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Abstract

An arborescence in a digraph is a tree directed away from its root. A classical theorem of Edmonds
characterizes which digraphs have� arc-disjoint arborescences rooted atr. A similar theorem of
Menger guarantees that� strongly arc disjointrv-paths exist for every vertexv, where “strongly”
means that no two paths contain a pair of symmetric arcs.
We prove that if a directed graphD contains two arc-disjoint spanning arborescences rooted atr,

thenD contains two such arborences with the property that for every nodev the paths fromr to v in
the two arborences satisfy Menger’s theorem.
© 2005 Published by Elsevier B.V.
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1. Introduction

Given a digraphD = (V ,A) and a subsetSof V, define�−
D(S) to be the subset ofA

with the head inS and the tail inV \S and�−
D(S) = |�−

D(S)|. Let �+
D(S) = �−

D(V \S),
�+
D(S)= |�+

D(S)|.
Let r be a node ofD. An arborescence rooted at ris a subgraphF = (V (F ),E(F )) of

D which containsr, is connected and�−
F (r) = 0, while�−

F (v) = 1 for every other node of
V (F). The arborescenceF is spanningif V (F)= V .
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The following are two basic results on graph connectivity:

Theorem 1 (Edmonds[1] ). A digraphD = (V ,A) with a specified node r contains�
pairwise arc-disjoint spanning arborescences rooted at r if and only if�−

D(S)�� for every
∅ �= S ⊆ V \r.

Two arcs aresymmetricif they have the same endnodes but have opposite orientations. In
a digraph two paths arestrongly arc-disjointif they are arc-disjoint and they do not contain
a pair of symmetric arcs.

Theorem 2 (Menger[7] ). A digraphD=(V ,A)with two specified nodes r andv contains
� pairwise strongly arc-disjoint paths from r tov if and only if�−

D(S)�� over allS ⊆ V \r
with v ∈ S.

The following conjecture, if true, provides a strengthening of both Theorems 1 and 2.

Conjecture 1. A digraphD = (V ,A) with a specified noder contains� pairwise arc-
disjoint spanning arborescences rooted atr such that, for everyv ∈ V \r, the� paths from
r to v in each of these arborescences are strongly arc-disjoint if and only if�−

D(S)�� for
every∅ �= S ⊆ V \r.

Note that Conjecture 1 does not require the� arborescences to be strongly arc-disjoint.
Conjecture 1 obviously implies Theorem 1. That it implies Theorem 2 can be seen as

follows: Let D′ = (V ,A′) be obtained fromD by adding� arcs fromv to each node
x ∈ V \{r, v}. Then�−

D(S)�� over allS ⊆ V \r with v ∈ S if and only if �−
D′(S)�� over

all S ⊆ V \r andD contains� pairwise strongly arc-disjoint paths fromr to v if and only if
D′ contains� pairwise arc-disjoint spanning arborescences rooted atr such that, for every
v ∈ V \r, the� paths fromr to v in each of these arborescences are strongly arc-disjoint.
Although we cannot settle Conjecture 1 in the general case, we give below a proof when

� = 2.
There is a known conjecture (see[2,6]) that is a undirected counterpart of Conjecture 1.

Given a undirected graphG= (V ,E) and a subsetS �= ∅ ofV, let�G(S) be the set of edges
of Ewith one endnode inSand the other inV \S and�G(S)= |�G(S)|.

Conjecture 2. An undirected graphG=(V ,E)with a specified noder contains� spanning
trees such that, for everyv ∈ V \r, the� paths fromr to v in each of these trees are pairwise
edge-disjoint if and only if�G(S)�� for every∅ �= S�V \r.

Indeed,Conjecture2 isaspecial caseofConjecture1.Tosee this, givenagraphG=(V ,E)
construct a digraphD = (V ,A) on the same node set by introducing a pair of symmetric
arcs(u, v), (v, u) for every edgeuvof G. Given� spanning arborescences inD satisfying
Conjecture 1, the corresponding� spanning trees inG satisfy Conjecture 2. So Conjecture
1 implies Conjecture 2. In fact, the two conjectures are equivalent if all arcs inD come
in symmetric pairs. Again, Conjecture 2 has been proved only for� = 2 using depth first
search[6].



