
Theoretical Computer Science 131 (1994) 295-310

Elsevier

295

Dynamic dictionary matching with
failure functions*

Ramana M. Idury** and Alejandro A. Schiiffer***
Department of Computer Science, Rice Unioersity, P.O. Box 1892, Houston, TX 77251-1892. USA

Communicated by M. Nivat

Received March 1992

Revised October 1993

Abstract

R.M. Idury and A.A. Schaffer, Dynamic dictionary matching with failure functions, Theoretical

Computer Science 131 (1994) 295-310.

Amir and Farach (1991) and Amir et al. (to appear) recently initiated the study of the dynamic

dictionary pattern matching problem. The dictionary D contains a set of patterns that can change

over time by insertion and deletion of individual patterns. The user may also present a text string

and ask to search for all occurrences of any patterns in the text. For the static dictionary problem,

Aho and Corasick (1975) gave a strategy based on a failure function automaton that takes

O(IDlloglCI) time to build a dictionary ofsize JDI and searches a text Tin time O((TlloglZI+tocc),
where tocc, is the total number of pattern occurrences in the text.

Amir et al. (to appear) used an automaton based on suffix trees to solve the dynamic problem.

Their method can insert or delete a pattern P in time O(l PIlog and can search a text in time

O(((TI+tocc)loglDl).
We show that the same bounds can be achieved using a framework based on failure functions. We

then show that our approach also allows us to achieve faster search times at the expense of the

update times; for constant k, we can achieve linear O(ITl(k+loglZl)+ktocc) search time with an

update time of O(klP(JDl”‘). Th. is is advantageous if the search texts are much larger than the

dictionary or searches are more frequent than updates.

Finally, we show how to build the initial dictionary in O(IDIloglZJ) time, regardless of what

combination of search and update times is used.

1. Introduction

Amir, Farach, Galil, Giancarlo, and Park [3, 51 (AFGGP for short) initiated the

study of the dynamic dictionary matching problem. We are given a collection of

Correspondence to: A.A. Schaffer, Department of Computer Science, Rice University, P.O. Box 1892,

Houston, TX 77251-1892, USA.

*An extended abstract describing this research has been published in the proceedings of the Third
Symposium on Combinatorial Pattern Matching held in Tucson, AZ in April 1992.

** Research partially supported by a grant from the W.M. Keck Foundation. Present address: Depart-

ment of Mathematics, University of Southern California, Los Angeles, CA 90089-l 113, USA.
***Research partially supported by NSF grant CCR-9010534.

0304-3975/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(93)E0193-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82224517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

296 R.M. Idury, A.A. Schliffer

patterns D = {PI, Pz, . . ., P,}, called the dictionary, that can change over time. The

basic matching operation is to search a text r[l, t] and report all occurrences of

dictionary patterns in the text. The dictionary can be changed by inserting or deleting

individual patterns.

The static dictionary matching problem, in which inserts and deletes are not sup-

ported, was addressed in earlier papers by Aho and Corasick [2] and Commentz-

Walter [9]. A recent survey article by Aho [l] provides a comprehensive overview of

these papers. The semi-dynamic dictionary matching problem, in which only insertions

are allowed, was introduced by Meyer [14]. Algorithms for the dictionary problems

have applications to database searches and molecular biology [2,5].

The two algorithms for static dictionary matching can be summarized as follows. We

use 1 D 1 to denote the total size of all the patterns in the dictionary; we use C to denote

the alphabet and ICJ to denote its size. The Aho-Corasick algorithm (AC for short)

builds the dictionary D in time O((D(loglCl) and searches a text T[l, t] in

O(tloglCl+ tocc) time, where tocc is the total number of occurrences reported. For

small bounded alphabet the AC algorithm runs in linear time. The AC algorithm uses

an automaton where states correspond to prefixes of dictionary patterns and transitions

are determined by failure functions as in the Knuth-Morris-Pratt [1 l] (KMP for short)

string searching algorithm. The Commentz-Walter (CW for short) algorithm instead

uses ideas from the Boyer-Moore [7] string matching algorithm. Like the AC algo-

rithm the CW algorithm also builds the dictionary in O(IDlloglCJ) time; like the

Bayer-Moore algorithm, the CW algorithm has good practical performance.

The AFGGP algorithm for dynamic dictionary matching is based on using a suffix

tree [15,12, S] as an automaton. Each state corresponds to a substring of some

pattern. The AFGGP algorithm is able to insert or delete a pattern P[l,p] in time

0(p log) D I), and it performs a search in time 0((t + tocc)log I D I). If inserts and deletes

are frequent enough, this algorithm is better than the simple alternative of using the

AC algorithm for searches and rebuilding the dictionary in 0(I D I log I C I) time at each

update. It may be a little surprising that the AFGGP time bounds appear not to

depend on the alphabet size; actually, the log ID I factor is short for log ID I+ log I C 1, but

the log1 ZI factor is subsumed by the log/ D(factor under certain assumptions.

