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a b s t r a c t

An acyclic USO on a hypercube is formed by directing its edges in such a way that the
digraph is acyclic and each face of the hypercube has a unique sink and a unique source. A
path to the global sink of an acyclic USO can be modelled as pivoting in a unit hypercube
of the same dimension with an abstract objective function, and vice versa. In such a
way, Zadeh’s ‘least entered rule’ and other history based pivot rules can be applied to
the problem of finding the global sink of an acyclic USO. In this paper we present some
theoretical and empirical results on the existence of acyclic USOs for which the various
history based pivot rules can be made to follow a Hamiltonian path. In particular, we
develop an algorithm that can enumerate all such paths up to dimension 6 using efficient
pruning techniques. We show that Zadeh’s original rule admits Hamiltonian paths up to
dimension 9 at least, and prove thatmost of the other rules do not for all dimensions greater
than 5.

© 2012 Published by Elsevier B.V.

1. Introduction

It is now over 30 years since Khachian showed that linear programming problems can be solved in polynomial time [12].
His ellipsoid algorithm and subsequent interior point methods are not, however, strongly polynomial time algorithms and
no such algorithms are known. Pivoting algorithms, such as Dantzig’s simplex method [5] still offer the possibility of being
strongly polynomial. One reason for this is that pivoting algorithms follow a path on the graph defined by the skeleton of
a polyhedron, and it is widely believed that the diameter of this graph is polynomially bounded in the dimensions of the
linear program.

In fact, Hirsch conjectured that the diameter of any d-dimensional polytope with n facets, where n > d ≥ 2, is less than
or equal to n−d. Very recently Santos has found that this conjecture is false, by exhibiting a polytopewith dimension d = 43
and n = 86 facets with diameter equal to n − d + 1 [17]. Nevertheless, the belief that the diameter is polynomial is still
strong. The subexponential bounds of Kalai [11] and Matoušek et al. [15] also give further grounds for hope. These papers
use randomized pivot selection rules, and no deterministic rules that achieve these subexponential bounds are known.
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(a) Dimension 1 or 2. (b) Dimension 3. (c) Dimension 4.

Fig. 1. Klee–Minty cube.

Fig. 2. (a) is a non-USO, (b) and (d) are AUSO cubes, (c) is a USO cube which has a cycle.

The simplex method is a family of algorithms, with each member of the family being determined by a pivot selection
rule. In practice, Dantzig’s original rule works extremely well. However, Klee and Minty [13] constructed a case where the
simplexmethod using this rule follows an exponential length path on a family of suitably stretched hypercubes, since called
Klee–Minty cubes. In fact it visits every vertex, that is, Hamiltonian path, of the hypercube (see Fig. 1). Subsequent research
demonstrated that many other pivot rules take exponential time on variants of the Klee–Minty examples. Such pivot rules
include the maximum improvement rule [10] and Bland’s rule [2].

There are still some pivot rules for which the behaviour of the simplex method is unknown. A particularly interesting set
of these rules are the history based pivot rules, of which the best known is the least entered rule proposed by Zadeh in a 1980
Stanford University Technical Report, that was recently reprinted [20]. Very recently, 30 years after it originally appeared,
Friedmann showed that this rule requires at least sub-exponential time in the worst case such as 2Ω(

√
d) [7]. A non-trivial

upper bound on Zadeh’s rule is still unknown.
Tomotivate the least entered rule, Zadeh pointed out a characteristic of Klee–Minty examples: some variables pivot very

few times and other variables pivot an exponential number of times. Zadeh’s pivot rule avoids this behaviour by making
each variable pivot, roughly, the same number of times. In this way, it behaves similarly to the random pivot selection rules
mentioned above. In Section 3 we show that if Zadeh’s rule follows a Hamiltonian path on a hypercube, then indeed, each
variable must pivot an exponential number of times in the dimension d of the cube.

Zadeh’s rule differs from the former pivot rules in that it uses information from the entire pivot history up to that point.
Such pivot rules are called history based pivot rules. Besides Zadeh’s rule, these include the least-recently basic rule [4], the
least-recently considered rule [4], the least-recently entered rule [6], and the least iterations in the basis rule [3]. We remark
that for each of these pivot rules, there exists no known exponential lower bound.

