The entire sequence over Musielak p-metric space

C. Murugesana, N. Subramanianb,*

a Department of Mathematics, SATHYABAMA University, Chennai 600 119, India
b Department of Mathematics, SASTRA University, Thanjavur 613 401, India

Received 13 December 2014; accepted 11 February 2015
Available online 11 April 2015

Abstract In this paper, we introduce fibonacci numbers of $\Gamma^2(F)$ sequence space over p-metric spaces defined by Musielak function and examine some topological properties of the resulting these spaces.

2010 Mathematics Subject Classification: 40A05; 40C05; 40D05

Keywords Analytic sequence; Double sequences; Entire sequence space; Fibonacci number; Musielak – modulus function; p-metric space

1. Introduction

Throughout w, Γ and Λ denote the classes of all, entire and analytic scalar valued single sequences, respectively.

We write w^2 for the set of all complex sequences (x_{mn}), where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces are found in Bromwich [1]. Later on it was investigated by Hardy [2], Moricz [3], Moricz and Rhoades [4], Basarir and Solankan [5], Tripathy et al. [6–18], Turkmenoglu [19], Raj [20–26] and many others.

We procure the following sets of double sequences:

\[
M_u(t) := \left\{ (x_{mn}) \in w^2 : \sup_{m,n \in \mathbb{N}} |x_{mn}|^{u_{mn}} < \infty \right\},
\]
\[
C_p(t) := \left\{ (x_{mn}) \in w^2 : p-\lim_{m,n \to \infty} |x_{mn}|^{u_{mn}} = 1 \text{ for some } p \in \mathbb{C} \right\},
\]
\[
C_{0yp}(t) := \left\{ (x_{mn}) \in w^2 : p-\lim_{m,n \to \infty} |x_{mn}|^{u_{mn}} = 1 \right\},
\]
\[
L_u(t) := \left\{ (x_{mn}) \in w^2 : \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} |x_{mn}|^{1/u_{mn}} < \infty \right\},
\]
\[
C_{0yp}(t) := C_p(t) \bigcap M_u(t) \text{ and } C_{0yp}(t) = C_{0yp}(t) \bigcap M_u(t),
\]

where $t = (t_{mn})$ be the sequence of strictly positive reals t_{mn} for all $m, n \in \mathbb{N}$ and $p-\lim_{m,n \to \infty}$ denotes the limit in the Pringsheim’s sense. In the case $t_{mn} = 1$ for all $m, n \in \mathbb{N}$, $M_u(t)$, $C_p(t)$, $C_{0yp}(t)$, $L_u(t)$, $C_{0yp}(t)$ and $C_{0yp}(t)$ reduce to the sets M_u, C_p, C_{0yp}, L_u and C_{0yp}, respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan et al. [27,28] have proved that $M_\alpha(t)$ and $C_\alpha(t)$, $C_{0\beta}(t)$ and $C_{0\beta}(t)$ are complete paranormed spaces of double sequences and obtained the α, β, γ-duals of the spaces $M_u(t)$ and $C_{0yp}(t)$. Quite recently, in her PhD thesis, Zeltser [29] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen et al. [30–35] have independently introduced the statistical convergence and Cauchy
for double sequences and established the relation between statistical convergent and strongly Cesàro summable double sequences. Altay and Başar [36] have defined the spaces $BS, BS(t), CS_p, CS_{Sp}, CS, CS_p, CS_{Sp}, BS, BV$ of double sequences consisting of all double series whose sequence of partial sums are in the spaces $M_+, M_-(t), C_+, C_-, C_0, L_0,$ respectively, and also examined some properties of those sequence spaces and determined the α-duals of the spaces BS, BV, CS_{Sp} and the $\beta(\theta)$-duals of the spaces CS_p, CS, CS_p, BS, BV of double series. Başar and Sever [37] have introduced the Banach space L_q of double sequences corresponding to the well-known space l_q of single series and examined some properties of the space $L_q.$ Recently Subramanian and Misra [38] have studied the space $\chi_p^m(p, q, u)$ of double sequences and proved some inclusion relations.

