
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 21, 46-62 (1980)

Finding Patterns Common to a Set of Strings*

DANA ANGLUIN

Department of Mathematics, University of California, Santa Barbara, California 93106

Received July 1979

Assume a finite alphabet of constant symbols and a disjoint infinite alphabet of variable
symbols. A pattern is a non-null finite string of constant and variable symbols. The language
of a pattern is all strings obtainable by substituting non-null strings of constant symbols
for the variables of the pattern. A sample is a finite nonempty set of non-null strings of
constant symbols. Given a sample S, a pattern p is descriptive of S provided the language
of p contains S and does not properly contain the language of any other pattern that
contains S. The computational problem of finding a pattern descriptive of a given sample
is studied. The main result is a polynomial-time algorithm for the special case of patterns
containing only one variable symbol (possibly occurring several times in the pattern).
Several other results are proved concerning the class of languages generated by patterns
and the problem of finding a descriptive pattern.

1. INTRODUCTION

The problem that we consider in this paper is one of finding a “pattern” that describes
a given finite set of strings. For example, xx0 describes (10100, 2342340, 000) and xyx7
describes (2896982, 426324, 1124639421 l}, where the superscript r denotes reversal.

Our notion of a “pattern” is a simple one; a pattern is just a concatenation of constant
symbols and variable symbols, for example, xx0 or ~2~x3~. (Other possible notions of
“pattern” are discussed in Section 7, including reversal.) A pattern generates an associated

set of strings, or language, consisting of all strings obtained by substituting non-null

strings of constants for the variables of the pattern. For example, substituting 00 for x and
45 for y in the pattern ~2~x3~ generates the string 0024500345. Some other strings in the
language of this pattern are 123133,66216631, 1233313333.

Given a finite set S of non-null strings, there are generally a number of patterns that
generate all the strings in S, in particular, the trivial pattern x is always applicable.
Among the patterns that generate all the strings in S we distinguish some as descriptive of
S. A pattern p is descriptive of S if it generates all the elements of S and moreover no
other pattern q both generates all of the elements of S and generates a strict subset of the
language of p. Intuitively, no pattern q gives a strictly “closer fit” to the sample S than
p does.

* This research was supported by the National Science Foundation under Grant MCS77-11360.
A preliminary version of these results was presented at the 11th Annual ACM Symposium on
Theory of Computing, Atlanta, Georgia, May 1979. Current address of author: Computer Science
Department, Yale University, New Haven, Connecticut 06520.

0022-0000/80/040046-17$02.00/O
Copyright 0 1980 by Academic Press, Inc.
All rights of reproduction in any form reserved.

46

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82224908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FINDING PATTERNS IN SETS OF STRINGS 47

We study the computational problem of finding a pattern descriptive of S, given a
finite set S of non-null strings. Section 2 gives formal definitions of these notions and
others. Section 3 studies the properties of the languages generated by patterns; for these
languages the equivalence problem is decidable in linear time, the membership problem is
decidable but NP-complete, the containment problem is open. Section 4 studies the
general computational problem of finding a pattern descriptive of S; the problem is
effectively solvable and a variant of it is NP-hard. An example is given to illustrate the
nonuniqueness of patterns descriptive of S. Section 5 describes a particular way of
representing the set of patterns “induced” in a string by substrings of it; the representation
uses certain finite automata called pattern automata. Section 6 describes an algorithm
that runs in polynomial time to find descriptive one-variable patterns. Section 7 contains
remarks on areas in need of further work.

The emphasis of this work is somewhat different from work on pattern matching,
either in the sense of the Knuth, Morris, and Pratt linear-time algorithm to search for
occurrences of one string as a substring of another [S], or in the sense of the powerful
pattern-matching facilities in the language SNOBOL [5]. Instances of these latter
problems generally consist of a specification of a pattern and a string to match to (or test
for membership in) the pattern. We instead specify a set of strings and ask that an
algorithm find a particular pattern from the universe of patterns that satisfies some
criterion of “goodness of fit” to the sample strings.

The primary motivation for the questions studied in this paper is an attempt to under-
stand in formal terms the process of inductive inference, that is, the process of hypo-
thesizing general rules from specific examples. We hope to find efficient procedures to
perform such generalization in well-defined ways for relatively natural domains. We
would argue that the polynomial-time algorithm that we present for finding a one-
variable pattern that is descriptive of a given finite sample of strings is one such procedure.
As the phenomena of inductive inference become better understood, many more such
procedures will undoubtedly be discovered.

2. DEFINITIONS

Z is a finite alphabet containing at least two symbols. The set of all finite strings of
symbols from Z is denoted Z*. The set of all finite non-null strings of symbols from Z is
denoted Z+. A sample is any finite nonempty subset of ,Z-.

s --= {x1) x2)... } is a countable set of symbols disjoint from 2. Elements of X are
called variables. A pattern is any finite non-null string of symbols from Z u X. The set of
all patterns is denoted P, . The length of a pattern p is just the number of symbols
composing it, and is denoted j p I. Th e concatenation of two patterns p and q is denoted
either pq or p . q.

In order to discuss computations with patterns as inputs or outputs, we choose a
particular concrete representation of patterns as strings over the finite alphabet
Z u ((,), 0, l,..., 91, where we assume that (,) $ C. A pattern p will be represented by
replacing each variable xi by its index i written in decimal notation and enclosed in paren-

48 DANA ANGLUIN

theses. Thus ifp = x2xIs34x, then its representation is (2)(16)34(2). (Note that the length
ofp still refers to the abstract string, so 1 p j = 5 in this case.)

&’ denotes the set of all nonerasing homomorphisms (with respect to concatenation)
of P, to itself. An element of J? that is the identity when restricted to Z is called a sub-
stitution. A substitution that is a bijection of X to itself when restricted to X is called a
renaming of variables. If zcr , u2 ,..., uR are symbols from 2: u X and p, , p, ,..., p, are
patterns, then we write [p&r , p&a ,..., p&J for the homomorphism that maps ui
top, for i = 1,2,..., K and maps every other element of 2 u X to itself. The application
of this homomorphism to a string is by convention written to the right of the string.