In this paper, we study the behaviour of history based pivot rules on an abstraction of linear programming known as
acyclic unique sink orientations (AUSOs) of hypercubes, thatwere introduced by Szabó andWelzl [19]. These are orientations
of the hypercube so that the resulting directed graph is acyclic, and each face of each dimension has a unique sink and a
unique source, see Fig. 2. The goal is to find the unique sink of the hypercube.

As noted in [19], various optimization problems can be solved using thismodel. The direction on an edge of the hypercube
corresponds to an increase in the value of an abstract objective function defined on the vertices of the hypercube. The concept
of abstract objective functions was first introduced by Adler and Saigal [1]. The related concept of completely unimodal
numberingswas introduced byWilliamsonHoke [8]. AlthoughAUSOs need not correspond to actual polytopes and objective
functions, the notions of linear programming, such as bases and pivots, are readily available. Thereforewe obtain an abstract
model on which to observe the behaviour of various history based pivot rules.

AUSOs on d-dimensional hypercubes have a structure that makes for convenient notation and terminology. Each vertex
is labelled 0, . . . , (2d

−1) such that the binary representation of adjacent vertices’ labels differ by exactly one bit. Each edge
has a direction and an orientation. The direction is given by a number 1, . . . , d indicating which bit is different between the
two endpoints (counted right-to-left). The orientation is given by a positive sign (+) if the differing bit is 0 at the edge’s tail
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Fig. 3. Signed and unsigned direction on a 3-dimensional cube.

and 1 at its head, and it is given by a negative sign (−) otherwise. We will use the terms direction to denote which bit is to
be changed and signed directionwhich also specifies the orientation. For emphasis, to specify the direction without sign we
use the term unsigned direction (see Fig. 3). For some pivot rules only the unsigned direction is important whereas for others
both the orientation and direction are important.

Although AUSOs do not necessarily correspond to LP digraphs, the above vertex labelling can be used to model moving
along a path on an AUSO as pivoting in the dictionary xd+i = 1− xi for i = 1, . . . , d. A pivot+i corresponds to a pivot where
xi enters the basis and xd+i leaves, and a pivot−i corresponds to a pivot where xd+i enters the basis and xi leaves. This allows
the AUSO to inherit various pivoting strategies that are defined in terms of LPs.

The Klee–Minty examples mentioned above can be modelled as AUSOs. In fact, they show that Dantzig’s original pivot
rule for the simplexmethod leads to a Hamiltonian path on an associated AUSO for each dimension d. As mentioned, similar
results have been found for other pivot rules. In this paper, we investigate whether history based pivot rules can lead to
Hamiltonian paths on AUSOs.

Our focus on Hamiltonian paths has the following motivations. First, if such paths exist for a given pivot rule they are
obviously the worst case examples. Secondly, the number of AUSOs is extremely large. Stickney showed there are 19 in 3
dimensions [18], Moriyama’s program showed there are 12640 in 4 dimensions [16], and Matoušek [14] has shown that
there are at least 22d AUSOs in d-dimensions. So just listing their degree sequences when d = 6 requires at least 270 steps.
Except for extremely low dimensions, it is therefore not possible to construct all acyclic USOs. However searching for all
acyclic USOs which contain a Hamiltonian path greatly reduces the search space. This is due to a remarkable indegree
characterization due toWilliamson-Hoke discussed in Section 3.We are able to exploit this property ‘on the fly’ to eliminate
early prefixes of Hamiltonian paths that cannot be completed to an acyclic USO. This is because the final indegree of each
vertex is known as soon as it enters the path. The enumeration enabled us to see that in fact most rules do not follow
Hamiltonian paths, a fact we were then able to prove. Of course proving that a pivot rule cannot follow a Hamiltonian path
does not say anything about the existence or not of other exponential length paths. However searching for these is likely to
be significantly more difficult.

