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Abstract 

R.M. Idury and A.A. Schaffer, Dynamic dictionary matching with failure functions, Theoretical 

Computer Science 131 (1994) 295-310. 

Amir and Farach (1991) and Amir et al. (to appear) recently initiated the study of the dynamic 

dictionary pattern matching problem. The dictionary D contains a set of patterns that can change 

over time by insertion and deletion of individual patterns. The user may also present a text string 

and ask to search for all occurrences of any patterns in the text. For the static dictionary problem, 

Aho and Corasick (1975) gave a strategy based on a failure function automaton that takes 

O(IDlloglCI) time to build a dictionary ofsize JDI and searches a text Tin time O((TlloglZI+tocc), 
where tocc, is the total number of pattern occurrences in the text. 

Amir et al. (to appear) used an automaton based on suffix trees to solve the dynamic problem. 

Their method can insert or delete a pattern P in time O(l PIlog and can search a text in time 

O(((TI+tocc)loglDl). 
We show that the same bounds can be achieved using a framework based on failure functions. We 

then show that our approach also allows us to achieve faster search times at the expense of the 

update times; for constant k, we can achieve linear O(ITl(k+loglZl)+ktocc) search time with an 

update time of O(klP(JDl”‘). Th. is is advantageous if the search texts are much larger than the 

dictionary or searches are more frequent than updates. 

Finally, we show how to build the initial dictionary in O(IDIloglZJ) time, regardless of what 

combination of search and update times is used. 

1. Introduction 

Amir, Farach, Galil, Giancarlo, and Park [3, 51 (AFGGP for short) initiated the 

study of the dynamic dictionary matching problem. We are given a collection of 
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patterns D = {PI, Pz, . . ., P,}, called the dictionary, that can change over time. The 

basic matching operation is to search a text r[l, t] and report all occurrences of 

dictionary patterns in the text. The dictionary can be changed by inserting or deleting 

individual patterns. 

The static dictionary matching problem, in which inserts and deletes are not sup- 

ported, was addressed in earlier papers by Aho and Corasick [2] and Commentz- 

Walter [9]. A recent survey article by Aho [l] provides a comprehensive overview of 

these papers. The semi-dynamic dictionary matching problem, in which only insertions 

are allowed, was introduced by Meyer [14]. Algorithms for the dictionary problems 

have applications to database searches and molecular biology [2,5]. 

The two algorithms for static dictionary matching can be summarized as follows. We 

use 1 D 1 to denote the total size of all the patterns in the dictionary; we use C to denote 

the alphabet and ICJ to denote its size. The Aho-Corasick algorithm (AC for short) 

builds the dictionary D in time O(( D(loglCl) and searches a text T[l, t] in 

O(tloglCl+ tocc) time, where tocc is the total number of occurrences reported. For 

small bounded alphabet the AC algorithm runs in linear time. The AC algorithm uses 

an automaton where states correspond to prefixes of dictionary patterns and transitions 

are determined by failure functions as in the Knuth-Morris-Pratt [ 1 l] (KMP for short) 

string searching algorithm. The Commentz-Walter (CW for short) algorithm instead 

uses ideas from the Boyer-Moore [7] string matching algorithm. Like the AC algo- 

rithm the CW algorithm also builds the dictionary in O(IDlloglCJ) time; like the 

Bayer-Moore algorithm, the CW algorithm has good practical performance. 

The AFGGP algorithm for dynamic dictionary matching is based on using a suffix 

tree [15,12, S] as an automaton. Each state corresponds to a substring of some 

pattern. The AFGGP algorithm is able to insert or delete a pattern P[l,p] in time 

0( p log) D I), and it performs a search in time 0( (t + tocc)log I D I). If inserts and deletes 

are frequent enough, this algorithm is better than the simple alternative of using the 

AC algorithm for searches and rebuilding the dictionary in 0( I D I log I C I) time at each 

update. It may be a little surprising that the AFGGP time bounds appear not to 

depend on the alphabet size; actually, the log ID I factor is short for log ID I+ log I C 1, but 

the log1 ZI factor is subsumed by the log/ D( factor under certain assumptions. 

In this paper, we present another algorithm for dynamic dictionary matching that 

addresses three questions raised by the AFGGP algorithm and time bounds. 

First, is the idea of failure functions and the AC automaton of any use at all for 

dynamic dictionary matching? The AC automaton is a natural extension of the KMP 

automaton to multiple patterns. One would expect that the same approach may work 

for dynamic dictionary matching. We show that this is indeed the case. Our algorithm 

is based on the AC automaton. With a suitable choice of underlying data structures, 

our method achieves a search time of O((t+ tocc)log(Dl) and an update time of 

O(plogJ 01) matching the AFGGP bounds. 

Second, are other tradeoffs between search and update times possible? One would 

expect that in some applications, the updates are relatively infrequent or the text 

strings are much longer than the patterns. Under either condition we would prefer 
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a search time better than O((t+ tocc)log(DI) while tolerating an update time worse 

than 0( p log 1 D I). It is interesting to ask: how good can we make the update time if we 

insist that the search time match the AC bound of O(tloglC1 + tocc) for the static 

problem? 