If p and q are patterns then we say p and q are equivalent, denoted p = ‘ q, if and only if
there exists a renaming of variables f such that p = f (q). (In Section 3 we see that E’
is indeed an equivalence relation, and coincides with the notion of language equivalence.)
We define another binary relation: p <’ q if and only if for some substitution f, p = f(q).
(The intuitive reading of <’ may be taken to be “is less general than.“) We note that
since a substitution is a nonerasing homomorphism, if p <’ q then j p 1 3 / q /.

For any patternp, the number of variables inp is the number of distinct positive integers
i such that the variable xi occurs in p. For each k = 0, l,..., we let Pk denote the set of
patterns p such that the number of variables occurring in p is K. The elements of PI are
called one-variable patterns. Clearly PO = .Z+ and P, = uF=“=, Pk .

A pattern p is in canonicalform provided that if K is the number of variables in p, then
the variables occurring in p are precisely (x1 , x2 ,..., xk} and, further, for every i with
1 < i < K, the leftmost occurrence of xi in p is to the left of the leftmost occurrence of
xi+, inp. That is, the variables inp constitute an initial segment of Xand are “introduced”
in increasing order from left to right. Clearly, for any pattern p, there exists a unique
pattern denoted $ that is in canonical form such that $ -’ p. (It is not difficult to see that
$ may be computed in linear time from p. Since p =’ q if and only if $ = 4, this gives us
a linear-time method for testing whether p =’ q.)

If p is a pattern, the language of p, denoted L(p), is (s E Z+: s <’ p}. Thus ifs EL(p),
J s 1 3 / p I. Ifs EL(~), we also say thatpgenerates s. A key notion for this paper is that of a
pattern being a “good description” of a sample. Formally, a pattern p is descriptive of
a sample S provided S CL(p) and f or every pattern q such that S CL(q), L(q) is not a
proper subset ofL(p). That is, L(p) is minimal in the set-containment ordering among all
pattern languages containing the sample. We also define a restriction of this notion. If Q
is any set of patterns, we say p is descriptive of S within Q provided S CL(p) and for every
q E Q such that S CL(q), L(q) is not a proper subset of L(p).

EXAMPLE 2.1. Suppose Z = (0, l} and X = (x, y,...}. Then x0x01 ,(’ yyx because
yyx[l/x, x0/y] = x0x01. L(z) = { ww: w E Z+}, so 100100 EL(XX) and 101 .$L(xx).
Clearly L(x) = ,E+ and L(101) = (101).

We refer the reader to [l] for definitions of the notions of polynomial-time computa-
bility and NP-completeness. The notion of finite automaton that we use in Section 5 and 6
is that of a deterministic incompletely specified finite-state acceptor [7].

The cardinality of a set C will be denoted 1 C I.

FINDING PATTERNS IN SETS OF STRINGS 39

3. THE PATTERN LANGUAGES

In this section we consider the questions of deciding membership, equivalence, and
containment for the pattern languages. We begin with some technical results.

LEMMA 3.1. For all patterns p and q,

(a) -:. ’ is transitive,

(b) p -:;’ q implies L(p) CL(q),

(c) p G’ q if and onZy ifp <’ q and q <’ p.

Proqf. The relation <’ is transitive because the composition of two substitutions is a
substitution, and this immediately implies part (b). If p =-’ q then since a renaming of
variables is a special case of a substitution, p <’ q and q 6’ p. Conversely, if p <’ y
and y :: ’ p then there exist substitutions f and g such that p =- f(q) and 4 =-- g(p), so

P -- .f(g(~)). Th us, since p is of finite length, g must map the variables in p to variables
and must be injective on the variables of p. Hence there exists a renaming of variables h
such that h(p) -~ g(p) =: q so p =’ q. 1

Let p be any pattern. Fix two distinct letters a, b E Z. We define a particular non-null
finite subset of t(p) which we denote by s(p). C onsider the substitutions defined for all
positive integers i, i:

fAxi) = a,

fb(xi) = b,

gh4 = a
-= b

if i = i,

otherwise.

Let S(p) consist of the set of strings {fa(p),fb(p),gl(p),g2(p),...). If p contains no
variables, then S(p) == L(p) = {p}. If p contains one variable then S(p) consists of just
two strings, and if p contains k > 2 variables then S(p) consists of k + 2 strings. Clearly
S(p) CL(p), and mav be constructed in time polynomial in the length of the representa-
tion of p.

LEMMA 3.2. Let p and q be patterns such that I p 1 = : q 1, and S(p) CL(q). Thm

P. ‘4.

Proof. Note that every element s E S(p) has 1 s j = I p i ==~ i q 1. Let m and n bc
positive integers not exceeding / p I. By construction of S(p), p has a constant c E .Z at
position m if and only if every s E S(p) has the constant c at position m. Also, if p has two
different variables at positions m and n, then there is a string s E S(p) that has different
constant symbols at positions m and n. Since S(p) CL(q), for every s E S(p) there exists a
substitution h such that s = h(q). Since 1 s 1 = / q /, h must map each variable of q to a
string of length one. Now suppose q has the constant c E Z at some position n. Then
h(q) = : s must have c at position n, and since this holds for all s E S(p), p must have c at

50 DANA ANGLUIN

position n. Suppose q has the variable xi at two positions m and YZ. Then h(q) = s must
have the same (constant) symbol at positions m and n, and since this holds for all s E S(p),
p must have the same symbol (either a constant or a variable) at positions m and n. Thus
the set of positions of xi in q are all occupied by the same symbol, say g(x,), in p. We may
extend g to be a substitution such that p = g(q), so p <’ q. 1

As direct corollaries of this result we have:

COROLLARY 3.3. For anypatternp, p is descriptive of the sample S(p).

Proof. Assume to the contrary that there exist patterns p and q such that S(p) CL(q)
and L(q) s L(p). Th enwemusthavebothlp/>~q/and~q~>~p~,so/p~=~q~.
By Lemma 3.2, p <’ q, so L(p) CL(q), a contradiction. a

COROLLARY 3.4. Let p and q be any patterns such that 1 p 1 = I q I. Then L(p) CL(q)
if and only if p <’ q.

