
 Procedia Computer Science 52 (2015) 29 – 34

Available online at www.sciencedirect.com

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2015.05.011

ScienceDirect

The 6th International Conference on Ambient Systems, Networks and Technologies
(ANT 2015)

Computations on the Edge in the Internet of Things

Andreas Moregård Haubenwallera, Konstantinos Vandikasb

aUppsala University, Uppsala, Sweden
bManagement and Operations of Complex Systems, Ericsson Research, Stockholm, Sweden

Abstract

In the Internet of Things (IoT), many applications focus on gathering data which can then be processed and visualized. However,

such computations are usually spread generically based on parameters such as CPU and/or network load. This may mean that a

significant amount of data needs to be transported over the network (either directly, or transparently using a network file system) in

order for the data to be available to the node that is responsible for processing them. This paper proposes a method for deploying

computations that can take factors such as data proximity into consideration. Thus, processing can be moved from central high-

powered processing nodes to smaller devices on the edge of the network. By doing this, costs for gathering, processing and

actuation can be minimized. In order to capture data dependencies among computations, but also to deploy and handle individual

processing tasks in an easy way, the actor-model programming paradigm is used. To minimize the overall cost and to handle

extra factors that weigh in on the distribution of tasks, a constraint programming approach is used. The combination of these two

techniques results in an efficient distribution of tasks to processing resources in IoT. Taking into consideration the NP-hard nature

of this problem, we present empirical results that illustrate how this technique performs in relation to the amount of devices/actors.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: iot; constraint-programming; actor model; edge computing

1. Introduction

By the year 2020, major technology companies expect that the number of connected devices will number in the

range of 25-50 billion. Cisco and Ericsson believe that the number 50 billion devices will have been reached by

20201,2. The Gartner Group on the other hand expects that number to be around 26 billion3. Despite the large disparity

in numbers, they all see a huge increase in the number of connected devices. As more and more devices are being

connected, new uses and markets are springing up. Some examples would be smart homes and home automation,

environmental monitoring, and smart cities. All of these devices connected together coin the term ”Internet of Things”.

Internet of things, or IoT, is currently getting a lot attention, for example it is on the peak of Gartner’s Hype Cycle

∗ Contact author. Tel.: +46 725398073

E-mail address: konstantinos.vandikas@ericsson.com

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82224829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.011&domain=pdf

30 Andreas Moregård Haubenwaller and Konstantinos Vandikas / Procedia Computer Science 52 (2015) 29 – 34

for 20144. Along with this hype and attention, several platforms specifically aimed for gathering and visualizing IoT

data were introduced, for example, SicsthSense5, Xively6, SensorCloud7 and the IoT-Framework8.

The main focus of these platforms is to gather data from a wide variety of devices found in IoT so that it can

be analyzed, visualized and possibly acted upon. These devices can be anything from small wireless nodes to large

servers. However, IoT devices as such are commonly seen as smaller and less capable than generic home computers

or servers, some common examples would be; Raspberry Pi9, Arduinos10 and Intel Edison11 boards. The normal

approach is to gather data from all of the different devices by either a push(the devices initiate the sending of data) or

a pull(the platform will ask the devices for data) approach. After data has been gathered it can be stored and analyzed

by the platform.

This paper proposes an approach where the data will be processed by computationally capable IoT devices rather

than being sent to a central location for processing. The processing tasks to be carried out, will be split up and deployed

on these devices based on a certain cost. The goal is then to minimize this cost in order to find an efficient deployment

of tasks on to devices. Depending on what cost metric is used, different costs can be minimized, for example one

might want to reduce the overall amount of data, flowing through the network or one might strive to reduce response

times. This will be accomplished by using a constraint programming model to minimize the overall cost while also

being able to be extended with other constraints that may impact the search space of possible deployment alternatives.