The class of sequences which are strongly Cesàro summable with respect to a modulus was introduced by Maddox [39] as an extension of the definition of strongly Cesàro summable sequences. Cannor [40] further extended this definition to a definition of strong A-summability with respect to a modulus where $A = (a_{i,k})$ is a nonnegative regular matrix and established some connections between strong A-summability, strong A-summability with respect to a modulus, and A-statistical convergence. In Pringsheim [41] the four dimensional transformation $(Ax)_k = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m,n} x_{mn}$ was studied extensively by Robison and Hamilton.

We need the following inequality in the sequel of the paper. For $a, b, \geq 0$ and $0 < p < 1,$ we have

$$\tag{1.1} (a+b)^p \leq a^p + b^p.$$

The double series $\sum_{m=1}^{\infty} x_{mn}$ is called convergent if and only if the double sequence (x_{mn}) is convergent, where $x_{mn} = \sum_{i=1}^{n} x_{ij}(m, n \in \mathbb{N}).$ A sequence $x = (x_{mn})$ is said to be double analytic if $\sup_{m,n} |x_{mn}|^{1/(m+n)} < \infty.$ The vector space of all double analytic sequences will be denoted by $A^2.$ A sequence $x = (x_{mn})$ is called double gai sequence if $|x_{mn}|^{1/(m+n)} \to 0$ as $m, n \to \infty.$ The double gai sequences will be denoted by $G^2.$ Let $\Phi = \{\text{all finite sequences}\}.$

Consider a double sequence $x = (x_{ij}).$ The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \{x_{ij}| \sum_{i, j = m}^{n} x_{ij} \in \mathbb{N}\}$ for all $m, n \in \mathbb{N};$ where $\sum_{i, j = m}^{n} x_{ij}$ denotes the double sequence whose only nonzero term is a 1 in the $(i, j)^{th}$ place for each $i, j \in \mathbb{N}.$

An F-K-space (or a metric space)X is said to have AK property if (Ω_{mn}) is a Schauder basis for $X.$ Or equivalently $X^{[m,n]} \to X.$

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \to (x_m) (m, n \in \mathbb{N})$ are also continuous.

Let M and Φ be mutually complementary modulus functions. Then, we have

(i) For all $u, y \geq 0$, $uy \leq M(u) + \Phi(y), \text{ (Young's inequality)}$

$$\tag{1.2}$$

[See Kamptan et al., 42].

(ii) For all $u \geq 0$, $u\eta(u) = M(u) + \Phi(\eta(u)).$

$$\tag{1.3}$$

(iii) For all $u \geq 0,$ and $0 < \lambda < 1,$ $M(\lambda u) \leq \lambda M(u)$.

Lindenstrauss and Tzafriri [43] used the idea of Orlicz function to construct Orlicz sequence space

$$\tag{1.4}$$

$$\ell_M = \{x \in \mathbb{R} : \sum_{k=1}^{\infty} M_\infty \left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0\}.$$

The space ℓ_M with the norm

$$\|x\| = \inf \left\{\rho > 0 : \sum_{k=1}^{\infty} M_\infty \left(\frac{|x_k|}{\rho}\right) \leq 1\right\},$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t) = t^p (1 \leq p < \infty),$ the spaces ℓ_M coincide with the classical sequence space $l_p.$

A sequence $f = (f_{mn})$ of modulus function is called a Musielak-modulus function. A sequence $g = (g_{mn})$ defined by

$$g_{mn}(v) = \sup\{|v|u - f_{mn}(u) : u \geq 0\}, m, n = 1, 2, \ldots$$

is called the complementary function of a Musielak-modulus function $f.$ For a given Musielak modulus function $f,$ the Musielak-modulus sequence space I_f is defined by

$$I_f = \{x \in \mathbb{R}^2 : I_f(|x_{mn}|^{1/(m+n)} \to 0, m, n \to \infty\},$$

where I_f is a convex modular defined by

$$I_f(x) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn}(|x_{mn}|^{1/(m+n)}), x = (x_{mn}) \in I_f.$$