The paper is structured as follows. In the next section we define various history based pivot rules that have appeared
in the literature: Zadeh’s original rule, least-used direction rule, least-recently considered rule, least-recently basic rule,
least-recently entered rule, and least iterations in the basis rule. We also give an example that shows they are all different.
In Section 3 we develop an algorithm that generates all Hamiltonian paths, if any, followed by these history based pivot
rules. We also provide computational results that show that most of these rules do not in fact produce Hamiltonian paths
for dimensions up to 7, except in very low dimensions. In Section 4 we prove this fact holds for all higher dimensions for
four of the history based rules we have presented.

2. History based pivot rules

In this section we review a number of history based pivot rules that have appeared in the literature starting with Zadeh’s
original rule. We also present an example to show that the rules all behave differently. The difference of these rules can
be seen from the difference of the history array h. This array is indexed by the 2d directions (or sometimes, all d unsigned
directions), and represents current historical information required for the given rule.

Zadeh noticed that the Klee–Minty construction (see Fig. 1) greatly favours some directions over others, and designed a
new pivot rule to defeat this.

Zadeh’s rule (a.k.a. the least entered rule) [20]: For the entering variable, select the improving variable that has entered
the basis least often thus far. (Fig. 4) The history array h is defined on all 2d directions, and h(t) is the number of times
the direction t is used.
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Fig. 4. Zadeh’s rule.

In Zadeh’s rule, as in others that we will study, there may be ties in selecting the entering variable. We will assume that
tiesmay be broken arbitrarily in this paper. Note that Zadeh’s rule chooses between all 2d variables (d decision variables and
d slack variables) whereas the next history-based rule chooses between the d pairs of decision and slack variables, (xi, xd+i),
each of which defines a direction. Directions are not a very useful concept in arbitrary polytopes, as no two edges may be
parallel, but they are a natural feature of hypercubes and are inherited by zonotopes, which are projections of hypercubes.
They directly inherit the d directions of the hypercube, some of which may no longer appear.

Least-used direction rule (LUD) [3]: For the entering variable, select the improving variable whose unsigned direction
has been used least often thus far. (Fig. 5) The history array h is defined on all d unsigned directions, and h(t) is the
number of times the direction t is used.

We now give some other history-based rules that have appeared in the literature. We show the paths generated by these
rules on the previous example in the Appendix.

• Least-recently considered rule [4]: Fix an ordering of the variables v1, v2, . . . , v2d and let the previous entering
variable be vi. For the entering variable, select the improving variable that first appears in the sequence vi+1, vi+2,
. . . , v2d, v1, . . . , vi−1 (or v1, . . . , v2d if this is the first pivot). The history array h is defined on all 2d directions and is
initialized by setting h(t) to be the rank of t in the given fixed ordering. If direction s is chosen the array is updated
as h(t) ← (h(t) − h(s) − 1 mod 2d) + 1. The Appendix shows the example of the case when initial sequence is
{+2,−4,+1,−3,−2,+3,−1,+4} (Fig. 11).
• Least-recently basic rule [Johnson in [4]]: For the entering variable, select the improving variable that left the basis least-

recently. The history array h is defined on all 2d directions: h(t) is the step number the |t|-th bit of the vertex was last 1
if t is positive or was last 0 if t is negative (Fig. 12).
• Least-recently entered rule (a.k.a. least-recently used) [6]: For the entering variable, select the improving variable that

entered the basis least-recently thus far. The history array h is defined on all 2d directions: h(t) is the step number when
the |t|-th bit of the vertex last changes from 0 to 1 if t is positive or from 1 to 0 if t is negative (Fig. 13).
• Least iterations in the basis rule [3]: For the entering variable, select the improving variable that has been in the basis for

the least number of iterations (Fig. 14). The history array h is defined on all 2d directions, and is the number of times the
|t|-th bit of the vertex is 1 if t is positive or 0 if t is negative.

Note that all the examples illustrate distinct paths on the same AUSO cube.
In the following section wewill describe an algorithm to determine if there are any AUSOs that admit Hamiltonian paths

for the history based methods described in this section.
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Fig. 5. Least used direction rule.