2. Design

The idea behind this paper is to find a way to efficiently use the processing resources available in many devices

connected to the Internet. Platforms in which you can register devices or data streams and then gather and visualize

the data, already exist. The question is how to evolve such platforms in order to gain access to the processing capa-

bilities of previously under-utilised computationally capable devices. Some of the aforementioned platforms might

already support features such as triggers on data and actuation, however, processing is done centrally. By moving

the processing to devices that are closer to the source of the data, the response times for actuation can be reduced. If

the platform is using a pull type approach when it comes to gathering data, then some of that functionality could be

moved to nearby devices so that data can be packed together and compressed before being sent which would reduce

overall network traffic. If the platform is using a push type approach, then the destination of the data can be changed

from the platform to a nearby device so that data can be packed and compressed.

2.1. Tasks and Task Graphs

Data flow can be seen as a task graph, where data originates from different devices; data can then be aggregated

and possibly reduced in size via generalisation. Subsequently, data is sent along for further processing, storage and

also possibly acted upon. When the data is acted upon, it would most likely cause actuation in a nearby device. If

the central repository is far away, then the data has to travel a very long way; First it travels from the device with

the sensor all the way to the repository where it is processed, and then it is returned the same way for the actuation.

In order to get rid of this behavior, the data flow or task graph needs to be split up. Splitting the task graph up or

rearranging is quite easy. However, splitting up complex software programs can be a daunting task. Chances are that

these tasks are not represented as individual tasks at all in a large code base such as an IoT platform which would

require quite a lot of code to be rewritten. Thus, if the program was already split up into smaller pieces then it would

be a lot easier to ”break out” individual tasks and place them on different locations(devices). With this in mind, the

actor based programming model12 seems like a very good fit for this proposed IoT solution.

2.2. Cost-Based Distribution

In order to distribute the actors to devices in the Internet of Things one needs to figure out on which device each

actor should be deployed. This will be solved by assigning a certain cost to all connections between actors as well as

a cost between all devices. When an actor is deployed on a certain device, then the actor cost will be multiplied by

the device cost. By deploying all actors on to devices, we can get a total cost of the actor graph. This cost can then be

minimized by choosing different devices on which the actors are deployed on. The deployment should also be able to

31 Andreas Moregård Haubenwaller and Konstantinos Vandikas / Procedia Computer Science 52 (2015) 29 – 34

take others factors into consideration, such as the capabilities or the current load of the devices. The optimal solution

would then be the solution with the minimal cost that does not break any other requirements.

In order to do the minimization of cost, a deployment algorithm is specified. The algorithm will try to find the

optimal solution by minimizing the total cost of the distribution. The problem is to assign n actors on m devices.

Several actors can be placed on the same device. The placement depends on the overall cost of the actor system. Each

actor has a flow to all other actors and each device has the cost to communicate with all other devices. These costs can

be seen as two matrices, the actormatrix F = n ∗ n and the devicematrix D = m ∗ m. This problem closely resembles

the well known Quadratic Assignment Problem(QAP) which is known to be NP-hard. Equation (1) shows the total

cost of the deployment.
∑

i∈n

∑

j∈m
F(i, j) ∗ D(i, j) (1)

∑

a(i, j)∈A
F(i, j) ∗ D(i, j) (2)

Most actors will only have one or two connections to other actors so the F matrix will most likely be quite sparse.

Therefore we model the cost by the sum of all of the connections or arcs between nodes. An arc a(i, j) exists iff

F(i, j) � 0. Let A denote the set of all arcs. The cost can now be expressed as Equation (2). In order to find the

optimal solution, the cost seen in Equation (2) will have to be minimized. This can be done by deploying actors on

different devices until the solution with the minimal cost is found.

3. Implementation

We implemented a very basic framework for handling the deployment of actors in Scala13 and Akka14. The

algorithm for finding the optimal deployment was also implemented in Scala with the use of the Scala toolkit OscaR15.

Scala and the actor toolkit Akka was chosen as the language for a number of reasons. Mainly it is because it can run on

the Java Virtual Machine (JVM); this provides the underlying infrastructure with a sort of delimiter on which devices

that can actually be seen as processing resources. Any device that can run a JVM should be able to run actors.