We show that our algorithm can also use a different data structure such that for any 

constant k>2, it can achieve search time O(t(k+logIC()+ k tocc) and update time 

0( p(kjDll’k + log1 Cl)). We thereby match the static search time of [2] and have 

a sublinear update time if the patterns are not very long relative to (D(. 

Third, can one match the 0( I DllogI Cl) preprocessing time of the AC and CW 

algorithms? The AFGGP algorithm builds the initial dictionary by repeated insertion 

of patterns in time O(IDlloglDI). W e would like to avoid these insertions, especially if 

we are going to increase their cost. We show that regardless of the choice of the data 

structure, we can build our initial dictionary in 0( I D I log I C I) time. 

Our dynamic dictionary framework has another advantage. It can be used to solve 

a natural two-dimensional version of dynamic dictionary matching, while the 

AFGGP algorithm does not seem to generalize. One of the algorithmic reasons for 

this distinction is described at the end of Section 2. 

In our two-dimension problem, the texts are rectangular and the patterns are 

square. The size of a text or pattern is its area. Amir and Farach [4] have shown how 

to solve the static two-dimensional dictionary problem with a preprocessing time of 

O((D(logs) and a search time of O(( Tllogs), where s is the number of patterns. In 

a separate paper [6], we describe how to combine their two-dimensional search 

technique, our dynamic dictionary framework, and some other ideas, to solve the 

dynamic two-dimensional dictionary problem, achieving the same time bounds for 

insertion, deletion, and search as in one dimension. 

In sum, we show that it is possible to dynamize the AC approach to static 

dictionary matching to achieve the same preprocessing and search times that they do, 

while achieving an update time sublinear in I DI. Alternatively, we can match the 

search and update times of the AFGGP algorithm and improve the dictionary 

construction time to 0( I D I log I C I). Our framework can be extended to two-dimen- 

sional dictionary matching. 

The rest of this paper is organized as follows. In Section 2, we present our basic 

algorithm for dynamic dictionary matching. In Section 3, we show how to modify the 

underlying data structures, to improve the search time. In Section 4, we describe how 

to construct the initial dictionary in 0( I D [log1 C I) time. 

2. Dictionary automaton and searching algorithm 

Let D = {PI, . ., Ps} be a dictionary of patterns, where each Pi, 1 <i < s, is a string 

over a finite alphabet C. For convenience, we assume that the empty string E is always 

a pattern in the dictionary. We append to each pattern a special symbol $ that does 

not occur elsewhere in any pattern or text. We shall henceforth assume that $EC and 
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that $ is the largest symbol in the lexicographic order. Throughout this paper, we 

generally use w,x, y, z to denote a prefix of some pattern, and a, b to denote some 

character of C. We use the following dictionary as an example to explain various 

definitions and concepts of our automaton. 

Example 2.1. Suppose C = {a, b, S}. Let o^= {$, b$, aab$} be a sample dictionary where 

every pattern is appended with the special symbol $. 

We make the same assumptions on the character set C as in the papers on suffix 

trees [ 15,12,8,3,5]: 

Assumption 2.2. Each character is represented by a constant number of bytes. 

Assumption 2.3. The relative order of any two characters can be determined in 

constant time. 

An additional assumption is implicit in [3,5]: 

Assumption 2.4. Even though ICI may be very large, the actual number of distinct 

characters of Z in any dictionary D is bounded by 1 D I. For stating time bounds, we 

assume that the log 1 Z 1 factor is subsumed by the log (D 1 factor. 

In [2], each state in the automaton corresponds to a prefix of some pattern in D. 
From now on, we use a prefix to denote its state. Intuitively, if we are in a state x after 

reading the first j characters of a text, x is the longest prefix of any pattern ending at 

the jth position of the text. Aho and Corasick [2] defined two important (partial) 

functions, goto and fail, that describe the transitions in their automaton. 

goto(x, a) = xu if xu is a prefix of some pattern in the dictionary, else it is undefined, 

which we denote by 1. Therefore, goto is a partial function in that each state may not 

have a transition on every symbol. For any prefix x, fail(x) = w such that w is the 

longest prefix of some pattern such that w is a proper suffix of x. Figure 1 shows 

a sample automaton where goto transitions are shown by solid edges and fail 

transitions are shown by dotted edges. Whenever a transition cannot be made because 

goto is undefined, we repeatedly replace the state withfuil(stute) until a transition can 

be found. The basic search loop is: 

while goto(stute, symbol) = I do 

stute+fuiI(state) 
stute+goto(stute, symbol) 
symboltnextsymbol 

For any given choice of state and symbol we may have to take the fail transition 

repeatedly, but this shortens the length of the new state. The total time needed to scan 

a text T using this algorithm is 0( I T I (g +f)), where g +f is the time needed to make 

one evaluation of goto and fail [2]. 
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Fig. 1, Search automaton for the set of patterns {b, ab, aab}. 

