algorithm to find λ arc-disjoint arborescences in a digraph *D*; thus we may find two arc-disjoint spanning arborescences of *D* in time $O(n^2)$, and assume *D* is just the union of such arborescences. We claim that our construction can be implemented, on such *D*, in time $O(n^2)$ as well.

Notice that, at the *i*th iteration, if e = (u, v) is a special arc such that v is the unique boundary node in $S_e(F_i)$, then $S_e(F_i)$ is inclusionwise minimal with such property; in fact, if for some special arc e', $S_{e'}(F_i) \subseteq S_e(F_i)$ contains a boundary node, then $v \in S_{e'}(F_i)$ and $u \notin S_{e'}(F_i)$, so e' = e.

Also, for any special arc *e*, if we denote by $R_i(e)$ the set of nodes reachable from *r* in $D \setminus (A(F_i) \cup \{e\}), S_e(F_i) = V \setminus R_i(e).$

In order to implement the construction in the proof, we need to show how to compute, at the *i*th iteration, a minimal $S_e(F_i)$ containing a boundary node.

Start from any boundary node v_0 , let (u_0, v_0) be the special arc entering v_0 , compute $R_i(u_0, v_0)$. Suppose we have computed $R_i(u_j, v_j)$, where v_j is a boundary node and (u_j, v_j) is a critical arc, $0 \le j \le |V(F_i)|$.

If $S_{(u_j,v_j)}(F_i) = V \setminus R_i(u_j, v_j)$ does not contain any boundary node except v_j , then $S_{(u_j,v_j)}(F_i)$ is minimal containing a boundary node.

Otherwise, choose a boundary node $v_{j+1} \neq v_j$ in $V \setminus R_i(u_j, v_j)$, and let (u_{j+1}, v_{j+1}) be the unique special arc entering v_{j+1} . Compute the set R' of nodes reachable from $R_i(u_j, v_j)$ in $D \setminus (A(F_i) \cup \{(u_{j+1}, v_{j+1})\})$, and let $R_i(u_{j+1}, v_{j+1}) := R_i(u_j, v_j) \cup R'$.

Clearly, this procedure takes linear time at each iteration, and there are n - 1 iterations, so the total running time is $O(n^2)$.

References

- J. Edmonds, Edge-disjoint branchings, in: R. Rustin (Ed.), Combinatorial Algorithms, Academic Press, New York, 1973, pp. 91–96.
- [2] A. Frank, Connectivity and Network Flows, Handbook of Combinatorics, 1995, pp. 111–177.
- [3] H. Gabow, A matroid approach to finding edge connectivity and packing arborescences, J. Comput. System Sci. 50 (1995) 259–273.
- [4] A. Huck, Independent trees in graphs, Graphs Combin. 10 (1994) 29-45.
- [5] A. Huck, Disproof of a conjecture about independent branchings in k-connected directed graphs, J. Graph Theory 20 (1995) 235–239.
- [6] A. Itai, M. Rodeh, The multi-tree approach to reliability in distributed networks, Inform. and Comput. 79 (1988) 43–59.
- [7] K. Menger, Zur Allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115.
- [8] A. Whitty, Vertex-disjoint paths and edge-disjoint branchings in directed graphs, J. Graph Theory 11 (1987) 349–358.