The framework is written in such a way to receive a request for deployment from a user. It is assumed that the user

has a set of actors of which are to be deployed. It is also assumed that the framework has access to a set of devices that

are already registered and present in the system. The framework consists of three parts, the Deployer, the Scheduler

and the Landmark. Each of these parts is an actor. The deployer is the actor that handles the deployment request from

the user. The deployment request contains information about the actors - actorinfo. The landmark has information

about the devices - deviceinfo. The landmark is a placeholder for where the underlying platform that has access to the

registered devices would be.

3.1. Deployment Algorithm

The algorithm was implemented using constraint programming with the aid of the Scala toolkit OscaR15. Con-

straint programming was used as an approach because of the ease of adding and changing constraints that are not

directly connected to the total cost of the distribution. The optimal deployment will be the deployment which has the

lowest cost. However, by adding other constraints, such as static actors, the solution could be different. This has the

added bonus of making the algorithm very flexible so that it is easy to add, remove and change constraints between

deployment scenarios.

The goal of the algorithm is to assign n actors on m devices so that the overall cost is minimized. The cost between

actors i and j is F(i, j) and the cost between devices a and b is D(a, b). Initially, no constraints are specified. This

means that we have to check the whole search space in order to find the optimal solution. An array x of size n contains

the decision variables. The decision variables can be seen as the tasks and they each contain a set of possible devices

on which they can be deployed. The total cost of the sum, as can be seen in Equation (3), will be minimized using the

branch and bound minimization which is found in OscaR16.∑

a(i, j)∈A
F(i, j) ∗ D(x(i), x(j)) (3)

32 Andreas Moregård Haubenwaller and Konstantinos Vandikas / Procedia Computer Science 52 (2015) 29 – 34

Fig. 1. The actorsystem

Fig. 2. The actors and their arcs in the best

case

t

Fig. 3. The actors and their arcs in a worst

case scenario

Possible constraints might be that some tasks can only exist on certain devices and also that some devices can only

handle a certain number of tasks. For example: x(y) = z, y ∈ n, z ∈ m would mean that task y must be placed on device

z. Another example would be where each device can only hold one task, then we can put x under the alldifferent

constraint.

3.2. Example of Deployment

In this example we have an actor system containing four actors and we have six devices. The actorsystem with the

corresponding flows between actors can be seen in Figure 1 and the devices can be seen in Figure 4.

Actors one and two are producing data from sensors and they have to be placed on specific devices, namely devices

one and two. Actor three will compress the data and send it to actor four that will store it. Actor four needs to

be placed on a device that has access to the datastore, in this case that is device six or seven. The total cost of the

deployment depends on the three arcs: (1,3), (2,3), (3,4). We know that actor one and two are placed on devices one

and two, we also know that actor four must be placed on six or seven. That means that the domains of the actors are:

Actor1 = {1}, Actor2 = {2}, Actor3 = {1,2,3,4,5,6,7} and Actor4 = {6,7}. We can now start the search by taking the

first value in the domains and calculating the cost. In order to find the minimized cost, we need to check all solutions.

The cost can now be expressed as seen in Equation (4).

F(1, 3) ∗ D(x(1), x(3)) + F(2, 3) ∗ D(x(2), x(3)) + F(3, 4) ∗ D(x(3), x(4)) (4)

We know that x(1) = 1 and x(2) = 2. We also know the flow between actors, F(1,3) = 5, F(2,3) = 5 and F(3,4) = 1.

The cost can now be simplified, see Equation (5).

5 ∗ D(1, x(3)) + 5 ∗ D(2, x(3)) + D(x(3), x(4)) (5)

The latency matrix D can be seen in Table 1. The possible solutions and the cost for each solution can be seen in

Table 2.