Like AC, we store the goto function as a directed rooted tree, where the nodes 

correspond to automaton states (pattern prefixes). The arcs of the tree are directed 

away from the root and every arc is labeled with a character from C. We organize the 

outgoing arcs of an internal node into a binary search tree with the arc labels as the 

keys for search, as suggested in [2]. The degree, or the maximum number of children 

of an internal node, of a goto tree is bounded by 1 Cl. With this modification, 

computing each goto takes 0 (log 1 C I), or 0 (log 1 D I ) time by Assumption 2.4. We also 

store with each node a pointer to its parent node. For each prefix x of a pattern, we 

keep a count of how many patterns have x as a prefix. 

We call a string a normal prejix if it is a prefix of some pattern in D. For each proper 

prefix x we also define an extended pre$x, x$, by appending the character $; the 

extended prefixes help in detecting patterns. The corresponding states are called 

normal or extended. In Example 2.1, the set of normal prefixes is 

{E, a, b, $, aa, b$, aab, aab$} and the set of extended prefixes is (S, a$, b$, aa$, aab$}. 
Note that some prefixes are both normal and extended. We extend the definition of 

fail to accommodate the extended prefixes as follows: Let w be a prefix (normal or 

extended). fail(w) = x such that Ix I < 1 w [ and x is the longest suffix of w such that x 

is a normal prefix. In Example 2.1, fuil(aab$)= b$ but fail(aa$)#a$ since a$ is 

not a normal prefix. 

We recognize patterns as follows. When we reach a position of a text, we pretend 

that the next symbol is a $. If we can make a transition to some normal prefix ending 

with a $, then we know that a pattern has been matched at that position, since any 

normal prefix ending with a $ must be a pattern in the dictionary. By applying fail 
repeatedly, we can report all the matching patterns in the order from the longest 

pattern to the shortest. 

Suppose we are searching the text abaabba for the occurrences of the patterns in the 

dictionary D of Example 2.1. After reading the prefix abaab, we will be in the normal 

state aab. When we pretend to read $ as the next symbol, we will temporarily enter 

a state aab$ and since this is a normal state in the dictionary we report that a pattern 
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aab is recognized at the current location of the text. If we takefX(aab$)= b$ we see 

that we have matched another (smaller) pattern b. Again, if we take fuil(b$) = $ we 

realize that no more patterns can be matched as this corresponds to the empty pattern 

E. Since we keep track of the state ub, we can continue our search by reading the next 

symbol b from the text. 

In [2], fail is stored as a directed, rooted tree with the arcs pointing towards the 

root. If fail(s)= t then there will be an arc s-t. The (in)degree of the fail tree is 

unbounded. We use a new method to storefail that enables us to insert new patterns, 

updating the fail function. Before describing our representation of fail, we explain 

some auxiliary prefixes and data structures that we use. 

Let *$C be a new symbol such that * > a or any ~EC in lexicographic comparison. 

For every prefix wgC* we define *w as the complement of w. We call w a regular prefix, 
and *w a complementary prefix. For the purpose of representation, we extend the 

definition offuil as follows: for a regular prefix x, iffuil(x)=z then fuil(*x)=z. We 

define a total ordering on the set of prefixes and their complements and call it the 

inverted order denoted by < in”. For two distinct strings w and x, w < in” x if wR comes 

before xR in the lexicographic ordering, where xR is the reverse of the string x. 

Example 2.5. Consider the list of prefixes of d in Example 2.1 in the inverted order. It 

can be represented as: s^= E, a, ua, *au, *a, b, aub, *uab, *b, S, us, au& *ua% *a% b% aab$, 

*uub$, *b$, 4, *. 

The number of extended prefixes is at most equal to the number of normal prefixes, 

so the number of regular prefixes is 0( 1 D I). The number of complementary prefixes is 

exactly equal to the number of regular prefixes. Therefore, the total number of prefixes 

in our dictionary structure is only O(\Dl), independent of C. 

Let S denote the set of all normal and extended, regular and complementary 

prefixes of patterns in D. An important property of S is that for any string x, if 

S contains x then S contains every prefix of x. All string comparisons are made w.r.t. 

< inv ordering unless stated otherwise. For a nonempty string xeS, pred(x) is the 

largest string in S smaller than x. We need to compute pred(x) when inserting a new 

string to know where the new string lies in the cinv order. In Example 2.5, 

pred(aub)= b and pred(b) = *a. The following lemmas state some important properties 

of the prefixes in S that follow directly from the definition of <in” and the 

character (*). 

Lemma 2.6. Let w,x~S be arbitrary regular prejxes. Let YES be any prefix. 
1. w<inv *w; w is smaller than its complement. 
2. W<inv~<inv*W if and only tfw<inv*x<inv *w; if we replace a regular prefix with 

u’(’ and its complement with a’), then the prefixes of S in the <in” order yield a list of well 

balanced parentheses. 
3. If w < inv y < inv*~ then y = y’wfor some nonempty y’; w and *w are, respectively, the 

smallest and largest prefixes in S with the suffix w. 
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Lemma 2.7. Let xa be the prefix we are inserting into S. Suppose yb#xa is a prefix 

already in S. Then the following relations hold: 

1. E <invXU. 

2. If b < inva then yb < inv xa. Similarly if a < invb then xa < inYyb. 

3. If b = a then yb < in” xa ifand only ify < invx. Since x and y must already be in S we 

can determine whether Y<~““x from S alone. 