3. Searching for Hamiltonian paths on AUSOs that follow history based pivot rules

We developed an algorithm for determining if the various history based rules can be made to follow a Hamiltonian path
on an AUSO. As noted in the introduction, it is known that the number of AUSOs is a doubly exponential, so a direct search
quickly becomes infeasible. We use the fact that we are looking for AUSOs with Hamiltonian paths, which greatly reduces
the search space.

3.1. Preliminaries

Our basic approach is to generate Hamiltonian paths starting with an unoriented hypercube, rather than first orienting
the cube and checking if it is Hamiltonian. Suppose that a cube has a Hamiltonian path labelled with vertices v1, . . . , vN .
Then acyclicity implies immediately that each edge of the hypercube vivj with i < jmust be directed from vi to vj. Therefore,
given a Hamiltonian path on the cube, we can easily construct the unique acyclic orientations for all edges of the cube. It still
remains to test whether this orientation is an AUSO. Fortunately there is an efficient way to do this based on Williamson
Hoke’s theorem [8]:

Theorem 3.1. If an orientation on a d-dimensional cube is acyclic, the following conditions are equivalent.

• The orientation is a unique sink orientation.

• For k = 0, . . . , d there are exactly


d
k


vertices with indegree k


and hence


d
k


vertices with outdegree k


.

This makes it very easy to check if a given Hamiltonian path appears in an AUSO cube: we need only test the degree
sequence. Furthermore, we can even use this test as the Hamiltonian path is being constructed. Note that when a vertex is
added to the path its indegree and out-degree are known. Also partial degree information is known for unexplored vertices.
Therefore if Williamson Hoke’s condition is violated, we need not complete the construction of the given path. This leads to
an efficient pruning technique. We also have the following interesting corollary.

Corollary 3.1. In a Hamiltonian path on an AUSO d-cube starting from vertex 0, the indegree of a vertex is 1 if and only it is
reached by a positive direction (or, unsigned direction) that is being used for the first time.
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Fig. 6. The two (d− 1)-dimensional cubes C1 and C2 separated by the direction t .

Proof. Suppose (v, v′) is an edge on the Hamiltonian path that uses the direction +t for the first time. Then all previous
vertices in the path must have zero on the t-th bit. However all neighbours of v′ on the hypercube except v have one on
this bit, so they cannot have been visited yet. Therefore the indegree of v′ is one. Since there are d directions, this yields d
vertices on the path with indegree one. By Williamson Hoke’s theorem this is the entire set of such vertices. �

As mentioned in the introduction, Zadeh’s rule encourages each variable to be used as a pivot variable roughly the same
number of times. We make this precise in the following result.

Theorem 3.2. Assume that there is a Hamiltonian path P that follows Zadeh’s rule on an AUSO of an n-cube. The least-used signed
direction is used at least 2n−2

n −
3
2 times.

Proof. We may assume that P starts at vertex zero. Let −t to be the least-used direction, and k be the number of times
signed direction −t is used. Partition the d-dimensional AUSO into two (d − 1)-dimensional hypercubes C1 and C2 where
the direction t separates the two (see Fig. 6) and P starts in C1.

Let mi, i = 1, . . . , n be the number of times that signed direction+i is used in P and mn+i, i = 1, . . . , n be the number
of times that signed direction−i is used in P . Since all 2n vertices are visited, we have

2n
i=1

mi = 2n
− 1.

We know that the minimum valuemn+t = k andmt = k+ 1. We can estimate the sum in another way by computingmi as
P is followed. Suppose we are at vertex v in C1 and follow a signed direction +i with mi ≥ k + 2. The signed direction +t
would have been a preferred choice sincemt ≤ k+1. If signed direction+t was not taken, then it must be that its neighbour
in C2 was already visited. We call this a blocked pair. A similar analysis holds if v is in C2 and a signed direction−i is chosen
with mn+i ≥ k + 1. There can be at most 2n−1 blocked pairs. So in computing the sum of the mi along P we have at most a
contribution of n(k+ 2)+ n(k+ 1)− 1 for the unblocked pivots and a contribution of at most 2n−1 for the blocked pivots.
Therefore

2n
i=1

mi ≤ n(2k+ 3)− 1+ 2n−1.