We consider I_f equipped with the Luxemburg metric

$$d(x, y) = \sup_{m,n} \left\{\inf_{z_{mn}} \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn} \left(\frac{|x_{mn}|^{1/(m+n)}}{mm} \right) \right) \leq 1\right\}.$$

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz [44] as follows

$$Z(\Delta) = \{x = (x_k) \in \mathbb{W} : (\Delta x_k) \in Z\},$$

for $Z = c, c_0$ and $\ell_\infty,$ where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}.$

Here c, c_0 and ℓ_∞ denote the classes of converger, null and bounded scalar valued single sequences respectively. The difference sequence space b_∞ of the classical space ℓ_∞ is introduced and studied in the case $1 \leq p < \infty$ by Başar and Altay and in the case $0 < p < 1$ by Altay et al. The spaces $c(\Delta), c_0(\Delta), \ell_\infty(\Delta)$ and $b_\infty(\Delta)$ are Banach spaces normed by

$$\|x\| = |x_k| + \sup_{k \in \mathbb{N}} |\Delta x_k| \text{ and } \|x\|_{b_\infty} = \left(\sum_{k=1}^{\infty} |x_k|^p \right)^{1/p}, (1 \leq p < \infty).$$

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$Z(\Delta) = \{x = (x_{mn}) \in \mathbb{W}^2 : (\Delta x_{mn}) \in Z\},$$

where $Z = \Lambda^2, x^2$ and

$$\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1,n} - x_{m+1,n+1}) - x_{mn} - x_{mn+1} + x_{m+1,n} + x_{m+1,n+1}$$

for all $m, n \in \mathbb{N}.$ The generalized difference double no-
tion has the following representation: \(\Delta^nx_{nm} = \Delta^{n-1}x_{nm} - \Delta^{n-1}x_{m+1,n} - \Delta^{n-1}x_{m,n+1} + \Delta^{n-1}x_{m+1,n+1} \), and also this generalized difference double notation has the following Binomial representation:
\[
\Delta^nx_{nm} = \sum_{i=0}^{m} \sum_{j=0}^{n} (-1)^{i+j} \binom{m}{i} \binom{n}{j} x_{m-i,n-j}.
\]

2. Definition and preliminaries

Let \(n \in \mathbb{N} \) and \(X \) be a real vector space of dimension \(w \), where \(n \leq w \). A real valued function \(d_p(x_1, \ldots, x_n) = \| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p \) on \(X \) satisfying the following four conditions:

(i) \(\| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p = 0 \) if and only if \(d_1(x_1, 0), \ldots, d_n(x_n, 0) \) are linearly dependent,

(ii) \(\| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p \) is invariant under permutation,

(iii) \(\| (ad_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p = |a| \| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p \), \(a \in \mathbb{R} \),

(iv) \(d_1(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) = (d_1(x_1, x_2, \ldots, x_n) + d_2(y_1, y_2, \ldots, y_n))^{1/2} \) for all \(1 \leq p < \infty \) (or)

(v) \(d((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)) = \sup \{d(x_1, x_2, \ldots, x_n), d(y_1, y_2, \ldots, y_n)\} \),

for \(x_1, x_2, \ldots, x_n \in X, y_1, y_2, \ldots, y_n \in Y \) is called the \(p \)-product metric of the Cartesian product of \(n \)-metric spaces is the \(p \)-norm of the \(n \)-vector of the \(n \)-subspaces.