Lemma 2.7 suggests a way to obtain the relative order of two prefixes without 

making a complete lexicographic comparison. We utilize Lemma 2.7 to compute the 

pred function by building an auxiliary search tree, called ST, on the top of all the 

prefixes of S. The elements of ST are basically pointers to the states of the goto tree 

sorted by the inverted order of the corresponding prefixes. We actually store ST as an 

aab tree [13] with all the prefixes as leaves. For any state corresponding to a prefix yb 

we can determine the character b and the state with the prefix y in constant time as y is 

the parent of yb in the goto tree and hence this information is available with the parent 

pointer of yb. To utilize Lemma 2.7 we need to know the relative order of all the 

existing prefixes in S. Since we implement ST as an a-b tree, we can determine the 

relative order of two prefixes in O(loglD I) time. 

We now describe one way to compute pred(xa) for a nonempty prefix xa not yet in 

S. Our aim is to find the largest prefix in STsmaller than xa. We start the search at the 

root of the ST and proceed towards the leaves. Suppose yb is the key associated with 

an internal node of the ST. At the next level we take the right child of the node if 

Yb < inv xa and the left child otherwise. With this scheme we need O(loglDl) tree 

comparisons to find pred(xa). From now on we assume that we have a routine 

FINDPRED that computes the pred of a new prefix. We can conclude the following 

lemma. 

Lemma 2.8. Let xa be a prefix to be inserted into S. We can compute pred(xa) using 

FINDPRED(xa) in o(log’lDl) time. 

Proof. We can determine pred:xa) with O(loglD() tree comparisons. Since ST is 

organized as an a-b tree, the relative order of two existing prefixes can be determined 

in O(loglD I) time. Therefore, by Lemma 2.7 each tree comparison takes O(loglD I) 

time. From this it follows that we can determine pred(xa) in 0(log2 101) time. 0 

To reduce the time to compute pred, we use a data structure invented by Dietz and 

Sleator [lo] for solving the order maintenance problem efficiently. In the order 

maintenance problem, we define the following operations on a linear list L, initially 

containing one element. We attach an L to the name of every operation to distinguish 

them from the dictionary operations. 

L_Znsert(x, y): insert a new element y after the element x in L. 

L-Delete(x): delete the element x from L. 

L-Order(x, y): return true if x is before y in L, false otherwise. 
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Theorem 2.9 (Dietz and Sleator [lo] ). The aboue three operations can be implemented 
in worst-case O(1) time. 

We store the prefixes of S in an auxiliary list data structure that we call the 

Dietz-Sleator list, or DSL. Using DSL we can determine the relative order of two 

prefixes in constant time instead of O(log)Dl) time as achieved by using only ST. 

Lemma 2.10. Let x and y be two prejxes in S. By building DSL for all the prefixes of S, 

we can determine the relative order of x and y in constant time by Theorem 2.9. Hence, 

we can compute pred in O(log 1 D I) time. 

When we insert a new prefix xa, we need to find the value offail( Below we show 

how to use pred(xa) to compute fuil(xa) quickly. 

Lemma 2.11. Suppose w is a normal regular pre$x, and W <invX<inv*W. Then 

fuil(x)=w if and only if there is no normal regular y such that 

w < inv Y < inv x < inv *Y < inv *w. 

Proof. By Lemma 2.6, w is a suffix of x. If there is a normal regular prefix YES such 

that W<invy<i,,x<inv*Y<inv *w then y must be a suffix of x longer than w. By 

definition, fail(x)#w because of the presence of y. On the other hand, if there is no 

such y then fail(x)= w. 0 

In Example 2.5, fuil(aab)=b since there is no normal y such that 

b < invy < in”Uab < inv*y < inv*b, but fail(aab) # E since b can play the role of y in that case. 

Lemma 2.12. Let x be a regular prefix. Suppose pred(x) = w. If w is normal and regular 

then fail(x)= w else fail(x) =fail(w). 