Combining the two expressions for the sum, the theorem follows. �

Unfortunately Theorem 3.2 only holds when the path is Hamiltonian. It is possible for a non-Hamiltonian exponential
length path to use a signed direction as few as zero times! An example is shown in Fig. 7. Here we assume that C1 and C2
are copies of an AUSO cube with a long path. The resulting cube C is easily seen to be an AUSO. Note that since the path is
non-Hamiltonian in C , vertices unvisited by the path in C1 may be directed into C2.

3.2. The algorithm and its validity

In this subsection we describe an algorithm that can generate, up to equivalence, all Hamiltonian paths on AUSOs using
any of the history based pivot rules described in Section 2. In this paper, when we say two paths are equivalent, it means
they are equivalent up to permutation. In other words, when two paths P and Q are equivalent, there is a permutation of
coordinates f : {1, 2, . . . , d} → {1, 2, . . . , d} such that f (P) = Q . Algorithm 1 gives the pseudocode of our algorithm. We
assume that the Hamiltonian path starts from the vertex labelled 0. We denote the indegree of the vertex x by indeg(x).
For t = ±1, . . . ,±d the function move(x, t) returns the neighbour of x using the signed direction t , that is, the vertex
x + sign(t)2|t|−1. Note that we focus on this function only when t is a feasible move. The array h denotes the history
information of the path and depends on the pivoting rule. For example, in the case of Zadeh’s rule, h(t) is the number of
times the signed direction t is taken. We claim that the algorithm outputs, up to equivalence, all required Hamiltonian
paths and that there are no duplications. First of all we show that each of the required Hamiltonian paths are equivalent
to one of the paths output by the program. Below, by ‘history based pivot rule’ we refer to any of the rules described in
Section 2.
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Fig. 7. An example of a non-Hamiltonian exponential path where one signed direction is never used.

Algorithm 1 Enumerate HP on AUSO-cube with history based pivot rule
1: path← {0}.
2: if current path is Hamiltonian path then
3: if path is USO then
4: output the result
5: end if
6: else
7: m← mint∈{±1,...,±d},t is feasible{h(t) |move(path.end, t) is not visited }
8: for all t such that h(t) = m do
9: if h(t) = 0 and ∃t ′ < t s.t. h(t ′) = 0 then

10: continue
11: else
12: v← move(path.end, t)
13: if h(t) ≠ 0 and indeg(v) = 0 then
14: continue
15: end if
16: path← path+ v
17: renew h
18: continue searching (from line 2)
19: recover h
20: delete path.end
21: end if
22: end for
23: end if

Lemma 3.1. For every Hamiltonian path P on a d-cube which can be followed by a history based pivot rule, there is a labelling of
the cube such that P begins with vertex 0 and the order of positive directions first used in P is {1, 2, . . . , d− 1, d}.

Proof of Lemma 3.1. We show how to embed P on a d-cube so that it has the required properties. We label the first vertex
in P as 0 and the initial edge of P as direction+1. Continuing, for i = 2, . . . , d we consider the first edge of P that leaves a
face of the cube of dimension i−1. We define the direction used by this edge as+i. This induces a labelling of the cube with
the desired properties. �

We remark that all paths produced by Algorithm 1 satisfy the conditions of Lemma 3.1 due to lines 8–10. Next we will
prove that Algorithm 1 does not produce duplicate paths.

Lemma 3.2. Let P and Q be two Hamiltonian paths produced by Algorithm 1. If there is a bijection (permutation of the
coordinates) f : {1, 2, . . . , d} → {1, 2, . . . , d} such that f (P) = Q then it is the identity mapping, i.e. P = Q .

Proof of Lemma 3.2. As remarked, both P and Q satisfy the conditions of Lemma 3.1. Since f (P) = Q , both paths must use
the k-th positive direction for the first time at the same time. By the lemma this must be direction+k, hence f is the identity
mapping. �

As a consequence of these two lemmas we have the following result.

Theorem 3.3. Algorithm 1 provides a complete duplicate free list of Hamiltonian paths on AUSO-cubes that follow a given history
based pivot rule.
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Table 1
The number of Hamiltonian paths produced by history based pivot rules.