A trivial example of \(p \)-product metric of \(n \)-metric space is the \(p \)-norm space is \(X = \mathbb{R}^n \) equipped with the following Euclidean metric in the product space the \(p \)-norm:

\[
\| (d_1(x_1, 0), \ldots, d_n(x_n, 0)) \|_p = \sup |(det(d_{nm}(x_{nm}, 0)))| = \left(\begin{array}{cccc}
|d_1(x_1, 0) d_2(x_1, 0) & \ldots & d_n(x_1, 0) \\
|d_1(x_2, 0) d_2(x_2, 0) & \ldots & d_n(x_2, 0) \\
| & \ddots & \ddots & \ddots \\
|d_1(x_n, 0) d_2(x_n, 0) & \ldots & d_n(x_n, 0)
\end{array} \right)
\]

where \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \) for each \(i = 1, 2, \ldots, n \).

If every Cauchy sequence in \(X \) converges to some \(L \in X \), then \(X \) is said to be complete with respect to the \(p \)-metric. Any complete \(p \)-metric space is said to be \(p \)-Banach metric space.

Definition 2.1. Let \(A = (a_{kl}^{nm}) \) denote a four dimensional summability method that maps the complex double sequences \(x \) into the double sequence \(Ax \) where the \(k, \ell \)-th term of \(Ax \) is as follows:

\[
(Ax)_{k\ell} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{k\ell}^{mn} x_{m,n},
\]

such transformation is said to be non-negative if \(a_{k\ell}^{mn} \) is non-negative.

The notion of regularity for two dimensional matrix transformations was presented by Silverman and Toeplitz. Following Silverman and Toeplitz, Robison and Hamilton presented the following four dimensional analog of regularity for double sequences in which both added an additional assumption of boundedness. This assumption was made since a double sequence which is \(P \)-convergent is not necessarily bounded.

Let \(\lambda \) and \(\mu \) be two sequence spaces and \(A = (a_{k\ell}^{mn}) \) be a four dimensional infinite matrix of real numbers \((a_{k\ell}^{mn}) \), where \(m, n, k, \ell \in \mathbb{N} \). Then, we say \(A \) defines a matrix mapping from \(\lambda \) into \(\mu \) and we denote it by writing \(A : \lambda \rightarrow \mu \) if for every sequence \(x = (x_{nm}) \in \lambda \) the sequence \(Ax = \{ (Ax)_{k\ell} \}_{k,\ell} \) is \(A \)-transform of \(x \), is in \(\mu \). By \((\lambda : \mu) \), we denote the class of all matrices \(A \) such that \(A : \lambda \rightarrow \mu \). Thus \(A \in (\lambda : \mu) \) if and only if the series converges for each \(k, \ell \in \mathbb{N} \). A sequence \(x \) is said to be \(A \)-summable to \(\alpha \) if \(Ax \) converges to \(\alpha \) which is called as the \(A \)-limit of \(x \).

Lemma 2.2. Matrix \(A = (a_{k\ell}^{mn}) \) is regular if and only if the following three conditions hold:

1. There exists \(M > 0 \) such that for every \(k, \ell = 1, 2, \ldots \) the following inequality holds:
 \[
 \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |a_{k\ell}^{mn}| \leq M;
 \]
2. \(\lim_{k,\ell \to \infty} a_{k\ell}^{mn} = 0 \) for every \(k, \ell = 1, 2, \ldots \)
3. \(\lim_{k,\ell \to \infty} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{k\ell}^{mn} = 1 \).