Proof. If w is normal and regular then w < in”X < in” *w. From the definition of pred, 

there is no normal regular y such that w < invy < invx < inv*W. Hence by Lemma 2.11, 

fail(x) = w. Suppose that w is not both normal and regular, and that fail(w) = z. Then 

from Lemma 2.11, z < invw < in” *z and there is no normal regular y such that 

Z<invY<invW<inv*Y<inv *z. Since x is right after w in the <in” order the same 

conditions hold for x. Hence fail(x) = z =fuil(w). q 

In Example 2.5, fuil(aab)= b since b=pred(aab) is normal and regular. Similarly 

fail(b)=E=fail(*a) and one may observe that pred(b)= *a. 
We show later how SEARCH, INSERT and DELETE can be implemented using the fail 

and pred functions on the set S. We first describe how fail is represented. We store fail 
as a forest of u-b trees. Amir and Farach [3] use 2-3 trees in their suffix-tree 

automaton for a similar purpose. Each tree is called a fail tree, and the forest is called 

a fail forest. There is a one-to-one correspondence between the set of a-b trees and the 
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set of normal regular prefixes of S. If w is a normal regular prefix, then T,,, denotes the 

a-b tree associated with w and contains as leaves all strings x such thatfail( w. In 

Example 2.5, T, contains {au, *aa> as leaves, whereas Tallb is an empty tree. The root of 

the tree 7” contains a pointer to x. Each prefix XES is a leaf in exactly one a-b tree, T,, 

where y =fuil(x). The leaves of any a-b tree are sorted in < in” order. For any x,fuil(x) 

can be computed by starting at the leaf x finding the root of the tree T, and taking the 

pointer to y. 

When we insert a new pattern P into D, we inset its prefixes and extended prefixes 

into S, in increasing order of length. Thus, when we insert a string x into S, we have 

already inserted all the prefixes of x. Using Lemmas 2.8 and 2.10 we can find 

w = pred(x). From Lemma 2.12 we can obtain y =fuil(x). If w = y insert x into T, as the 

leftmost leaf. Otherwise, insert x into Ty right after w. We can similarly find 

z=pred(*x) (z could be x) and insert *x into T,, right after z. We keep a separate 

bidirectional link between x and *x. Similarly when we delete a pattern P from D, we 

delete its prefixes in the order of decreasing lengths. 

After inserting x and *x into S we must create TX. For this we must first identify 

those prefixes whose fail value changes to x. By Lemma 2.11, these are the prefixes 

with a suffix x and whose current fair value is y. But these are exactly the leaves of 

T, properly enclosed between x and *x. We change fail for these nodes by a special 

split of T,, into T, and TX. We can similarly handle the case when a normal prefix 

x withfuil(x) = y becomes extended as a result of deletion of some pattern. In this case 

we fuse Ty and TX into TV with a special concatenate. These special operations were 

used similarly in [3]. 

As an example, consider inserting a new pattern ub$ into the dictionary d of 

Example 2.1. For this we need to insert the prefixes a, a$, ub, and ub$ into the set s^ of 

Example 2.5. Since a and a$ are already present in s^ we simply increment the reference 

count for them. We insert ub after pred(ub) = b, and *ub afterpred(*ub) = *uub. After 

this we have s^= { . . . . b,ub, uub, *uub, *ub, *b ,...}. Tb contained {uub, *uub} as leaves 

before the insertion of ub and *ub. We create Tab by splitting Tb as described above. 

After this step, T,, contains {uab, *uub} as leaves, and Tb contains {ub, *ub} as leaves. 

We similarly insert ub$ and *ab$. 

We summarize the algorithms by giving pseudocode to describe our procedures for 

searching a text, and inserting and deleting a pattern from a dictionary. We use 

prefixes instead of states for clarity. 

SEARCH(T=tl .,. t,) 

state+& 

for icl to n do 

while goto(stute, ti) = 1 

stutecjuil(stute) 

stute+goto(stute, ti) 

temp+goto(stute, $) /* Pretend a $ is read to check if any patterns match */ 

if temp is not normal then temp+fuil(temp) 
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while temp#$ do /* Report all nonempty patterns */ 

Print the pattern associated with temp /* Since temp ends in $ we have matched 

a pattern */ 

temp+fail(temp) /* See if any smaller patterns match */ 

INSERT(P = p1 . . . p,) /* pm = $ */ 

suppose p1 . . . pj is the longest prefix of P shared by some other pattern. 

increment the reference count for the prefixes of p1 . . . pi. 

for itj+ 1 to m do 

1. let x=p, . . . pi_ 1. Let a = pi. /* xa is being inserted. x is already in S*/ 

2. compute y=pred(xa) using FINDPRED 

3. compute w =fail(xa) using Lemma 2.12 

4. if w #y then 

insert xa into T, right after y. 

else insert xa into T, as the leftmost leaf. 

5. insert xa into ST after y. 

6. L-Insert xa into DSL after y. 

7. compute z=pred(*xa) USing FINDPRED /* w =fuil(*xa). */ 

8. insert *xa into T, right after z. 

9. insert *xa into ST after z. 

10. L-Insert *xa into DSL after z. 

11. repeat steps l-10 to insert xa$ and *~a$. /* extended prefixes */ 

12. from TX, by a split of T, into T, and T,,. 
DELETE(P=pl . . . p,) /* p,=$ */ 

suppose p1 . . . pj is the longest prefix of P shared by some other pattern. 

decrement the reference count for the prefixes of p1 . . . pj. 

for icm downto j+ 1 do 

let x=pl . . . pi /* x is a normal prefix */ 

if x$ is still in S then 

delete x$ and *x$ from their fail tree. 

delete x$ and *x$ from ST. 
L-Delete x$ and *x$ from DSL. 

let y=fail(x). Fuse TX and T, into T, by a concatenate. 
delete x and *x from T,. 

delete x and *x from ST,,. 

