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Using predicate logic, the concept of a linear problem is formalized. The class of linear
problems is huge, diverse, complex, and important. Linear and randomized Linear algo-
rithms are formalized. For each linear problem, a linear algorithm is constructed that
salves the problem and a randomized linear algorithm is constructed that completely
solves it, that is, for any data of the problem, the output set of the randomized linear
algorithm is identical to the solution set of the problem. We obtain a single machine,
referred to as the Universal (Randomized) Linear Machine, which (completely) solves
every instance of every linear problem. Conversely, for each randomized linear algorithm,
a linear problem is constructed that the algorithm completely solves. These construc-
tions establish a one-to-one and onto correspondence from equivalence classes of linear
problems to equivalence classes of randomized linear algorithms.

Qur construction of (randomized) linear algorithms to (completely) solve linear prob-
lems as well as the algorithms themselves are based on Fourier Elimination and have
superexponential complexity. However, there is no evidence that the inefficiency of our
methods is unavoidable relative to the difficulty of the problem.

1. Introduction

Recent results on linear problems and solvability by linear and randomized linear al-
gorithms are synthesized. A full development and proofs can be found in Eaves and
Rothblum (1989, 1992, 1993, 1994).

A (predicate} problem is a formula in the predicate language of ordered fields whose
free variables have been partitioned into data and solution variables. Given an ordered
field and an assignment of the data variables to elements of the ordered field, the task is
then to find an assignment of solution variables to elements of the field so that the given
formula is satisfied. A linear problem is a problem whose formula is linear in the solution
and quantified variables. The class of the linear problems is huge, diverse, complex and
important. The class containg, for example, finding the rank of matrices, optimizing
linear programming problems, optimizing bounded variable integer programs, solving
linear complementary problems, and determining satisfiability in sentential logic.
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Using a binary rooted tree, with arithmetic operations and comparisons at its nodes,
a linear algorithm is formalized. A linear algorithm is defined to solve a problem if for
every problem data taken as input, the algorithm either emits an output which is a
solution for the problem instance, or does not emit an output, indicating the problem
has no solution. Given any linear problem, a linear algorithm is constructed which solves
the linear problem. Given any linear algorithm, a linear problem is constructed which
the algorithm solves. A single machine, referred to as the Universal Linear Machine, is
developed which solves each and every linear problem, that is, given the problem and
data, the Universal Linear Machine solves the problem instance.

Randomized linear algorithms are formed by extending linear algorithms to include
random selections from intervals. A randomized algorithm is defined to completely solve
a problem if for every problem data taken as input, the algorithm output set equals
the problem solution set. Given a linear problem, a randomized linear algorithm is con-
structed which completely solves the linear problem. Given any randomized linear algo-
rithm, a linear problem is constructed which the algorithm solves corapletely. A single
machine, referred to as the Universal Randomized Linear Machine, is developed which
will completely solve each and every linear problem, that is, given the problem and
data, the Universal Randomized Linear Machine will completely solve the problem in-
stance.

Using the above construction of equivalence classes of linear problems are shown to
be in one-to-one and onto correspondence with equivalence classes of randomized linear
algorithms. For this purpose two problems are equivalent if they share the same (data,
solution) pairs and two algorithms are equivalent if they share the same (input, output)
pairs. A problem and an algorithm correspond if the set of all {data, solution) pairs
of the problem coincide with the set of all (input, output) pairs of the algorithm, or
equivalently, if the algorithm completely solves the problem.

Our construction of (randomized) linear algorithms to (completely) solve linear prob-
lems as well as the algorithms themselves are based on Fourier Elimination and have
superexponential complexity; further, practical experience with Fourier Elimination sug-
gests that the applicability of these algorithms (even in purely existential problems) is
extremely limited. However, there is no evidence that the inefficiency of our methods is
unavoidable relative to the difficulty of the problem.

2. Numbers and formulae

The computation domain is taken as an ordered field and we refer w0 elements of or-
dered fields as numbers. Given an ordered field it is assumed that the five ordered fleld
operations can be executed, that is, the four arithmetic operations of addition, subirac-
tion, multiplication and division by a nonzero number and the comparison operation of
testing positivity. Further, it is assumed that numbers can be received, stored, moved, and
emitted. This model of computation is nearest ‘reality’ for the ordered field of rational
numbers.