Proof. The “if” part is implied by Lemma 3.1(b). If L(p) 2 L(q) then S(p) CL(q), so
Lemma 3.2 givesp <’ q. 1

Equivalence

THEOREM 3.5. For all patterns p and q, L(p) = L(q) if and only ifp =‘ q.

Proof. IfL(p)=L(q)then~pI~/q~andIq~3~p/,sojp/=/q/.Thenbytwo
applications of Corollary 3.4, p <’ q and q <’ p, sop =’ q by Lemma 3.1 (c). Conversely,
if p ~7’ q then p <’ q and q <‘p by Lemma 3.1(c), so L(p) CL(q) and L(q) CL(p) by
Lemma 3.1 (b), and thus L(p) = L(q). 1

Since the equivalence of two patterns may be tested in time linear in the representations
of the two patterns, this theorem implies a linear-time algorithm for deciding whether
two patterns generate the same language.

Membership

THEOREM 3.6. The problem of deciding whether s E L(p) for an arbitrary string s E .Z’*
and pattern p is NP-complete.

Proof. We first note that the problem of deciding whether p <’ q given arbitrary
patterns p and q is in NP; a nondeterministic Turing machine may simply guess a sub-
string of p for each variable appearing in q and check whether the implied substitution
yields p from q. (The same reasoning may be applied to see that if there is a fixed constant
bound K on the number of different variables occurring in q, then there is a deterministic
algorithm that runs in time O(n 2k+r) to decide whether p <‘ q that works by enumerating
all .K-tuples of substrings of p and testing the resulting substitutions.) Thus ifs E Z* and p
is a pattern, the problem of deciding whether s E L(p) is in NP. To see that this problem is
complete in NP, we exhibit a polynomial-time reduction to it of the problem of deciding

FINDING PATTERNS IN SETS OF STRINGS 51

whether a propositional formula in conjunctive normal form with three literals per clause
is satisfiable. Since this latter problem is NP-complete [1], this will prove the theorem.

Let + be a given propositional formula with three literals per clause. Assume the
variables of q5 are V, , V, ,..., V, and the clauses are C, , C, ,..., C,, , where each clause is
an ordered set of three terms each of which is either a variable or the complement of a
variable. Since / .Z / > 2, we may choose two distinct symbols from ,E’, say 0 and 1 for
concreteness. We shall construct from 4 a pattern p containing the 2(m + n) variables
xi f Yi > zj > uj for 1 -< i < n and 1 < j < m. Define for j = 1, 2 ,..., m and k ~- 1, 2, 3

f(j, R) = xi if the kth literal in Cj is Vi ,

= Yi if the kth literal in Cj is vi .

Let

p = op,op, -*. op,oq,oq, ... OqmoY,OY, '.. oY,,o,

where

pi = xiyi

4j = f(j, 1) *f(i, 2) .f(j, 3) . xj
Yj = zjuj

for 1 b i << n and 1 < j < m. Now we construct a related string

s = os,os, ..’ Os,OtlOt, -*. ot,owu,ow, ..’ ow,,,o,
where

si = 111

tj = 1111111

wj = 1111

for 1 6: i + n and 1 < j < m. It is clear that there is a deterministic polynomial time
algorithm to construct p and s from 4. We shall now show that s EL(P) if and only if d is
satisfiable, which will complete the proof of the theorem.

Suppose first that + is satisfiable. Then let 01: {V, , Va ,..., VJ -+ {O, 1) be an assignment
satisfying #. We define a substitution h such that s = h(p) as follows. For each i = 1,
2 I..., n, if a(Vi) = 1 then let h(xi) = 11 and h(yi) = 1, while if a(VJ = 0 then let
h(xi) = 1 and h(yd) = 11. In any case h(p,) = h(x,y,) = 111 = si for each i. Consider
some j with 1 :< j < m. Suppose for concreteness that C, is (k-i -;- rz t VJ, so that
qj is xiy2x4z3 . Since cz satisfies 4, it satisfies Cj , so a(Vi) = 1 or CX(V,) = 0 or a(V,) = 1.
Hence at least one of xi , ya , x4 is assigned the string 11 by h, so h(x,y,x,) is four. five, or
six 1’s. Define h(q) to be three, two, or one l’s and h(u,) to be one, two, or three l’s,
respectively, so that

h(qJ = h(x,yax&) = 1111111 = tj

52 DANA ANGLUIN

and

h(Yj) = h(ZjUj) = 1111 = Wj 9

Since j was arbitrary, we see that we may extend h to a substitution such that s = h(p),
so s EL(P).

Conversely, suppose that s EL(~). Then there is a substitution h such that s = h(p).
Since s and p contain the same number of O’s, h must assign some non-null string of l’s
to each variable in p. Thus for each i = 1, 2,. . . , n, h(x,y,) = 111, so either h(q) = 11 and
h(y,) = 1 or vice versa. Define a(Vi) = 1 if h(q) = 11 and 0 otherwise, for i = 1, 2,..., 71.
We show that the assignment 01 satisfies +. Let j be arbitrary, with 1 ,< j < m. Suppose for
concreteness that Cj = (V, + ra + V,). Since h(zjuj) = h(rj) = 1111, h(z+) is one, two,
or three 1’s. Since qj = x1y2x4zj and h(qJ = 1111111, it must be that h(x,y,x,) is four,
five, or six 1’s. Thus at least one of x 1 , y 2 , X, must be assigned the string 11 by h. By
definition of a, this implies that N(V,) = 1 or a(I’,) = 0 or A(V,) = 1, so 01 satisfies
clause Cj . Since j was arbitrary, we conclude that 01 satisfies 4, and 4 is indeed
satisfiable. a

COROLLARY 3.7. The problem of deciding whether p <’ q given arbitrary patterns p
and q is NE’-complete.

Containment

Recall from Lemma 3.1(b) that p <’ q implies L(p) -CL(q). Corollary 3.4 shows that
in the special case when [p / = 1 q 1, the converse also holds. To see that the converse
does not hold in general, we consider the following example.