L-Delete x and *x from DSL. 

The correctness and running time bounds for the above procedures follow from the 

previous lemmas. 

Theorem 2.13. Let D be a dictionary of patterns over an alphabet C. We can search 
a text Tfor occurrences of patterns of D in time 0( 1 T 1 (log1 C ( + log 1 D I) + tocc log (D I), 
where tocc is the total number of patterns reported. We can insert or delete a pattern P in 
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time O(IPI(logICl+logJDl)). M oreover, we require only 0( IDI) space to store the 

automaton. 

The Dietz-Sleator [lo] list plays an interesting role in the generalization to two 

dimensions [6]. A key component in the semi-dynamic two-dimensional dictionary 

algorithm [4] is a subroutine that answers queries of the form: “Is x a prefix of y?“, 

where x and y are suffixes of dictionary patterns in constant time. In [4] the prefix 

query is converted into a least common ancestor query on a suffix tree; least common 

ancestor queries on fixed trees can be answered quickly with enough preprocessing. 

One of the obstacles to making the algorithm of [4] dynamic is that it is not known 

how to efficiently answer the least common ancestor queries in a dynamic setting. 

Therefore, we find a different way to handle the prefix queries in a dynamic setting. 

First, we convert the prefix queries into suffix queries on the reversed strings. To 

answer a suffix query, we can use the following lemma (closely related to Lemma 2.6). 

Lemma 2.14 (Amir et al. [6]). x is u &fix O~JJ zj” and only if x -=c inv Y-C inv*Y < inv*x. 

The middle <in” ordering always holds and the outer two can be tested in constant 

time using the L-Order operation. This works even when the lists are dynamically 

changing due to insertions and deletions. 

3. Linear time searching 

We show how to improve the search time in this section. From Theorem 2.13, a text 

T can be searched in O(logITl(ICI+logIDI)+tocclog)DI) time. The loglC/ factor 

comes from the computation of each goto and the log ID) factor from the computation 

of each fail. We show that it is possible to speed up the computation off&l and achieve 

a faster searching algorithm. When ICI is small and finite, or when ICI 6 1 D j, this is 

better than the searching algorithm of Section 2. It does, however, slow down the 

update times of the dictionary. 

In Section 2, we used a-b trees to store every fail tree. In an a-b tree, the number of 

children or the degree of a nonroot internal node v, denoted by 6(v), must be in the 

range [a,b], and must be in the range [2,b] if v is a root. In this section, we use 

a variant of a-b trees, which we call hybrid a-b trees, to store the fail trees. In a hybrid 

a-b tree different nodes may have different ranges for the number of children 

permitted. The ranges depend on the number of leaves in the fail forest. 

Our hybrid a-b trees depend on a parameter, which is a fixed integer independent of 

ID /. For any k 3 2, the hybrid trees will allow us to perform afindroot in O(k) time, and 

any update operation in O(k nllk) time, where n is the total number of leaves in the 

forest of fail trees. Recall that n is twice the number of states in the automaton. 

Let aa 16 be the smallest power of 2 such that u~<~Q(~c()~. Each internal node is 

designated as small or big, but may change its designation during the algorithm. 
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A small nonroot u has S(D)E[CI, 21~1, a small root u has c?(u)E[~, 2~x1, a big nonroot u has 

6(o)~[2a,4~], and a big root u has 6(u)~[2,4cr]. We maintain lists of small and big 

nodes using a separate link. Let #small and # big denote the number of such nodes. 

Our ranges imply that any nonroot has O(nljk) children and there will be O(k) levels 

in any hybrid tree. 

The operations insert, delete, concatenate, and split can be implemented in a similar 

fashion to that used for regular a-b trees. Each operation visits or modifies at most 

b nodes at each level of the tree and may cause at most a constant number of nodes per 

level to violate the constraints on the number of children allowed. 

In the rest of the section we show how to handle overflows and underflows in the 

number of children of a node of a hybrid tree. Define excess = n- ak, and 

m = (CC~ + (2a)k)/2. We maintain two invariants: 

# small + excess 6 (2~)~ - Clk (1) 

# big d excess (2) 

Note that all nodes will be small when n = uk, and big when n = (2~)~. If n goes above 

(~cx)~, we redefine all the big nodes as small nodes and start operating in the interval 

(2~r)~<n<(4a)~ with small nonroot nodes having the range [2a,4~] and big nonroot 

nodes having the range [4a, 81x1. We redefine excess and m accordingly. We can do 

a similar thing when n falls below ak. The following two lemmas simplify invariant 

maintenance. 

Lemma 3.1. If there are n leaves in the fail forest, then the number of internal nodes of 

the fail trees is at most 3nj.5. 

Proof. The number of fail trees is equal to the number of normal regular prefixes. 

Since there is a complementary prefix for every regular prefix, the total number of 

prefixes n is at least twice the number of normal regular prefixes. This implies that the 

number of fail trees is at most n/2. Thus the number of root nodes is at most n/2. 