Dimension 2 3 4 5 6 7
Least entered rule 1 2 17 1072 3,262,342 >1010

Least-used direction 1 1 1 2 0 0
Least recently entered 1 1 1 0 0 0
Least-recently considered rule 1 3 13 0 0 0
Least-recently basic rule 1 0 0 0 0 0
Least iterations in basis rule 1 0 0 0 0 0

Table 2
The number of Hamiltonian paths produced by history based pivot rules which satisfy Holt-Klee condition.

Dimension 2 3 4 5 6 7
Least entered rule 1 2 12 79 360 ?
Least-used direction 1 1 1 0 0 0
Least recently entered 1 1 1 0 0 0
Least-recently considered rule 1 3 12 0 0 0
Least-recently basic rule 1 0 0 0 0 0
Least iterations in basis rule 1 0 0 0 0 0

3.3. Computational results

We implemented the algorithm and ran it on an Opteron computer with 2.2 GHz CPU, 4× 4 = 16 processors and 132 GB
of memory. We were able to do a complete enumeration up to dimension 6 and the results are shown in Table 1. The other
rules refer to the least-recently considered, least-recently basic and least iterations in the basis rules.We see that the number
of Hamiltonian path increases exponentially with Zadeh’s least entered rule, whereas it becomes zero with the other pivot
rules. On the basis of these results we conjecture that, except for the least entered rule, such Hamiltonian paths do not
exist in any dimension greater than 6. We present proofs of these conjectures in the next section for all rules except for the
least-used direction rule.

We also conducted an experiment to checkwhether these paths satisfy the Holt-Klee condition [9], a necessary condition
for realizability of an LP-cubewhich states that every d-dimensional faces have at least d disjoint paths from a unique source
to a unique sink (see Table 2). For dimension7with least entered rule,wehavenot found any suchpaths, but the computation
was not completed due to the long running time.

4. Non-existence of Hamiltonian paths

In this section we prove that, except for the least entered rule and least-used direction rule, there are no Hamiltonian
paths for the history based pivot rules considered except for those shown in Table 1.

Theorem 4.1. The least iterations in basis rule and the least-recently basic rule do not have any Hamiltonian paths on a d-cube
for d ≥ 3.

Proof. Suppose there is such a Hamiltonian path P for some d-cube. From Lemma 3.1 we can verify that the first d edges of
P must take the directions 1, 2, . . . , d. Therefore P begins with d+ 1 vertices 0, 1, 3, . . . , 2d

− 1. The origin has indegree 0
and the other d vertices have indegree 1 in the AUSO induced by P . At this point, for each of the pivot rules, the direction−1
has the minimal value of h among the all the outgoing directions, so the first d+ 1 steps have to be 0, 1, . . . , 2d

− 1, 2d
− 2.

The vertex 2d
− 2 also has indegree 1, since it is not adjacent to any of the other vertices already on P . There are d + 1

vertices which have indegree 1 in total: 1, 3, 7, . . . , 2d
− 1, and 2d

− 2. This violates Williamson-Hoke’s condition given in
Theorem 3.1 which allows only d vertices to have indegree 1. �

We remark that this proof also can be used to show that the least-recently considered rule cannot have a Hamiltonian
path for any d ≥ 3 if the ordering begins with+1,+2, . . . ,+d,−1.

Theorem 4.2. The least-recently entered rule does not have any Hamiltonian paths on a d-cube for d ≥ 5.

Proof. Suppose P is a Hamiltonian path produced by Algorithm 1 for the least-recently entered rule when d ≥ 5. We will
show that P must begin with the sequence of vertices Q = {Q1,Q2,Q3,Q4} where Q1 = {0, 1, 3, . . . , 2d

− 1}, Q2 = {2d
−

1− 2d−2, 2d
− 1− 2d−2

− 2d−3, . . . , 2d−1
}, Q3 = {2d−1

+ 2, 2, 6, 14, . . . , 2d
− 2} and Q4 = {2d

− 2− 2d−2, 2d
− 2− 2d−2

−

2d−3, . . . , 2d−1
+ 2+ 4+ 8, 2d−1

+ 2+ 4}.
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Fig. 8. 2-dimensional face with two sources and two sinks.