EXAMPLE 3.8. Let Z = (0, l}. Let p = 0x10~~1 and q = xxy. Then clearly p 4 q.
Suppose s EL(~). Th en s = OtlOttl for some non-null string t E Z*. Either t = OU or
t = 1~ for some string u E Z*. In the first case, s = 00~100~0~1 = q[O/x, ulOOuOul/y].
In the second case, s = 01~101~1~1 = q[Olul/x, ul/y]. Thus in either case, Sol.
Hence L(p) CL(q).

This example may easily be generalized to apply to any finite cardinality for ,Z, based
on the 1 Z 1 cases for the first letter of the substituted string t. For example, for ,Z = (0, 1,2}
we may take p = O~~OX~~OX~OXXX~ and q = xxy. Another special case in which the con-
verse of Lemma 3.1(b) holds is the following.

LEMMA 3.9. Let p be any pattern and let q be a one-variable pattern. Then L(p) _C L(q)
if and only ;fp <‘ q.

Proof. Lemma 3.1(b) gives the “if” direction. Suppose L(p) CL(q). Suppose q con-
tains k occurrences of the variable x, and write q in the form qGq,x ... qk.+q, , where each
qi E z*. Since s(p) CL(q), p must be of the form q,,plqlpz ... q&&&i*: for some patterns
Pl , P, ,.**, p, all having a common length I = 1 pi /. Furthermore, if fa , bb , g, , g, ,... are
the substitutions defined before Lemma 3.2, f,(pi) = f,(p,),f,(p,) = fb(pj), andg,(pi) =

FINDING PATTERNS IN SETS OF STRINGS 53

g,(pj) for all 1 < i, j < k and r > 1. From this we may easily conclude that pi = p, , for
all 1 < i,j < K, sop = @r/x] andp <’ q. 1

In summary, we may effectively decide whether L(p) c L(q) given p and q in the special
cases when either 1 p / = / q 1 or q is a one-variable pattern, using Corollary 3.4,
Lemma 3.9, and the effective decidability of p <’ q. In the general case, however, the
question of whether there is an effective procedure to decide whether L(p) CL(q) given p
and q appears to be unresolved. Some recent work of Makanin [9] showing the solvability
of systems of equations in free semigroups may shed some light on this problem.

Some Other Properties

THEOREM 3.10. The class of pattern languages is incomparable with the class of regular
languages and with the class of context-free languages. The class of pattern languages is not
closed under any of these operations: union, complement, intersection, Kleene plus, homo-
morphism, or inverse homomorphism. It is closed under concatenation and reversal.

Proof. The only finite pattern languages are the singleton subsets of Zlf. Thus some
regular languages are not pattern languages. The pattern language L(xx) is not context-
free [7]. Suppose for concreteness 22 contains the distinct symbols 0 and 1. Then
L(O) uL(l), X(O), L(O) nL(l), and (L(O))+ are not pattern languages (another, less
trivial, example for intersection is given in the next section). If we define h(b) = 0 for all
b E 2 and extend h to be a (nonerasing) homomorphism on Z*, then h&(x)) = (L(O))+,
which is not a pattern language. If h(0) = 1 and h(1) = 11 then h-l(l I 1) --_ {Ol. 10, 0001,
which is not a pattern language.

Given two patterns p and q, we rename (if necessary) the variables that occur in q tn
obtain a pattern q’ which is equivalent to q and contains no variables in common with p.
Then we have L(p) . L(q) = L(p . q’), so the concatenation of pattern languages is a
pattern language. Also, it is not difficult to see that (L(p))’ = L(p’), where the superscript
r denotes reversal, so the reversal of a pattern language is a pattern language. 1

4. FINDING A DESCRIPTIVE PATTERY

We now consider the following computational problem: given a sample S, find a
pattern p that is descriptive of S.

THEOREM 4.1. There is an effective procedure which, given a sample S as input, outputs
a pattern p that is descriptive of S.

Proof. The procedure is defined as follows. Given an arbitrary sample S, let 1 -5 1
denote the minimum length of any string in S. Enumerate the finitely many canonical
patterns p with / p (f 1, and for each one test whether S CL(p). (This uses the decida-
bility of membership for the pattern languages, and the fact that S is an explicitly given
finite set.) Let C denote the resulting set of canonical patterns p of length ~1 such that
S C I,(p). C is a nonempty finite set. Let m denote the maximum length of any element of

54 DANA ANGLUIN

C and let C’ denote the set of elements of C of length m. Then C’ is a nonempty finite set.
Using the decidability of <‘, find and output any element p that is minimal in C’ with
respect to the partial ordering <‘.

This procedure is clearly effective. We must see that the output pattern p is descriptive
of S. Let q be any pattern such that S CL(q). Then / q j < 1 and 4 E C. If 1 q 1 < 1 p 1 then
L(p) gL(p). If 1 q 1 = 1 p 1 then 4 E C’. Then by the choice ofp, either p = 4, so L(p) =
L(q), or 4 <‘p. By Corollary 3.4, 4 <‘p and 1 q 1 = 1 p 1 implies L(p) gL(p). Hence in
any case, L(q) is not a proper subset ofL(p), sop is descriptive of S. 1

Elsewhere [2] we have shown that the procedure of Theorem 4.1 may be used to
construct an inference machine that correctly identifies the class of pattern languages in
the limit from positive data. Furthermore, this machine may be arranged so that when a
guess is made, it is consistent with the sample read in so far, and a guess is not changed
unless it fails to be consistent with some new sample string.

The algorithm described in the above proof is time-consuming; the number of patterns
enumerated may grow exponentially in the length of input sample, and the tests performed
on the patterns are in the general case NP-complete problems. In Section 6 we give a
polynomial-time algorithm for this problem in the special case of one-variable patterns.
Below we shall give some partial evidence for the difficulty of the general case.

Observe that the algorithm described in the proof of Theorem 4.1 actually solves the
following problem: given a sample S, find a patternp of the maximum possible length that
is descriptive of S. The reason for this is that we do not know whether containment is a
decidable problem for the pattern languages, hence we maneuver so that the special case
of Corollary 3.4 is applicable. For this stronger version of the basic problem, we are able
to show the following.