Since a> 16, the degree of any nonroot internal node in a fail tree must be at least 

16. This means that the number of nonroot internal nodes can be at most n/15. Hence 

the total number of internal nodes of all fail trees is at most n/2+n/15 which is less 

than 3n/5. 0 

Lemma 3.2. If n d m then invariant 1 is satisfied. Similarly if n > m then invariant 2 is 

satisjied. 

Proof. If n <m then excess <((2cOk -ak)/2. From Lemma 3.1 it follows that 

#small < 3n/5 d 3/5( (a” + (2~1)~/2). Hence #small + excess d $(2~)~ - ak/5 d (2~)~ - ak; 

the last inequality holds provided k > 2. One can similarly verify that #big d excess 

whenever n>5ak/2, which holds if n>m and k>2. 0 



Dynamic dictionary matching with failure functions 307 

Lemma 3.2 implies that when n d m we only have to control #big, as invariant 1 is 

always satisfied in this case, and the value of #small has no effect on invariant 2. 

Similarly when II 2 m, we only have to control #small. 

If n d m, we do any update operation in such a way that #big never increases. Any 

update operation can increment or decrement the value n by at most one. If invariant 

2 is satisfied before a delete but violated afterwards, we have to decrement #big by 

only one to maintain invariant 2. Similarly, when n 3 m, we update in such a way that 

#small never increases. We may have to decrement #small by at most one after an 

insert. The operations concatenate and split do not change the value of n. 

Two primitive operations needed for implementing hybrid trees are those that 

handle overflow and underflow of an internal node. Those are the cases when the 

degree of an internal node goes one above or below its declared range. We show how 

overflow and underflow can be eliminated without violating the invariants. We 

annotate each line of pseudocode by an ordered pair (i, j) implying that #small 

changes by i and #big by j after executing the line. 

overfZow(u): 
Suppose we are controlling #small. 

If u is small redesignate it as a big node. { (- 1, l)} 

If v is big break it into two big nodes. { (0, 1)) 
Suppose we are controlling #big. 

(*) If u is small break it into two small nodes. {(LO)} 

(*) If u is big break it into one big and one small node. ((1,O)) 

underf7ow(u): 
suppose v is a root node. 

if degree(u) = 1 remove v. Name its only child as the new root. { (- 1,0) or (0, - l)] 

suppose v is a nonroot node with an immediate sibling w. 

let [a, b] be the range of w. 

if 6(w) 2 a + 1 transfer one child of w to u. { (0, 0)} 

otherwise 

if u and w are both big(smal1) then 

fuse them into one big(smal1) node. { (0, - 1) or (- l,O)} 

if one of them is big and the other small fuse them into one big node. { (- LO)} 

One can check that each change in #small or #big does not violate the invariants. 

Also underflow(v) never increases #small or #big. If an invariant is violated by 1 as 

a result of an insert or delete, applying overflow or underflow does not exacerbate the 

violation, and we restore the violated invariant as explained below. 

A single overflow or underflow can be handled in O(U) time. Correcting the over- 

flow(underflow) of a node may cause an overflow(underflow) of its parent. This is the 

way any update operation is implemented; we make changes to an internal node and 

correct any overflows or undertlows that may propagate all the way to the root. Since 

there are O(k) levels in any tree, we can implement any update operation in O(k ~1) time. 
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Finally we show how to decrement #small or #big by at least one in O(k CX) time. 

These operations are necessary to restore the invariants that may be violated after an 

insert or delete operation. There is no problem with the invariants if the following 

operations cause #small or #big to go down by more than one. 

decreasesmall( ): Pick some small node v. If v is a root, redesignate it as a big node. 

If v is not a root, it must have an immediate sibling w. If w is small, then fuse v and 

w into a big node. If w is big, fuse v and w into one or two big nodes depending on 

ASP. This may propagate underflows to the ancestors of v which can be 

handled without increasing #small as we noted earlier that #small does not increase 

during an underjow operation. 

decreasebig( ): Pick some big node v. Split v into one or two small nodes depending 

on 6(v). Any propagated overllows can be handled without increasing #big as can be 

observed from the lines marked (*) of overflow. 

Theorem 3.3. For a jixed integer k 22, we can search a text T in 
0( 1 TI (k + log 1 Cl) + k tocc) time. Furthermore we can insert or delete a pattern P into 

a dictionary D in O(IPl(klDl”k+loglCI)) time. 

Proof. For any state v,fail(v) can be obtained with ajindroot operation. Since this 

takes only O(k) time on a hybrid a-b tree we can search T in 

0( 1 Tl(k +log/CI)+ k tocc) time. Any update operation will be accompanied by at 

most one decreasesmall or decreasebig operation. Each of these operations take O(k ~1) 

time. Since CI is 0( 1 D I Ilk), it follows that P can be inserted or deleted in the specified 

time. 0 

4. Building D in linear time 

In this section, we show how to build the initial dictionary in 0( 1 D 1 log] Cl) time. 