From the results, we can see that we have two solutions with the lowest cost, which means that we have two optimal

solutions. These solutions would be: Actor1={1}, Actor2={2}, Actor3={1}, Actor4={6} (See Figure 5) OR Actor1=1},
Actor2={2}, Actor3={2} and Actor4={7} (See Figure 6)

4. Scalability Test

It is interesting to see how many actors and how many devices the algorithm can actually handle due to the NP-

hard nature of the problem. This test tries different numbers of actors and devices and measures the time it takes for

algorithm to find the optimal solution. The timeout for this test is set at one(1) hour. The common criteria for the

tests are that the first and the last actors are static and, that the costs of the arcs between actors and the costs of the

links between devices are random between 1-100. The number of arcs between actors and how they are connected is

what distinguishes the best case from the worst case. In the best case, each actor has an arc to the next one, except

for the last actor(see Figure 2). In the worst case, each actor has an arc to the next actor and the last actor has an arc

33 Andreas Moregård Haubenwaller and Konstantinos Vandikas / Procedia Computer Science 52 (2015) 29 – 34

Table 1. The latency matrix D

Device 1 2 3 4 5 6 7

1 0 20 20 20 40 50 70

2 20 0 40 20 20 70 50

3 20 40 0 20 50 30 50

4 20 20 20 0 20 30 30

5 40 20 40 20 0 50 30

6 50 70 30 30 50 0 20

7 0 0 50 30 30 20 0

Table 2. Possible solutions for the deployment

Actor1 Actor2 Actor3 Actor4 TotalCost

1 2 1 6 150

1 2 2 6 170

1 2 3 6 330

1 2 4 6 230

1 2 5 6 350

1 2 6 6 600

1 2 7 6 620

1 2 1 7 170

1 2 2 7 150

1 2 3 7 350

1 2 4 7 230

1 2 5 7 330

1 2 6 7 620

1 2 7 7 600

Fig. 4. Available devices capable of pro-

cessing
Fig. 5. Deployment 1 Fig. 6. Deployment 2

to the first one; This means that there is a circular flow. In addition to this, there are arcs from random actors to other

random actors(see Figure 3). In total, the number of arcs in the worst case is the number of actors times two, whereas

in the best case the number of arcs is the number of actors minus one.

The tests were performed on an Intel Core i5-3570K @ 3.40GHz with 8 GB of RAM running Windows 8.1. The

results indicate that for smaller numbers of actors, the optimal deployment can be found very fast. However, as the

number of actors grows, the time it takes to find an optimal solution increases dramatically. The fact that the algorithm

might take 10 minutes to find a deployment is still a reasonable amount of time, in particular in non mission critical

scenarios, since the actors might be deployed for days, weeks or even years. However, when the algorithm times out,

the time it would take to find a deployment is just too long. In such cases, one might want to change the algorithm and

try some other heuristics so that an approximate solution is found instead. This would mean that the deployment is not

guaranteed to be optimal, but it should still provide a reasonably good deployment. Detailed times for best case/worst

case scenario are shown in Tables 3 and 4 where the rows indicate the different amount of devices and the columns

the different amount of actors used for each test.

5. Conclusions and Future Work

In this paper, a new approach for handling data and using processing resources in the Internet of Things is proposed.

Most of the IoT platforms today only perceive the devices in the Internet of Things as producers of data; this is

something that needs to change if the number of connected devices will follow the trend that is seen by companies

such as Ericsson and Cisco. Not only that, but the processing capabilities of these devices are generally overlooked.

By using actors and a cost-based approach, the processing capabilities of these devices can be utilized and this could

lead to less traffic being sent over the network, especially over expensive links, and also a significant reduction in

34 Andreas Moregård Haubenwaller and Konstantinos Vandikas / Procedia Computer Science 52 (2015) 29 – 34

Table 3. Best Case:

5 10 15 20 25

5 13 ms 4 ms 3 ms 13 ms 1.067 s

10 12 ms 14 ms 20 ms 12 ms 6.265 s

15 14 ms 32 ms 86 ms 138 ms 2.244 s

20 20 ms 30 ms 104 ms 168 ms 4.709 s

30 10 ms 67 ms 135 ms 683 ms 88.040 s

50 21 ms 1.062 s 4.748 s 14.734 s ≈10 mins

100 38 ms 104 ms 3.913 s >1 h ≈11 mins

Table 4. Worst Case:

5 10 15 20 25

5 42 ms 8 ms 29 ms 89 ms 11.244 s

10 32 ms 239 ms 61 ms 296 ms ≈7 mins

15 7 ms 119 ms 2.544 s ≈2 mins >1 h

20 4 ms 532 ms 2.940 s 82.897 s >1 h

30 15 ms 1.151 s 1.708 s >1 h >1 h

50 90 ms 2.787 s 22.480 s 39.842 s >1 h

100 81 ms ≈9 mins >1 h >1 h >1 h

response times for certain deployments. Using a cost-based deployment method to factor in data proximity and cost

of links can potentially save a lot of money in network costs and at the same time reduce response times.

One of the limitations described in the aforementioned approach is that the deployment that has been generated

cannot be changed once it is deployed. Consequently, it is interesting to investigate more flexible deployment tech-

niques which allow for transferring on the fly one actor from one device to another, taking into consideration the

current state of the actor and available CPU and memory resources on each device. This on-the-fly deployment would

also be very useful in the case of a faulty device. If a device goes down, then it could possibly interrupt the flow of

data. In such a case, the deployed actor system could heal itself by redeploying or moving the actor to a functional

nearby device.

Moreover, it is interesting to investigate possible optimizations in the constraint-programming algorithm such as

randomization and heuristic approaches in order to minimize the search space of the algorithm and find near-optimal

solutions in smaller amount of time.

Acknowledgements

This work is supported by the EU FP7 CityPulse Project under grant No.603095.

References

1. Ericsson, . More than 50 billion connected devices - taking connected devices to mass market and profitability. White Paper; Ericsson; 2011.

2. Evans, D.. The Internet of Things How the Next Evolution of the Internet Is Changing Everything. White Paper; Cisco Internet Business

Solutions Group (IBSG); 2011.

3. The Gartner Group, . Gartner says a thirty-fold increase in internet-connected physical devices by 2020 will significantly alter how the supply

chain operates. Press Release; 2014. Available from http://www.gartner.com/newsroom/id/2688717.

4. The Gartner Group, . Gartner’s 2014 hype cycle for emerging technologies maps the journey to digital business. Press Release; 2014.

Available from http://www.gartner.com/newsroom/id/2819918.

5. SICS, . Sicsthsense. 2014. Available from http://sense.sics.se/.

6. LogMeIn, . Xively. 2014. Available from https://xively.com/.

7. SensorCloud, . Sensorcloud. 2014. Available from http://sensorcloud.com/.

8. Vandikas, K.. IoT-Framework. 2014. Available from http://http://www.ericsson.com/research-blog/internet-of-things/

computational-engine-internet-things/.

9. Raspberry Pi Foundation, . Raspberry Pi. 2014. Available from http://www.raspberrypi.org/.

10. Arduino, . Arduino. 2014. Available from http://www.arduino.cc/.

11. Intel, . Intel Edison. 2014. Available from http://www.intel.com/content/www/us/en/do-it-yourself/edison.html.

12. Hewitt, C., Bishop, P., Steiger, R.. A universal modular actor formalism for artificial intelligence. In: Proceedings of the 3rd international
joint conference on Artificial intelligence. Morgan Kaufmann Publishers Inc.; 1973, p. 235–245.

13. Odersky, M.. Scala - Scalable Language. 2014. Available from http://www.scala-lang.org/.

14. Typesafe Inc., . Akka. 2014. Available from http://akka.io.

15. OscaR Team, . OscaR: Scala in OR. 2012. Available from https://bitbucket.org/oscarlib/oscar.

16. Pierre Schaus, . CP for the impatient. 2013. Available from http://info.ucl.ac.be/~pschaus/cp4impatient/firststeps.html.