THEOREM 4.2. If P # NP then there is no polynomial-time algorithm to solve the
following problem: given a sample S, jind a pattern p of maximum possible length that is
descriptive of S.

Proof. Suppose there exists an algorithm A that runs in polynomial time and is such
that for any sample S, A on input S outputs a pattern p of the maximum possible length
that is descriptive of S. We shall use A to construct a polynomial-time algorithm to decide
whether s EL(P) for an arbitrary string s E Z* and pattern p. Since this latter problem is
NP-complete (Theorem 3.6), this will imply P = NP, proving the theorem.

Let a string s and pattern p be given. In polynomial time we may construct the sample
S = {s> u S(p). (Th e sample S(p) is defined before Corollary 3.2 in Section 3,) Run A
on input S and denote the output by p. Since S CL(q), 1 q 1 < 1 p I. Clearly if q I’ p then
s EL(~). If q +‘p, there are two cases to consider. The first case is that 1 q I < I p I; since
p has maximum possible length among all patterns generating S, it must be that S $L(p).
But by construction S(p) CL(p), so we must have s $L(p). The second case is that
Ip I = I p I. Since S(p)_CL(q), we may apply Lemma 3.2 to obtain p ,<’ q. Hence
L(p) $.5(q). Since q is descriptive of S, it must be that S gL(p), so s $,5(p). Thus we
have shown thatp =’ q if and only ifs EL(~). W e may test whether p E’ q in linear time,
which concludes the construction. l

FINDING PATTERNS IN SETS OF STRINGS 55 . .

We have been unable to prove this result for the original problem, without the restric-
tion to a longest descriptive pattern. One approach is to try to replace S(p) by a sample
T(p) _C L(p) such that for any Q, T(p) CL(q) implies L(p) -CL(q). It is not difficult to see
that such a sample must exist for any patternp. However, it is also the case that there is an
algorithm to decide the containment of pattern languages if and only if there is an
algorithm to compute such a sample T(p) f or any pattern p. Since the containment
problem is open, this approach seems infeasible at present.

We give an example to illustrate the fact that there may be a pattern 4 f’ p that is
descriptive of S(p). This also illustrates the nonuniqueness of the patterns descriptive of a
sample, and of the fact that the intersection of two pattern languages is not in general a
pattern language.

EXAMPLE 4.3. Let 2 = (0, l}, p = xOlOy, and 4 == XXJ. Then S(p) :-: (00100,
10101, 00101, 10100). Clearly S(p) -CL(q). By C orollary 3.3, p is descriptive of S(p).
To see that 4 is descriptive of S(p), consider any pattern p, such that S(p) C L(pr). Then
lp1 < 5. Consider the following cases for the length of p,

(9 I PI i c, 3. Since I 4 1 = 3 this implies thatL(p,) $L(q).

(ii) i p, 1 = 3. S uppose thatL(p,) CL(q). Then by Corollary 3.4,~~ <;’ Q. But since
S(p) .cL(p,), p, must begin with some variable u and end with some distinct variable z.
Thus the substitution to obtain p, from 4 must map x to u and y to z, so p, :-: UUZ, and
L(p,) =. L(q). Thus in this case either&Q $L(q) or L(p,) = I,(g).

(iii) 1 p, 1 := 4. Since S(p) CL(p,), p, must begin with some variable u and end
with some distinct variable z. The two middle symbols of p1 cannot be equal for then we
would have 01, 010, or 10 in L(xx), a contradiction. By enumerating the 21 canonical
patterns of length 4 satisfying these two constraints, and retaining those that generate
S(p), we find that p, must be equivalent to one of the nine patterns uz’wx, UVUZ, UZTX,
ucoz, ZPJlz, UOZ’Z, ulvz, uOlz, ~10s. The language generated by each of these nine
patterns is a proper superset of L(p), and 100101 EL(P) - L(q), so in this case L(p,) is
not a proper subset of L(q).

(iv) ! p, 1 :m= 5. Then by Lemma 3.2, p <’ p, , so L(p) CL(p,). Since 100101 E
L(p) - Z,(q), in this case also L(p,) is not a proper subset of L(q).

Hence in all cases, L(p,) is not a proper subset of L(q) and we conclude that y is also
descriptive of S(p). 1

5. A REPRESENTATION OF INDUCED PATTERNS

In this section we describe a particular method of representing the patterns “induced”
in a string by a collection of substrings of it. This representation is used in the next
section to construct a polynomial-time algorithm to find a one-variable pattern des-
criptive of a given sample. With this application in view, and also for clarity of presenta-

56 DANA ANGLUIN

tion, we give the construction and results for the one-variable case, and indicate how they
may be generalized.

One- Variable Pattern Automata

Let s, t E Z+, where t is a substring of s. Let P(s; t) denote the set of all one-variable
patterns p such that the one variable occurring in p is x and p[t/x] = S. For example, if
s = 1101110 and t = 11 then P(s; t) = {x01 110, 110x10, 1101x0, ~0x10, x01x0).

We construct a particular finite automaton denoted by A(s; t) to recognize P(s; t).
The states of A(s; t) are all ordered pairs (i,j) such that 0 < i, j and i + j 1 t 1 < 1 s 1.
The initial state is (0,O). The final states are all states (i, j) such thatj > 1 and i + j 1 t 1 =
1 s I. The state (i,j) signifies that in the input string, i constant symbols andj occurrences
of x have been read so far. The transitions of the machine are given by:

S((i,j), b) = (i + l,j) if the symbol at position 1 + i +j 1 t [of s is b.

S((i,j), X) = (i,j + 1) if there is an occurrence oft as a substring
of s beginning at position 1 + i + j 1 t 1 of s.

For the example given above of S = 1101110 and t = 11, the reachable part of A(s; t) is
depicted in Fig. 1. We note that A(s; t) is in general not reduced; the reason for this
choice will become clearer in connection with the Intersection Theorem (5.2).

THEOREM 5.1. The language recognized by A(s; t) is precisely P(s; t), that is,
L(A(s; t)) = P(s; t).