L. Colussi et al. / Discrete Mathematics 292 (2005) 187–191 189

Similar results are known for the case where “strongly arc-disjoint paths” are replaced by
“internally disjoint paths” in Conjecture 1 (where two paths areinternally disjointif they
have no node in common, except possibly the ends).Whitty[8] proved the internally disjoint
version of the conjecture for� = 2. A simpler proof is due to Huck[4]. Recently Huck[5]
found a counterexample to the internally disjoint version of the conjecture when�>2.

2. Proof of Conjecture 1 for � = 2

If G contains two arc-disjoint spanning arborescencesF1, F2 rooted atr, then, for all
S ⊆ V \r andi = 1,2, |�−

D(S) ∩ A(Fi)|�1; thus,�−
D(S)�2.

For the converse, fromTheorem 1 wemay assume w.l.o.g. that the digraphD= (V ,A) is
the union of two arc-disjoint spanning arborescences rooted atr, that is,�−

D(r)=0,�−
D(v)=2

for everyv ∈ V \r, and�−
D(S)�2 for everyS ⊆ V \r. So the arcs ofD are partitioned in

pairs having the same head. Arcs in the same pair aremates. We may also assume w.l.o.g.
that�+

D(r) consists of two parallel arcs, saya anda′ with r ′ as head. If not, we may add a
new noder̄ and two parallel arcs from̄r to r; one can easily verify that the case� = 2 of
Conjecture 1 holds for the new digraphD′ with specified nodēr if and only if it holds for
D with specified noder.
Given an arborescenceF = (V (F ),A(F )) of D, letD\F = (V ,A\A(F)). Assume now

thatF satisfies the following.

Property 1. �−
D\F (S)�1 for everyS ⊆ V \r.

(That is,D\F contains a spanning arborescence.)

A subset ofV \r is critical if it satisfies Property 1 with equality; the unique arc ofD\F
entering a critical set is calledspecial. Since�−

D(v) = 2, every nodev in V (F)\r belongs
to a critical set.
By submodularity of function�−(·), if SandS′ are critical sets andS ∩ S′ �= ∅, then

S ∩ S′ andS ∪ S′ are also critical. So ife is a special arc, there is a unique maximal critical
setSe(F ) entered bye.

Claim 1. Lete=(u, v)ande′=(u′, v′) be twospecial arcs. If u′∈Se(F ) thenSe′(F )�Se(F ).

Proof. If u′ ∈ Se(F ) thenSe(F ) ∪ Se′(F ) is critical and is entered bye. SinceSe(F ) is
maximal, thenSe(F )= Se(F ) ∪ Se′(F ). Sinceu′ /∈ Se′(F ), thenSe′(F )�Se(F ). �

A boundary nodeis a nodev ∈ V (F) connected by an arc(v,w) to a nodew /∈V (F).
Let |V | = n and letF1, . . . , Fn−1 be arborescences rooted atr constructed as follows:

Let F1 be the arborescence with V (F1)= {r, r ′}, A(F1)= a and i = 1.

Whilei < n− 1,among all setsSe(Fi) that contain a boundary nodev ∈ Se(Fi), pick
one which is inclusionwise minimal and let(v,w) be an arc such thatw /∈V (Fi). Let
Fi+1 be obtained fromFi by adding node w and arc(v,w), seti = i + 1.
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We prove thatFn−1 can indeed be constructed by the above rule and thatF = Fn−1 and
F ′ =D\F satisfy Conjecture 1. Note that by construction,F1 satisfies Property 1 andr is
not a boundary node.
AssumeFi , i < n − 1 satisfies Property 1. SoFi contains at least one boundary node.