A predicate formula over an ordered field, referred to as a formula, is a finite string of
symbols obtained by applying connectives like A (and), V (or), - (not), — (imply) and
+ (equivalent), and quantifiers ¥ (for all) and 3 (for some) to polynomial inequalities
and equations. For example (Vz{(z? —y > 0} A (32(2% + yz — 5 = 0))}) is a formula. The
set of formulae is formally defined recursively.

A formula has two types of variables, namely those which are captured in the scope
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of a quantifier and those which are not. The former are called quantified variables and
the latter are called free variables. For example, in the formula given above, the variables
z and z are quantified and the variable y is free. Given an ordered field, a formula
and an assignment of the free variables to numbers, the formula is either a correct (true)
mathematical statement or an tneerrect {false) one. A formula with assigned free variables
may be correct over one ordetred field but incorrect over another one.

A formula without quantifiers is called quantifier-free. A formula is defined to be linear
in a particular subset of its variables if no variables of the set are multiplied together in
any one of the polynomials of the problem. Testing for linearity requires the conversion
of each polynomial of the formula to a sum of products.

3. Linear problems

A predicate problem, referred to as a problem, is a formula with the free variables
partitioned into a pair of disjoint sets called date variables and the solution variables.
Given an ordered field, data for a problem is an sssignment of the data variables to
numbers. A problem with data is referred to as a problem instance. Given an ordered
field, a solution to a problem instance is an assignment of solution variables to numbers
which yields the formula correct. Such an assignment may be a solution of a problem
instance over one ordered field, but not over another. Two problems are defined to be
equivalent if they have identical (data, solution) pairs over every ordered field.

A problem with an empty set of solution variables is called a decision problem. Given
data, the problem instance is correct, that is, has a solution, if and only if the empty
assignment is a solution, and the problem instance is incorrect, that is, has no solution,
if and only if the empty assignment is not a solution.

A problem is called linear if its formula is linear in the collection of the quantified
and solution variables. A problem is called essentially linear if it is equivalent to a linear
problem. An example of a linear problem is linear programming, namely the task of
maximizing a linear objective subject to linear inequality constraints or deciding that no
such maximization is possible. Using matrix notation, linear programming is formulated
as a linear problem with the formula (Az < b) A (V2((4z < b) ~ (ex > ¢2))). Here
the components of (A,b,¢) are the data variables and the components of z are the
solution variables. This linear problem is equivalent to the linear problem with formula
(Az < B A(FAATA=cT)A (A= 0) A ez = ATH)).

A problem is called quantifier-free if its formula is quantifier-free. A solution of an
instance of a quentifier-free problem over one ordered field remains a solution of the
problem instance over all other ordered fields containing the data numbers. Every linear
problem is equivalent to a quantifier-free problem. Hence, the solution of an instance of a
linear problem over one ordered field remains a solution of the problem instance over all
other ordered fields containing the data numbers. Also, quantifying sclution variables of
the formula of an essentially linear problem yields an essentially linear problem, and the
conjunction of two essentially linear problems with common data and solution variables
forms a linear problem. The above facts offer an avenue for proving that a problem is not
essentially linear, that is, there is no equivalent linear problem. For example, the problem
with formula y = z;x,, sclution variables z1,z2 and data variable y is not essentially
linear; to see this observe that the problem with formula 3z, 3z2((y = z122) Az = 22))
and data y = 2 has a solution over the reals, but not over the rationals.
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4. Linear algorithms

Linear algorithms execute ordered field operations on input numbers and emit output
numbers.

A linear pre-algorithm is built on a finife rooted binary tree which is a finite directed
graph with at most two successors to each node, and with exactly one directed path
from the distinguished node, the root, to each other node. The root has no predecessor
and every other node has exactly one predecessor. There are four distinct types of nodes,
namely, the root, forks which have two successors, joints which have exactly one successor,
and leaves which have no successors. Associated with the root is a finite set of input
variables. Associated with each fork is a formula (z; > 0) which tests positivity of a
previously calculated number Zz;. There are four kinds of joints: addition, multiplication,
subtraction and division. Associated with each joint ¢ is, respectively, a formula (z; =
z; + zk), {zi = 2;2x), {2: = 2; — z) or (2; = z;/21), which calculates a new number Z;
by executing an arithmetic operation on previously calculated numbers z; and 2;. There
are two kinds of leaves: output and no-output. Associated with an output leaf is a finite
set of output variables, possibly empty, which are used to emit calculated numbers. A
description of a linear pre-algorithm is complete.