Proof. Let p = sflslx *.. s,-~xs, , where n > 1 and each si E Z*. Then p EL(A(s; t))
if and only,if for all j = 0, I,...,
j . j t j + CLzt / sk / of s is sj ,

n the substring of length I sj I beginning at position
and the substring of length j t I beginning at position

j . j t I + &=,) sk I is t, which is true if and only ifp[t/x] = s, i.e.,p E P(s; t). i

FIG. 1. The automaton A(llO1llO; 11).

FINDING PATTERNS IN SETS OF STRINGS 57

Let & = (Qi , us, Si, Fi) for i = 1, 2 be two finite automata over the alphabet .Z
with the same initial state q,, , where Qi is the set of states, Si is the transition function,
and Fi is the set of final states of Ai . Define A, C A, if and only if Qi c Qa , FI c F, and the
function S? is an extension of 6, . Define A, n A, to be the finite automaton A, =
<Q3,q0,S3,F3), whereQ, =Q1nQ2,F3 =F,nF,, and for all qEQ3 and be& if

%(q, b) and h&t 4 are defined and equal, then S,(q, b) is defined and equal to their
common value. Clearly A, n A, C A, and A, n A, C A, .

DEFINITIOK. A finite automaton A is a one-variable pattern automaton if and only if
there exist s, t E P, where t is a substring of s, and A C A(s; t).

Intuitively speaking, a one-variable pattern automaton is obtained from some A(s; t) by
(optionally) erasing some of the states, transitions, and/or final-markers. The result for
pattern automata is the following Intersection Theorem:

‘I’HEOREM 5.2. Let A, and A, be one-variable pattern automata. Then L(A,) n L(A,) :-~
L(A, n A,).

Proof. Suppose Ai = (Qi , q,, , 6, , Fi> for i = 1, 2, 3 and da = d, n A, . Suppose
p E L(,4,). By induction we may see that for every prefixp’ of p, S,(q, , p’) = S,(q, , p’) =-
S,(q,, , p’). Since S,(q,, , p) E F3 and F3 = FI n F2 , both A, and A, acceptp, i.e., p E L(A,) n
~5(~4.J. Conversely, suppose p E L(A,) n L(A,), where p == uiua ... u, and each ui is either
x or an element of Z. For each i = 0, l,..., n let qij = Sj(qO , uiua ... UJ forj == 1, 2. Then
we show by induction that qil = qi2 for i = 1, 2,... n, since qO1 = q02 == q,, and Sj(qi-, , ui)
depends only on the value of qi-i and whether ui is x or an element of 2. Thus S,(q, , p)
is defined and equal to S,(q, , p) = S,(q, ,p). Since S,(q, , p) E F, and S,(q, , p) EJI~ ,
WA, , P) G , so p +A, n 4). I

The point of this theorem is that our “redundant” representation of sets of patterns
makes the problem of intersection easier. Recall that in general if Mi , .iW, , MS are finite
automata with m, , ma , m3 states, respectively, and L(il’l,) _- L(hl,) n L(M.J, then we
may have m3 =: m, . m,; in our special case we have ma < min(m, , m,j, and Ma may be
constructed in time proportional to the sum of the sizes of M, and M, . The following
example shows that the quadratic growth (A(s; t) may h ave sZ(\ s I’) states) is in general
necessitated bv intersection.

EX4MPLE 5.3. Let si = (01)3”0, t, = 010, s2 == (Ol)“nO, t, =: 0. Consider the set
Ii ~= P(sr; tl) n P(sa; t2). R consists of all strings from ((0 + ~)1)~“(0 + X) that contain
exactly n occurrences of X. It is not difficult to see that any finite automaton to recognize R
must contain at least 2n2 states.

k-Variable Pattern Automata

Let kz,.:l. Let s,t 1, t 2 ,..., tk E Z+, where each ti is a substring of s. Define
P(s; t, , t, ,..., tk) to be the set of k-variable patterns p in canonical form such that
p[t,/-v, ‘...) t,JxJ =: s. We may construct an automaton il(s; t, , t, ,..., tk) to recognize

58 DANA ANGLUIN

PCs; t, 3 t, ,-*-, tk) in a manner analogous to A(s; t). States are (K + I)-tuples; (&jr ,
js ,..., jrJ records the fact that i constants and jr occurrences of X, have been read in so far,
for r = 1, 2,..., K. A transition on b E Z (or on the symbol x,) depends on an occurrence
of b (or t,) at position 1 + i + &jr . / t, / o s, and increments the i (orj,) component f
of the state. Further details are left to the reader; the definition of a k-variable pattern
automaton and Theorems 5.1 and 5.2 generalize straightforwardly.

6. FINDING DESCRIPTIVE ONE-VARIABLE PATTERNS

In this section we restrict our attention to the class of one-variable patterns, which is
denoted PI . A pattern p E PI is said to be descriptive of the sample S within PI provided
S CL(p) and for all 4 E PI , if S CL(q) then L(q) is not a proper subset of L(p). We
describe a polynomial-time algorithm to solve the following problem: given a sample S,
find a one-variable pattern p that is descriptive of S within PI . The algorithm uses the
one-variable pattern automata described in the preceding section to construct a particular
representation of all the one-variable patterns that generate S, and then selects an
appropriate one to output.

For any one-variable pattern p, define T(P) to be the triple of nonnegative integers
(i, j, K) such that the number of occurrences of constants in p is i, the number of occur-
rences of variables in p is j, and the position of the leftmost occurrence of x in p is R. The
algorithm partitions one-variable patterns p according to the value of 7(p).

Let an input sample S = {sr , s, ,... , s,} be given, where each si E Z+ and m 3 2.
For each r = 1, 2,..., m let Pl(sT) denote the set of one-variable patterns p such that
s, EL(~). Fix r, 1 < Y < m. A triple (i, j, k) of non-negative integers is said to be feasible
for sT provided 0 < i < / s, j, 1 <j < 1 s, j, 1 < K < i+ 1, and j 1 (1 s, j - i). The set
of all triples feasible for s, is denoted F,. . For each (i, j, k) E F, , we define a particular one-
variable pattern automaton B,(i, j, K) as follows. Let t be the unique substring of s,
beginning at position K and of length I = (/ s, 1 - i)/j. To obtain B,(i, j, k), take A(s,; t)
and remove any x transition leaving from a state (u, 0) in which u < K - 1, remove the
constant transition leaving from state (0, K - l), and remove all final states except (i, j).