Fig. 9. Binary representation for the basic step of Q2 .

Q includes the vertices {2d−1
+ 2, 2d−1

+ 2 + 4 + 8, 2d−1
+ 2 + 4} as a subsequence and does not contain the vertex

2d−1
+ 2+ 8. These four vertices lie on a 2-face which has two sources, 2d−1

+ 2 and 2d−1
+ 2+ 4+ 8, a contradiction (see

Fig. 8). It remains to show that P begins as specified.

• Q1 = 0, 1, 3, . . . , 2d
− 1. This follows from Lemma 3.1.

• Q2 = 2d
− 1, 2d

− 2d−2
− 1, 2d

− 2d−2
− 2d−3

− 1, . . . , 2d−1.
We prove this by mathematical induction. For the basic step, we will show only 2d

− 2d−2
− 1 can come right after

2d
− 1. When we visited the vertex 2d

− 1, all of the bits are 1. It means the next vertex can be represented as 2d
−

2k
− 1 =

d−1
i=0 2i

− 2k (d − 1 > k ≥ 0). By Corollary 3.1, vertex
d−1

i=0 2i
− 2k should have two visited neighbours,

one of which is obviously the vertex 2d
− 1. In other words, there exists j ≠ k such that

d−1
i=0 2i

− 2k
− 2j

∈ {0, 1,

3, . . . , 2d
−1} =


v|∃l s.t. v =

l
i=0 2

i

∪{0}. Since d ≥ 3 forces

d−1
i=0 2i

−2k
−2j not to be equal to 0,

d−1
i=0 2i

−2k
−2j

should be represented as
l

i=0 2
i
=

d−1
i=0 2i

−
d−1

i=l+1 2
i for certain l. Therefore, the (k, j) equal (d− 1, d− 2) or (d− 2,

d− 1), and d− 1 > k requires k = d− 2. (See Fig. 9 for the binary representation.)

We can prove the inductive step similarly. If the path is continued by 2d
−1, 2d

−1−2d−2, . . . , 2d
−1−

d−2
i=d−2−k 2

i

,

the next vertex should be equal to
d−1

i=0 2i
−

d−2
i=d−2−k 2

i
+ 2j (d − 2 − k ≤ j ≤ d − 2) or

d−1
i=0 2i

−
d−2

i=d−2−k
2i
− 2j (j = d − 1 or j < d − 2 − k). By Corollary 3.1, two neighbours of it are in {0, 1, 3, . . . , 2d

− 1, 2d
− 1 − 2d−2,

. . . , 2d
− 1−

d−2
i=d−2−k 2

i
}. Using binary numbers, 2d

−

i
k=0 2

d−(2+k)

− 1 can be denoted 100 . . . 0011 . . . 11, where

we have k+ 1 0 s. (See Fig. 10 for the binary representation.)
• Q3 = {2d−1

+ 2, 2, 6, 14, . . . , 2d
− 2}

At the vertex 2d−1, the history array becomes

h(x) =

d+ x (if x > 0)
1 (if x = −d)
2d+ 1− x (if d− 1 ≤ x ≤ 0).

(See Table 3.) Although its minimum value is 1, when x = −d, and the second smallest value is 2, when x = +1, we
cannot use either the direction−d or+1, since they lead to visited vertices. That leads us to use the direction+2, whose
value is third smallest. The vertex 2d−1

+ 2 enables us to use the direction −d at last. Afterward, to avoid visiting an
already visited vertex, we have to follow the sequence {2d−1

+ 2, 2, 6, 14, . . . , 2d
− 2}

• Q4 = {2d
− 2− 2d−2, 2d

− 2− 2d−2
− 2d−3, . . . , 2d−1

+ 2+ 4+ 8, 2d−1
+ 2+ 4}

This follows the same reasoning as Q3, that is, using the smallest direction which reaches unvisited vertex fixes Q4.
Note that direction+1 cannot be used because the destination has already been visited in Q2. �

For the least entered rule, we can prove the following feature concerning the beginning of any Hamiltonian path.