Inputs and outputs of a linear pre-algorithm are, respectively, assignments of input
and output variables to numbers. A linear pre-algorithm emits outputs from inputs in
the following way. At the root, an input is received. Control flows down a path of the tree
through joints, where arithmetic operations on previously calculated numbers are exe-
cuted, through forks where positivity of such values is tested and corresponding branching
occurs, and terminates at a division joint with a zero divisor or terminates at a leaf. If an
output leaf is reached, an output is emitted. If a no-output leaf is reached no output is
emitted. Assuming unit time for input, an arithmetic operation, a comparison operation,
and output, the worst case running time of a linear algorithm is the length of the longest
path in its tree from the root to a leaf.

A pre-algorithm is defined to be executable, if for every input the path terminates at
a leaf, that is, a division joint with a zero divisor is never encountered. Executability is
decidable. A linear algorithm is defined to be a linear pre-algorithm which is executable.

A linear algorithm is defined to solve a problem over an ordered field, if for any data
over the ordered field, using the data as input, either an output is emitted which is a
solution to the problem instance over the ordered field, or no output is emitted and the
problem instance has no solution over the ordered field. A linear algorithm is defined to
solve a problem if it solves the problem over any ordered field.

For a randomized linear algorithm one additional operation is introduced beyond that
of a linear algorithm, namely, the ability to select a random number from an interval in
the ordered field with computed bounds. To accommodate random selections, rondom
selection joints are introduced into the tree of a linear pre-algorithm. Associated with
each random selection joint 7 is a formula (z; ® z;), {2; ® 2;), (2; ® z; ® ;) or {z; = z;),
with each e standing for either < or <; the formula selects a new number Z; subject to
bounds determined by previously calculated numbers z; and 2, as needed. There is also
the requirement at each division joint that the divisor cannot have random heritage, and
at each multiplication joint that at most one of the two multiplicands rnay have random
heritage.

Randomized linear pre-algorithms, like linear pre-algorithms, emit outputs from inputs
by following paths that begin at the root. Specific paths depend on the data and on
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random selections. A path can terminate at a division joint with a zero divisor, at a
randomn selection joint with an empty interval, or at a leaf. If an output leaf is reached,
an output is emitted. If a no-output leaf is reached no output is emitted. Assuming
unit time for input, an arithmetic operation, a comparison operation, a random selection
operation, and output, the worst case running time of a randomized linear pre-algorithm
is the length of the longest path in its tree from the root to a leaf.

A randomized linear pre-algorithm is defined to be ezecutable if for every input the path
terminates at a leaf, that is, a division joint with a zero divisor or a random selection
joint with empty interval is never encountered. An executable randomized linear pre-
algorithm is defined to be consistent for an input, if all paths yielded by the input lead
to the same type of leaf, namely, either all lead to output leaves or all lead to no-output
leaves. An executable randomized linear pre-algorithm is defined to be consistent, if it
is consistent for all inputs. (Executability and consistency are decidable.} A randomized
linear algorithm is defined to be a randomized linear pre-algorithm which is executable
and consistent. A linear algorithm is a special case of a randomized linear algorithm.

A randomized linear algorithm is defined to completely solve a problem over an ordered
field, if for any data over the ordered field, using the data as input, the set of emitted
outputs over all randomizations is the solution set of the problem instance over the
ordered field. A randomized linear algorithm is defined to completely solve a problem if it
completely solves the problem over every ordered field. Two randomized linear algorithms

are defined to be equivalent, if they have the same {input, output) pairs over every ordered
field.

5. Linear problems to linear algorithms

Given a linear problem, a linear and a randomized linear algorithm are constructed
which, respectively, solve and completely solve the problem.