Let \((q_{mn}) \) be a sequence of positive numbers and

\[
Q_{k\ell} = \sum_{m=0}^{k} \sum_{n=0}^{\ell} q_{mn}, (k, \ell \in \mathbb{N}),
\]

Then, the matrix \(R^\alpha = (r_{k\ell}^{mn}) \) of the Riesz mean is given by

\[
(r_{k\ell}^{mn})^\alpha = \begin{cases} \frac{q_{mn}}{Q_{k\ell}} & \text{if } 0 \leq m, n \leq k, \ell, \\ 0 & \text{if } (m, n) > k,\ell. \end{cases}
\]

The fibonacci numbers are the sequence of numbers \(f_{k\ell}^{mn}(k, \ell, m, n \in \mathbb{N}) \) defined by the linear recurrence equations \(f_0 = 1 \) and \(f_1 = 1, f_{m,n} = f_{m-1,n-1} + f_{m-2,n-2} \), \(n \geq 2 \). Fibonacci numbers have many interesting properties and applications in arts, sciences and architecture. Also, some basic properties of Fibonacci numbers are the following:

\[
\sum_{k=0}^{m} \sum_{l=1}^{n} f_{k,l} = f_{m+2,n+2} - 1; m, n \geq 1,
\]

\[
\sum_{k=0}^{m} \sum_{l=1}^{n} f_{k,l}^2 = f_{m,n} f_{m+1,n+1}; m, n \geq 1.
\]

\[
\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{1}{f_{k,l}^2} \text{ converges.}
\]

In this paper, we define the fibonacci matrix \(F = (f_{k\ell}^{mn})^{\infty}_{m,n=1} \), which differs from existing Fibonacci matrix by using Fibonacci numbers \(f_{k\ell} \) and introduce some new sequence spaces \(x^2 \) and \(\Lambda^2 \). Now, we define the Fibonacci matrix \(F = (f_{k\ell}^{mn})^{\infty}_{m,n=1} \), by

\[
(f_{k\ell}^{mn}) = \begin{cases} \frac{f_{k\ell}}{f_{k+2(l+2)-1}} & \text{if } 0 \leq k \leq m, 0 \leq \ell \leq n \\ 0 & \text{if } (m, n) > k\ell \end{cases}
\]

that is,
It follows from Lemma 2.2 that the method F is regular. Let M be an Musielak modular function. We introduce the following sequence spaces based on the four dimensional infinite matrix F:

$$\begin{align*}
\Lambda^2_{M^2} \ni \|(d(x_0), 0, d(x_2), 0, \ldots, d(x_{n-1}, 0))\|_p &= F_p(x) \\
= \sup_{k} \left\{ \sum_{n=1}^{\infty} M(f_{0}^{|x_n|^{1/p(n)}}) \|(d(x_0), d(x_2), 0, \ldots, d(x_{n-1}, 0))\|_p \right\} < \infty \\
= \sup_{k} \left\{ \sum_{n=1}^{\infty} M(f_{0}^{|x_n|^{1/p(n)}}) \|(d(x_0), d(x_2), \ldots, d(x_{n-1}, 0))\|_p \right\} < \infty, \ k, \ell \in \mathbb{N}.
\end{align*}$$

Consider the metric space $\Lambda^2_{M^2} \ni \|(d(x_1), 0, d(x_2), 0, \ldots, d(x_{n-1}, 0))\|_p$ with the metric

$$d(x, y) = \sup_{k} \left\{ M(F_p(x) - F_p(y)) : m, n = 1, 2, 3, \ldots \right\}.$$

Consider the metric space $\Gamma^{2\ell}_{M^2} \ni \|(d(x_1), 0, d(x_2), 0, \ldots, d(x_{n-1}, 0))\|_p$ with the metric

$$d(x, y) = \sup_{k} \left\{ M(F_p(x) - F_p(y)) : m, n = 1, 2, 3, \ldots \right\}.$$

3. Main results

Theorem 3.1. The spaces $\Lambda^2_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p$ and $\Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p$ are isomorphic to the spaces $\Lambda^2_{\tilde{M}} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p$ and $\Gamma^{2\ell}_{\tilde{M}} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p$, respectively (i.e.) $\Lambda^2_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p \cong \Lambda^2_{\tilde{M}} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p$ and $\Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p \cong \Gamma^{2\ell}_{\tilde{M}} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p.$

Proof. Let us consider the space of Γ^2, since the four dimensional infinite matrix F is triangular, it has a unique inverse, which is also triangular. Therefore the linear operator

$$L_F : \Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p \rightarrow \Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p,$$

defined by $L_F(x) = F(x)$ for all $x \in \Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p$ is bijective and is metric preserving by (2.5) in Theorem 3.1. Hence $\Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p \cong \Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p.$ Similarly the proof for the other space can be established.