LEMMA 6.1. For each (i, j, k) E F, , L(B,(i, j, k)) ’ p zs recisely those p E Pl(sT) such that
r(p) = (i, j, k). Consequently,

Proof. Let (i, j, K) EF, . If t is the unique substing of s, of length I = (1 s, / - i)/j
beginning at position K, then clearly L(A(s,; t)) contains all p E Pl(sr) such that 7(p) =
(i, j, K). Furthermore, the modifications made to A(s,; t) to obtain B,(i, j, K) guarantee that
the first K - 1 symbols of any pattern p EL(B,(i, j, K)) are constant symbols, the kth
symbol is X, and p contains i occurrences of constant symbols and j occurrences of x,
i.e., T(P) = (i, j, k). Since if p E Pl(sr), T(P) must be a triple that is feasible for s, , the
second assertion follows. l

FINDING PATTERNS IN SETS OF STRINGS 59

LEMNA 6.2. Let F = nT=“=,F, andfor each (i, j, k) E F let B(i, j, k) =- nyzl B,(i, j, k).
Then

Proof. Clearly p f p’ if T(P) f I, so if (i, j, k) + (C, j’, k’) then L(B,(i, j, k)) and
L(B,,(i’,j’. k’)) must be disjoint, for any 1 < r, u ,< m. Hence, using Lemma 6.1,

fi P&d = fi u -W,.(i, i> k))
T-=1 r=l (i,j,k)EFr

m

= u fi W,(i, j, k)).
(i,i,k)EF r-1

By the Intersection Theorem, Theorem 5.2, n:=,L(B,.(i, j, k)) = L(nrS1 B,.(i, j, k)) ==
L(B(i, j, k)), and the theorem follows. l

The set of one-variable patterns that generate S is precisely fly=, Pl(sT), so the auto-
mata B(i, j, k) for (i, j, K) EF are the representation we seek. The algorithm to solve the
problem of finding descriptive one-variable patterns may now be described as follows.
On input S :_ (si , ss ,..., sm), no > 2, enumerate the set of feasible triples F, and for each
(i, j, k) E F, construct the automaton B(i, j, k). Among all (i, j, K) in F such that
L(B(i, j, k)) + ~I, select (4 , j,, , k,) to maximize i +j. Select and output any pattern

P E L(R(1;, t i.) 4,)).

LEMM.~ 6.3. The pattern p output by this algorithm is descriptive of S within PI .

Proof. Suppose to the contrary that q is a one-variable pattern with variable X,
S CL(q), and L(q) SL(p). Then by Lemma 3.9, q <’ p, and consequently) q) > i p 1.
By Lemma 6.2, some B(i, j, K) accepts q, and 1 q / = i + j. Since p is chosen to maximize

p : : : i,, j, , ipi >1q/.Hencewehaveq<‘pandIpI = /qi.Thusqisobtained
from p by substituting either a variable or a constant for x in p, so q is either a constant
string or equivalent top, i.e., either 1 L(q)] = 1 or L(q) = L(p), contradicting the assump-
tion that S !Z L(q) andL(q) SL(p). (Recall that 1 S ! > 2.) i

Thus the algorithm we have described correctly finds a one-variable pattern descriptive
of S within P, We now show that this algortihm may be implemented to run in polv-
nomial time.

The model of computation we assume is a random-access computer [3] that performs a
reasonable menu of operations each in unit time on registers of length O(log n) bits, where
n is the input length. For each feasible triple (i, j, k) EF and each r --= 1, 2,..., m, WC
construct R,,(i, j, k). This machine has O(l s, 1”) t t s a es and may easily be constructed in
time proportional to its size. (Once we extract the substring t of length (1 s, 1 - i)/j and
starting at position k in s, , we may locate all occurrences of t as a substring in s, in time
O(s,. 1) using the linear pattern-matching algorithm of Knuth, >Iorris, and Pratt [S].

60 DANA ANGLUIN

From this is is not difficult to construct B,(i,j, A).) To find B(i,j, k) we must intersect the
machines B,(i,j, k) ,..., B,(i,j, K). This may be done in time proportional to the sum of
their sizes, so the whole computation of B(i,j, K) may be done in time O(M), where
M = X:=1 1 s, 12. We may bound the number of elements of F as follows. Let I =
min{/ s, /: 1 <Y < m}.LetG = ((i,j): 1 <i+ l,j,(ZandjI (Z-z)). ClearlyF_CG x
(1, 2,..., I). If d(n) denotes the number of divisors of the integer n, then 1 G 1 = Ci=, d(n),
so by a theorem of Dirichlet on the average order of d(n) [6, Theorem 3201, we have
(G (= O(Z log 1). This gives a bound of O(Z2 log I) for the cardinality of F. Clearly the
time to enumerate the elements of F and to extract the final answer from the automata
B(i, j, k) will be dominated by the time to construct these automata, so we obtain the
following.

LEMMA 6.4. The algorithm described above may be implemented to yun in time
O(MZ2 log I) and space O(M), where M = z:=, j s, I2 and Z = min((s, j: 1 < Y :< m}. If
n = Cr=“=, 1 s, I, then the time is also O(n* log n) and the space is O(n2).

We observe that the algorithm has good “incremental” behavior. Suppose for the
sample S = {sr , ss ,..., 111 s } we have computed the set g = {B(i, j, k): (i, j, k) EF and
L(B(i, j, h)) # a}. If S is now augmented by a new string, say sm+r , we may update 98
by finding each B(i, j, k) E &? such that (i, j, k) is feasible for sm+r , constructing
B,+,(i, j, K), and intersecting it with B(i, j, K). If the resulting machine accepts at least
one string, it is retained in B’, otherwise it is discarded. The time to update .B is propor-
tional to the maximum of the space used to represent .5Y and I s,+r 1s.