Fourier Elimination, sometimes called Dines—Fourier—Motzkin Elimination, is a method
based on ordered field operations for solving linear inequality systems. Given a linear
inequality system, Fourier Elimination forms a new linear inequality system with one
less variable, referred to as the eliminated variable. A solution to the original system
vields a solution to the new system by deleting the eliminated variable. A solution to the
new system augmented by choosing a value for the eliminated variable in 2 certain interval
vields a solution to the original system, and further, every solution to the original system,
if any, can be emitted in this manner. The end points of the interval, if any, are computed
using the solution for the new system and coefficients of the original system. By repeating
the elimination method until no variables remain, and then by repeatedly selecting values
in the appropriate intervals any solutions can be calculated for the original system. When
the last variable is eliminated, an empty interval indicates that the system has no selution.

Fourier Elimination can be extended to linear inequality systems where the coefficients
are also unknown; however, here several cases occur, but for each case there is a new linear
inequality system with one less variable and an interval just as before. Once the coeffi-
cients are known the case can be determined. This extended version of Fourier Elimination
can be applied to a linear problem to eliminate an innermost existential quantifier and
thereby generate an equivalent linear problem with one less quantified variable. Cases
created are incorporated in the new problem formula. By introducing double comple-
mentation an innermost universal quantifier can be converted to an existential quantifier
where again Fourier Elimination can be applied to eliminate the quantifier and generate
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an equivalent linear problem with one less quantifier. By repeatedly applying Fourier
Elimination to a linear problem, an equivalent quantifier-free linear problem is obtained.
The resulting problem can be written as a disjunction of conjunctions of inegualities
where each is linear in the solution variables. Again, applying Fourier Elimination to
each conjunction more cases are created and the stage is set to solve the system when
the data is supplied. Receiving the data, checking the cases, and computing endpoints
of intervals, and selecting values in intervals, and emitting the results can be organized
on a rooted tree. Given input, the control moves down the tree, first determining the
case, and then repeatedly computing endpoints and selecting solution variables in the
appropriate intervals, and finally emitting the output, that is, the solution to the problem
instance, if any. The cases avoid division by zero and selections from erapty intervals. If
values are selected in the intervals deterministically, a linear algorithm is obtained. If the
values are selected in the intervals randomly, there is never a division by a number with
random heritage, two numbers both with random heritage are never multiplied, and a
randomized linear algorithm is obtained. Given data for the linear problem the linear
algorithm will emit a solution, if any, whereas the randomized algorithm can emit every
solution, if any.

Procedures have now been described which for every linear problem constructs a lin-
ear algorithm for solving it and a randomized linear algorithm for completely solving it.
These procedures, referred to as compilers, can be automated on a Turing machine, inde-
pendent of the ordered field in question. On the other hand, the procedures are not linear
algorithms as looping is required; after all, problems with formulae of any length can be
processed by the procedures. The assembly of these procedures for creating a linear and
randomized linear algorithm with the execution of the algorithm on data are referred
to as the Universal Linear Machine and Universal Randomized Linear Machine, respec-
tively. The Universal Linear Machine receives any linear problem and data and emits
a solution, if any, to the problem, whereas the Universal Randomized Linear Machine
receives any linear problem and data and can emit every solution.

6. Linear problems from linear algorithms

Given a linear algorithm, a linear problem is constructed which the algorithm solves.
Given a randomized linear algorithm, a linear problem is constructed which the random-
ized linear algorithm completely solves.

For a linear algorithm with input, control passes on a path from the root to a leaf.
Moving down the path the numbers computed at joints are, inductively, rational functions
of input numbers. These paths are characterized by positivity tests at forks on such
rational functions, that is, after clearing denominators, by a conjunction of positivity tests
on polynomials in the input numbers. If the leaf of a path is an output leaf, the output
numbers are rational functions in the data numbers. In this case conjoin the conjunction
of positivity tests with the output variables equated to the rational functions in the
input variables. Clear denominators to make a formula for this leaf which is quantifier-
free and linear in the output variables. If the leaf of the path is a no-output leaf, make a
formula for the leaf by conjoining the conjunction of positivity tests with 1 = 0. A grand
formula is formed by taking the disjunction over the formulae made for each leaf. With
this formula form a problem by taking the data and sclution variables as the input and
output variables of the algorithm, respectively. This problem is linear as its formula is
quantifier-free and linear in the solution variables.
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Consider a data for the constructed linear problem. The data identifies the leaf which
is reached when the data is used as input for the randomized linear algorithm. If the leaf
reached is an output leaf, an output is emitted and the formula of the cutput leaf is correct
for the input and output. Hence, the output yields a solution to the problem instance.
If the leaf reached is a no-output leaf, the formula is incorrect for any assignment as it
containsg 1 = 0. The formulae made for other leaves are incorrect with the data because
the algorithm with the data as input did not reach those leaves. Hence the problem
instance has no solution. The linear algorithm solves the constructed linear problem.