Since every node inV (Fi)\r belongs to a critical set, the above procedure can be carried
out to constructFi+1.
We now show that ifFi satisfies Property 1, thenFi+1 satisfies Property 1. This is

equivalent to showing that the arc(v,w) added toFi by the above procedure is not
special.
Let Se(Fi) be the minimal critical set containingv. Assume(v,w) is special. Then by

Claim 1,S(v,w)(Fi)�Se(Fi). Let SN = S(v,w)(Fi)\V (Fi) andSF = S(v,w)(Fi) ∩ V (Fi).
BothSN andSF are nonempty sincew /∈V (Fi) andS(v,w)(Fi) is critical. FurthermoreSN
is not a critical set, for it does not contain any node inV (Fi). So there exists one arc(y, z),
wherey ∈ SF andz ∈ SN . Thusy is a boundary node inS(v,w)(Fi) andS(v,w)(Fi)�Se(Fi),
contradicting the minimality ofSe(Fi).
This shows thatF andF ′ are arc-disjoint spanning arborescences ofD.
We finally show that for every nodez the tworz-paths inF andF ′ cannot contain a pair

of symmetric arcs.
Assume there exists a nodez such that therz-pathsPFz andPF

′
z in F andF ′ contain

one of the arcs(u, v) and(v, u), respectively. Let(u′, v) be the mate of(u, v) (obviously
(u′, v) ∈ PF ′

z ), let (v,w) be the arc inPFz with v as tail (possiblyu′ = r or w = z) and
assume(v,w) ∈ A(Fi+1)\A(Fi).
Let u′ = z0, v = z1, u= z2, . . . , zm−1, zm = z theu′z-subpath ofPF ′

z . Sincew /∈V (Fi)
both arcs enteringzare inD\Fi andz /∈V (Fi). Sinceu ∈ V (Fi) there exist two nodeszk,
zk+1 of lowest index such thatzk is in V (Fi) andzk+1 is not (clearly,k�2). Thenzk is a
boundary node forFi .
Since, for 1�j�k, all sets{zj } are critical, then all arcs(zj−1, zj ) are special, and

each setS(zj−1,zj )(Fi) contains the headzj of the next arc. By Claim 1, for 2�j�k,
S(zj−1,zj )(Fi)�S(zj−2,zj−1)(Fi). SoS(zk−1,zk)(Fi)�Se(Fi) and contains the boundary node
zk, contradicting the minimality ofSe(Fi). �

The construction in the proof can be implemented in polynomial time. Gabow[3] gave
an O(�2n2) algorithm to find� arc-disjoint arborescences in a digraphD; thus we may find
two arc-disjoint spanning arborescences ofD in time O(n2), and assumeD is just the union
of such arborescences. We claim that our construction can be implemented, on suchD, in
time O(n2) as well.
Notice that, at theith iteration, if e = (u, v) is a special arc such thatv is the unique

boundary node inSe(Fi), thenSe(Fi) is inclusionwise minimal with such property; in fact,
if for some special arce′, Se′(Fi) ⊆ Se(Fi) contains a boundary node, thenv ∈ Se′(Fi) and
u /∈ Se′(Fi), soe′ = e.
Also, for any special arce, if we denote byRi(e) the set of nodes reachable fromr in

D\(A(Fi) ∪ {e}), Se(Fi)= V \Ri(e).
In order to implement the construction in the proof, we need to show how to compute, at

the ith iteration, a minimalSe(Fi) containing a boundary node.
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Start from any boundary nodev0, let (u0, v0) be the special arc enteringv0, compute
Ri(u0, v0). SupposewehavecomputedRi(uj , vj ),wherevj is aboundarynodeand(uj , vj )
is a critical arc, 0�j� |V (Fi)|.
If S(uj ,vj )(Fi) = V \Ri(uj , vj ) does not contain any boundary node exceptvj , then

S(uj ,vj )(Fi) is minimal containing a boundary node.
Otherwise, choose a boundary nodevj+1 �= vj in V \Ri(uj , vj ), and let(uj+1, vj+1) be

the unique special arc enteringvj+1. Compute the setR′ of nodes reachable fromRi(uj , vj )
in D\(A(Fi) ∪ {(uj+1, vj+1)}), and letRi(uj+1, vj+1) := Ri(uj , vj ) ∪ R′.
Clearly, this procedure takes linear time at each iteration, and there aren− 1 iterations,

so the total running time is O(n2).
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