Theorem 4.3. For every d dimensional Hamiltonian path using the least entered rule, different signed directions are used for the
first 2d− 1 steps.



Y. Aoshima et al. / Discrete Applied Mathematics 160 (2012) 2104–2115 2113

Fig. 10. Binary representation for the inductive step of Q2 .

Table 3
The history information of least-recently entered rule.

Vertex Direction Comment
(Binary) +1 −1 +2 −2 +3 −3 · · · +d− 1 −(d−1) +d −d

0(000 . . . 000) 0 1 0 1 0 1 · · · 0 1 0 1 Initial state
1(000 . . . 001) 2 1 0 1 0 1 · · · 0 1 0 1
3(000 . . . 011) 2 1 3 1 0 1 · · · 0 1 0 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

2d−1
− 1(011 . . . 111) 2 1 3 1 4 1 · · · d 1 0 1

2d
− 1(111 . . . 111) 2 1 3 1 4 1 · · · d 1 d+ 1 1 End of Q1

2d
− 1−

2d−2(101 . . . 111)
2 1 3 1 4 1 · · · d d+ 2 d+ 1 1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2d−1
+ 1(100 . . . 001) 2 1 3 2d− 1 4 2d− 2 · · · d d+ 2 d+ 1 1

2d−1(100 . . . 000) 2 2d 3 2d− 1 4 2d− 2 · · · d d+ 2 d+ 1 1 End of Q2
2d−1
+ 2(100 . . . 010) 2 2d 2d+ 1 2d− 1 4 2d− 2 · · · d d+ 2 d+ 1 1

2(000 . . . 010) 2 2d 2d+ 1 2d− 1 4 2d− 2 · · · d d+ 2 d+ 1 2d+ 2
6(000 . . . 110) 2 2d 2d+ 1 2d− 1 2d+ 3 2d− 2 · · · d d+ 2 d+ 1 2d+ 2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

2d−1
− 2(011 . . . 110) 2 2d 2d+ 1 2d− 1 2d+ 3 2d− 2 · · · 3d− 1 d+ 2 d+ 1 2d+ 2

2d
− 2(111 . . . 110) 2 2d 2d+ 1 2d− 1 2d+ 3 2d− 2 · · · 3d− 1 d+ 2 3d 2d+ 2 End of Q3

Proof. Let v be a vertex visited during the first 2d − 1 steps. It is enough to show there is a direction t and an unvisited
vertex move(v, t) for which h(t) = 0.

If t > 0 and h(t) = 0 then vertex move(v, t) cannot have been visited yet, so t is a candidate direction. Otherwise, if for
each t > 0 we have h(t) = 1 and there exists at least two negative directions −t1,−t2 such that h(−t1) = h(−t2) = 0.
Assume that the direction +t1 was used earlier than +t2. So for all vertices visited so far, it is impossible to have both the
t2-th bit at 1 and the t1-th bit at 0. This means that the vertex move(v,−t1) has not been visited and −t1 is a candidate
direction. �

5. Discussion

From our computational experiments, Zadeh’s least entered rule seems very likely to have Hamiltonian paths on AUSO
cubes. Using our program, we could verify such paths exist up to dimension 9, but did not yet find any for dimension 10.
Furthermore, we could not find any general construction, so this is an open problem. Even if such Hamiltonian paths exist,
it is not clear whether or not they could be obtained on AUSOs that are realizable as polytopes.

Although we showed that a number of history based pivot rules do not admit Hamiltonian paths in general, they may
still admit exponential length paths. Since our program makes heavy use of the fact that we are searching for Hamiltonian
paths, we were not able to use it to check this for low dimensions.

Our computer result for Zadeh’s rule allow ties to be broken arbitrarily, as does the theoretical lower bound obtained
in [7]. It would be interesting to see the effects of various deterministic tie breaking rules on these results.
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Appendix

Figs. 11–14.

Fig. 11. Least recently considered rule.

Fig. 12. Least recently basic rule.

Fig. 13. Least recently entered rule.
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Fig. 14. Least iterations in basis rule.
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