Theorem 3.2. The inclusion $\Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p \subset \Gamma^{2\ell}_{\tilde{M}^2} \ni \{(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p \}$ and $\Lambda^2_{M^2} \ni \{(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p \} \subset \Lambda^2_{\tilde{M}^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p$ holds.

Proof. As F is a regular four dimensional infinite matrix, so the inclusion $\Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p \subset \Gamma^{2\ell}_{\tilde{M}^2} \ni \{(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p \}$ is obvious.

Moreover, let $x = (x_{mn}) \in \Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p$. Then there is a constant $M \in \mathbb{N}$ such that $|x_{mn}|^{1/p(n)} \leq M$ for all $m, n \in \mathbb{N}$. Thus for each $k, \ell \in \mathbb{N}$

$$|F(x)| \leq \frac{1}{\Gamma^{2\ell}_{M^2}} \sum_{k} \sum_{\ell} M(f_{0}^{|x_n|^{1/p(n)}}) \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p < \infty.$$

which shows that $FX \in \Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p$. Thus we conclude that $\Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p \subset \Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p$. □

Example. Consider the sequence

$$x = (x_{mn}) = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix} \begin{pmatrix}
-1 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}.$$

Then we have for every $k, \ell \in \mathbb{N}$,

$$F_p(x) = \frac{1}{\Gamma^{2\ell}_{M^2}} \sum_{k} \sum_{\ell} M(f_{0}^{|x_n|^{1/p(n)}}) \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p \neq 0.$$

This shows that $FX \in \Gamma^{2\ell}$ but x is not in $\Gamma^{2\ell}$. Thus the sequence x is in $\Gamma^{2\ell}_{M^2} \ni \|(d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0))\|_p$. Hence the inclusion
\[
\begin{bmatrix}
\|d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0)\|_p \\
\|d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0)\|_p
\end{bmatrix}
\]
is strictly holds.

Theorem 3.3. The sequence \(x = (x_{mn}) \notin [\Gamma^2_{M}, \|d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0)\|_p] \) but in \([A^{2}_{M}, \|d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0)\|_p] \).

Proof. Consider the sequence \(x = (x_{mn}) = \\
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{bmatrix}
\)
for all \(k, \ell \in \mathbb{N}\). Then we have for every \(k, \ell \in \mathbb{N}, F_{\mu}(x) = \\
\begin{bmatrix}
1 & 1 & 1 & 1 & \ldots \\
1 & 1 & 1 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{bmatrix}
\)
This shows that \(FX \notin [\Gamma^2_{M}, \|d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0)\|_p] \).

Again, consider the sequence \(x = (x_{mn}) = \\
\begin{bmatrix}
(-1)^{ym} & (-1)^{ym} & \ldots \\
(-1)^{ym} & (-1)^{ym} & \ldots \\
\vdots & \vdots & \vdots
\end{bmatrix}
\)
for all \(k, \ell \in \mathbb{N}\). Then we have for every \(k, \ell \in \mathbb{N}, F_{\mu}(x) = \\
\begin{bmatrix}
(-1)^{ym} & (-1)^{ym} & \ldots \\
(-1)^{ym} & (-1)^{ym} & \ldots \\
\vdots & \vdots & \vdots
\end{bmatrix}
\)
This shows that \(FX \in [A^{2}_{M}, \|d(x_1,0),d(x_2,0),\ldots,d(x_{n-1},0)\|_p] \).

References