From Lemmas 6.3 and 6.4 we obtain

THEOREM 6.5. There exists a poZynomiaZ-time algorithm which given a sample S will
output a one-variable pattern p that is descriptive of S within PI .

An Example

We next give an example to illustrate the operation of the algorithm. Let S = (1100,
110000, 110101). There are fourteen feasible triples (i, j, k); we consider the two possible
cases for j separately.

(a) j = 1. This is the case of a single occurrence of the variable. Each triple gives rise
to just one pattern per string. (In practice it is probably more reasonable to treat j = 1 as a
special case.) In this case there are ten triples:

triple 1111 110000 110101 intersection

1. (0, 1, 1) X X x
2. (1, 171) xl xi xl -
3. (1, 192) lx lx lx lx
4. (2% 1, 1)

xl1 X00 x01 -
5. (2, I7.9 1x1 1x0 1x1 -

FINDING PATTERNS IN SETS OF STRINGS 61

triple 1111 110000 110101 intersection

6. (2, 193) 11x 11x 11x 11x
7. (3, 1, 1) xl11 x000 xl01 -

8. (3, 192) 1x11 1x00 1x01
9. (3, 1,3) 11x1 11x0 11X1 -

10. (3, 134) 111x 110x 110s -

(b) j > 1. The restrictions j / (4 - ;) and j / (6 - i) yield j :m: 2 and i = 0, 2 as
the only possibilities. This gives four more feasible triples. (Here, as above, we shorn
L(B,(i, j, k)) in place of B,(i,j, k) for perspicuity.)

Il.
12.
13.
14.

triple 1111 110000 110101 intersection

(0,2, 1)
(2,2,1) (sxll,a?:~, xllx) 1 -1 1
(2,2> 2) (lxxl, 1X1X) {lxx11

(2, 273) (1 lxx} {ll,) [I lxx: {l Lx)

The selection procedure then prefers the (in this case unique) longest pattern: 11.~.

7. REMARKS

Several natural extensions of the notion of “pattern” spring to mind. One that seems to
be possible to accommodate with only minor modifications in the foregoing approach is
allowing reversal of variables. That is, we consider an auxiliary set of variables {x1”, xzT,...:
and require that every substitution f have the property that f(xi’) be the reversal of f(xi),
for all i. For example, 10201, 1242421 ~L(x2x’). For the one-variable case, the fact that a
string and its reversal have the same length preserves the reasoning about lengths. A
similar approach should work for more obscure length-preserving operations, e.g.,
changing every letter of a string to 0. Another natural operation to consider is Kleene star;
introduce variables (x:, x,*,...} such that every substitution f must map f(xT) into
(f(xJ}* for every i. For example, 1021010, 323333 ~L(x2x*). This kind of operation,
being not length-preserving, does not fit into the foregoing scheme of things, and seems
to require a new approach. Alternation, or finite union, also seems like a reasonable
candidate, but this would preclude the possibility of correct inference in the limit from
positive data [2], and would require a completely different definition of what pattern
should be produced for a given finite sample. (See [4] for another way of formalizing
inference problems.)

The algorithm for finding a descriptive one-variable pattern in polynomial time may
be partly generalized to the case of k-variable patterns, for k :> 1, using k-variable
pattern automata. The difficulty arises because there is no analogue of the result for one-

62 DANA ANGLUIN

variable patterns showing that a triple (i,j, k) f easible for a string s uniquely determines
the corresponding substring t of s and allows us to construct a single pattern automaton to
recognize all patterns p such that s EL(~) and I = (i, j, k). In particular, for k > 1
there may be two distinct substitutions yielding the same string from a given pattern, e.g.,
0010012 = xxy[O/x, 10012/y] = xxy[OOl/x, 2/y]. Thus, to represent the set of patterns
with any given collection of characteristics, we must in general use a set of k-variable
pattern automata, and the bounding arguments no longer apply. It would be of interest to
know whether for k = 2, 3,..., there is a polynomial-time algorithm to find a k-variable
pattern descriptive of a given sample within Pk . It would also be of interest to know
whether Theorem 4.2 could be strengthened so that the requirement of finding a longest
descriptive pattern could be dropped.

Considering certain special cases of the problem solved by the algorithm to find
descriptive one-variable patterns, we have been able to improve the running time (for
example, the case in which / s, / = 1 s, 1 for some 1 < Y # u < m allows a much more
direct computation). We hope that further study will provide insight for a uniform
improvement in the result.

We note again that the question of whether it is in general effectively decidable whether
L(p) CL(q) given patterns p and Q is to our knowledge open. This necessitates a few
detours in the foregoing results; it would be of interest to know whether they are essential.
Results on equations in free semigroups may prove relevant in this connection [9].

REFERENCES

1. A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, “The Design and Analysis of Computer Al-
gorithms,” Addison-Wesley, Reading, Mass., 1974.

2. D. ANGLUIN, Inductive inference of formal languages from positive data, Inform. Contr., in
press.

3. D. ANGLUIN AND L. G. VALIANT, Fast probabilistic algorithms for Hamiltonian circuits and
matchings, J. Cornput. System Sci. 18 (1979), 155-193.

4. E. M. GOLD, Complexity of automaton identification from given data, Inform. Co&r. 37 (1978),
302-320.

5. R. E. GRISWOLD, J. F. POAGE, AND I. P. POLONSKY, “The SNOBOL4 Programming Language,”
Prentice-Hall, Englewood Cliffs, N. J., 1972.

6. G. H. HARDY AND E. M. WRIGHT, “An Introduction to the Theory of Numbers,” Oxford
Univ. Press, London, 1968.

7. J. E. HOPCROFT AND J. D. ULLMAN, “Formal Languages and Their Relation to Automata,”
Addison-Wesley, Reading, Mass., 1969.

8. D. E. KNUTH, J. H. MORRIS, AND V. R. PRATT, Fast pattern matching in strings, SIAM 1.
Comput. 6 (1977), 323-350.

9. G. S. MAKANIN, The problem of solvability of equations in a free semigroup, Soviet Math.
Dokl. 18 (1977), 330-334.