This is better than building the dictionary by repeated insertion of patterns which 

requires O(IDIlogIDI) (as in [3,5]) or O(lDl IDlllk) time depending on the data 

structure used. We can build the dictionary in linear time using either regular a-b 

trees or hybrid a-b trees to store the fail function. 

Let D = {PI ,. . . , Ps} be the initial set of patterns given. Our first major goal is to sort 

all the (normal and extended, regular and complementary) prefixes of S in <in” order. 

For this purpose we partition S into two disjoint sets S, and S,. S, contains those 

prefixes of S ending in a $ and S2 contains the rest of S. 

We start by building a sorted list of the prefixes of Sz. These prefixes are exactly the 

prefixes of the patterns PI ,..., P, and *PI ,..., *P, with the $ stripped from their right 

ends. We build a suffix tree for the reverses of these 2s strings using the suffix tree 

construction of [12] as modified by [S]. There will be a one-to-one correspondence 

between the leaves of the suffix tree and the prefixes of S2 as proved in [5, Section 2, 

Lemma 21. If we sort the children of every internal node of the suffix tree by the labels 
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of the edges connecting the children and the parent, then the left-to-right order of the 

leaves of the suffix tree is the cinv order of the prefixes of SZ. We can build the suffix 

tree in 0( ID Ilog Cl) time. Rearranging the children and scanning the leaves in the 

left-to-right order takes only 0( I D I log I Cl) time. So we can order all the prefixes of 

S2 in O(IDIlogICI) time. 

The prefixes of S1 (and S,) occur consecutively in S (this follows from the assump- 

tions made on $ in Section 2). Furthermore, the prefixes of Si are in one-to-one 

correspondence with the prefixes of S2, and occur in exactly the same cinv order as 

the corresponding prefixes of S2. Thus we can build a sorted list of the prefixes of 

S1 by scanning the list of the prefixes of SZ, and for each prefix x of S2 inserting (in the 

same relative order) the prefix x$ into S1 . Finally we concatenate both S2 and S1 to 

obtain S in the cinv order. This takes O(lDl) time. 

In our dictionary structure, we used both a binary search tree and a Dietz-Sleator 

list on the sorted list of prefixes. Both of these can be built in O(lDl) time (see the 

discussion on building a-b trees below). 

Our second major goal is to compute thefail function. Specifically, to each prefix w, 

we want to associate those strings x, such that_/&/(x) = w. We temporarily keep these 

strings associated with w in a sorted list in < in” order, which we call w’s fail list. The 

strings on the fail list will become the leaves of the fail tree T,. By Lemma 2.11, these 

are precisely the strings x such that w <inv~<inv*~, and there is no y such that 

W<invY<i,,X<i”,*Y<inv *w. Intuitively, if we think of each regular complementary 

pair of a normal prefix as a pair of matching parentheses, we want to find the deepest 

pair of parentheses containing x; if w is the left parenthesis in that pair, thenfuil(x) = w. 

The natural way to do this is to scan the list S keeping track of the unmatched normal 

prefixes on a stack STK. We use the following scanning rules in the order below: 

1. If X#E is regular, then fuil(x)=top(STK), so append x to the fail list for 

top(STK). 
2. If x is normal and regular, then push(x) onto STK. 

3. If x is normal and complementary, pop(STK). 
4. If x # $ is complementary, thenfuil(x) = top(STK), so append x to the fail list for 

top(STK). 
The scanning rules ensure that fail(x) is never x for a regular prefix, and 

fuil(*x)=fuil(x) for every complementary prefix, as desired. Scanning the list takes 

constant time per prefix, so this step takes O(lDl) time. 

Finally we organize each fail list into a fail tree. For each w, we have computed the 

leaves of T, in sorted order as w’s fail list. To build T, we build a search tree with the 

elements of the fail list as leaves. How we proceed depends slightly on whether we are 

using standard a-b trees or hybrid a-b trees. We can build any standard a-b tree 

given the sorted list of leaves in linear time [13]. To build hybrid a-b trees, let n be the 

total number of leaves in all trees. Given k > 2, choose c( as described in Section 3 and 

define the value m. Build the trees with all small nodes if n < m, and with all big nodes if 

n>m. The correctness of this construction follows from Lemma 3.2. This also takes 

only O(lDl) time. 
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We can summarize our linear time construction algorithm as follows: 

BUILD(D={&...,P,}) 

1. Build suffix tree on the reverses of PI ,..., P,, *P, *PI ,... , to order SZ. 

2. Scan SZ and build S, . 

3. Concatenate S2 and S1 to obtain S. 

4. Build the search tree, ST, and the Dietz-Sleator list DSL for the sorted list of 

prefixes. 

5. Scan the sorted list and compute the fail list of each prefix. 

6. Convert each fail list into a (regular or hybrid) a-b tree. 

The entire process takes linear time as every step has been shown to take 

0( 1 D 1 log1 Cl) time. We can summarize: 

Theorem 4.1. The initial dictionary D can be constructed in 0( 1 Dllogl Cl) time. 
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