For a randomized linear algorithm with input, just as for a linear algorithm, control
passes on a path from the root to a leaf. Moving down the path the numbers computed
at joints are, inductively, rational functions of input numbers and random selection num-
bers. As numbers with random heritage are never divisors and as two numbers with
random heritage are never multiplied, these rational functions are linear in the random
selection numbers. The paths are characterized by positivity tests at forks, and after
clearing denominators, the paths are characterized by a conjunction of positivity tests
on polynomials in the input numbers and random selection numbers. These polynomials
are linear in the random selection numbers. If the leaf reached is an output leaf, conjoin
the conjunction of positivity tests with the output variables equated to those rational
functions. Clearing denominators and introducing an existential quantifier on the selec-
tion variables, a formula is made for the leaf which is linear in its quantified and output
variables. If the leaf reached is a no-output leaf, make a formula for the leaf by conjoin-
ing the conjunction of positivity tests with 1 = 0. A grand formula is formed by taking
the disjunction over the conjunction constructed for each leaf. With this formula form
a problem is formed by taking the data and solution variables as the input and output
variables of the algorithm, respectively. This problem is linear as its formula is linear in
the quantified and solution variables.

Consider a data for the constructed linear problem and use the data as input for the
randomized linear algorithm. If an output leaf is reached the formula of that leaf is correct
for the input and output. Hence, the output vields a solution to the problem instance.
Conversely, a solution to the problem instance identifies a leaf whose formula is correct
with the data. This leaf is an output leaf as the formula of a no-output leaf contains
1 = 0 which is incorrect for any assignment. The formula of the identified leaf asserts
that with the input, there are assignments to the quantified variables under which the
path leads to this leaf with output equalling the solution. Hence, the solution is obtained
as an output from the randomized linear algorithm with the input. Thus, the solution
set of the problem with the given data coincides with the output set of the randomized
linear algorithm with the data as input. The randomized linear algorithm completely
solves the constructed linear problem.

7. Linear problems to and from linear algorithms

Equivalence of linear problems and equivalence of randomized linear algorithms have
been defined. These equivalences yield a partition of linear problems and a partition of
randomized linear algorithms into equivalence classes. An algorithm solves a problem if
and only if every algorithm in the equivalence class of the algorithm solves every problem
in the equivalence class of the problem.

Given a linear problem, a randomized linear algorithm that completely solves it has
been constructed, and conversely, given a randomized linear algorithm, a linear problem
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that is completely solved by it has been constructed. These constructions extend to
correspondences between equivalence classes of linear problems and equivalence classes
of randomized linear algorithms. As such, they are one-to-one, onto and inverses of each
other.

8. Solving parametric linear problems

Given a linear problem and a linear algorithm which solves it, consider the task of
solving the linear problem for parametric data, namely, of finding a parametric solution
for the linear problem with parametric data over a range of values of the parameter. If the
input is a rational function of a single parameter, a parametric solution for the problem
with parametric data can be computed for all small positive values of the parameter
using the linear algorithm. To do so replace the parameter by a positive infinitesimal and
view the parametric data as a single data in the ordered field obtained by augmenting
the coriginal fleld with the positive infinitesimal. The linear algorithm applied in the
larger ordered field solves the new problem instance. Replacing the infinitesimal by the
original parameter in the solution yields a parametric solution to the original problem
with parametric data for all small positive values of the parameter. This procedure is
referred to as ‘lift, solve, and lower’.
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