In this paper, we present another algorithm for dynamic dictionary matching that

addresses three questions raised by the AFGGP algorithm and time bounds.

First, is the idea of failure functions and the AC automaton of any use at all for

dynamic dictionary matching? The AC automaton is a natural extension of the KMP

automaton to multiple patterns. One would expect that the same approach may work

for dynamic dictionary matching. We show that this is indeed the case. Our algorithm

is based on the AC automaton. With a suitable choice of underlying data structures,

our method achieves a search time of O((t+ tocc)log(Dl) and an update time of

O(plogJ 01) matching the AFGGP bounds.

Second, are other tradeoffs between search and update times possible? One would

expect that in some applications, the updates are relatively infrequent or the text

strings are much longer than the patterns. Under either condition we would prefer

Dynamic dictionary matching with failure functions 297

a search time better than O((t+ tocc)log(DI) while tolerating an update time worse

than 0(p log 1 D I). It is interesting to ask: how good can we make the update time if we

insist that the search time match the AC bound of O(tloglC1 + tocc) for the static

problem?

We show that our algorithm can also use a different data structure such that for any

constant k>2, it can achieve search time O(t(k+logIC()+ k tocc) and update time

0(p(kjDll’k + log1 Cl)). We thereby match the static search time of [2] and have

a sublinear update time if the patterns are not very long relative to (D(.

Third, can one match the 0(I DllogI Cl) preprocessing time of the AC and CW

algorithms? The AFGGP algorithm builds the initial dictionary by repeated insertion

of patterns in time O(IDlloglDI). W e would like to avoid these insertions, especially if

we are going to increase their cost. We show that regardless of the choice of the data

structure, we can build our initial dictionary in 0(I D I log I C I) time.

Our dynamic dictionary framework has another advantage. It can be used to solve

a natural two-dimensional version of dynamic dictionary matching, while the

AFGGP algorithm does not seem to generalize. One of the algorithmic reasons for

this distinction is described at the end of Section 2.

In our two-dimension problem, the texts are rectangular and the patterns are

square. The size of a text or pattern is its area. Amir and Farach [4] have shown how

to solve the static two-dimensional dictionary problem with a preprocessing time of

O((D(logs) and a search time of O((Tllogs), where s is the number of patterns. In

a separate paper [6], we describe how to combine their two-dimensional search

technique, our dynamic dictionary framework, and some other ideas, to solve the

dynamic two-dimensional dictionary problem, achieving the same time bounds for

insertion, deletion, and search as in one dimension.

In sum, we show that it is possible to dynamize the AC approach to static

dictionary matching to achieve the same preprocessing and search times that they do,

while achieving an update time sublinear in I DI. Alternatively, we can match the

search and update times of the AFGGP algorithm and improve the dictionary

construction time to 0(I D I log I C I). Our framework can be extended to two-dimen-

sional dictionary matching.

The rest of this paper is organized as follows. In Section 2, we present our basic

algorithm for dynamic dictionary matching. In Section 3, we show how to modify the

underlying data structures, to improve the search time. In Section 4, we describe how

to construct the initial dictionary in 0(I D [log1 C I) time.

2. Dictionary automaton and searching algorithm

Let D = {PI, . ., Ps} be a dictionary of patterns, where each Pi, 1 <i < s, is a string

over a finite alphabet C. For convenience, we assume that the empty string E is always

a pattern in the dictionary. We append to each pattern a special symbol $ that does

not occur elsewhere in any pattern or text. We shall henceforth assume that $EC and

298 R.M. Idury, A.A. Schiiffer

that $ is the largest symbol in the lexicographic order. Throughout this paper, we

generally use w,x, y, z to denote a prefix of some pattern, and a, b to denote some

character of C. We use the following dictionary as an example to explain various

definitions and concepts of our automaton.

Example 2.1. Suppose C = {a, b, S}. Let o^= {$, b$, aab$} be a sample dictionary where

every pattern is appended with the special symbol $.

We make the same assumptions on the character set C as in the papers on suffix

trees [15,12,8,3,5]:

Assumption 2.2. Each character is represented by a constant number of bytes.

Assumption 2.3. The relative order of any two characters can be determined in

constant time.

An additional assumption is implicit in [3,5]:

Assumption 2.4. Even though ICI may be very large, the actual number of distinct

characters of Z in any dictionary D is bounded by 1 D I. For stating time bounds, we

assume that the log 1 Z 1 factor is subsumed by the log (D 1 factor.

In [2], each state in the automaton corresponds to a prefix of some pattern in D.
From now on, we use a prefix to denote its state. Intuitively, if we are in a state x after

reading the first j characters of a text, x is the longest prefix of any pattern ending at

the jth position of the text. Aho and Corasick [2] defined two important (partial)

functions, goto and fail, that describe the transitions in their automaton.

goto(x, a) = xu if xu is a prefix of some pattern in the dictionary, else it is undefined,

which we denote by 1. Therefore, goto is a partial function in that each state may not

have a transition on every symbol. For any prefix x, fail(x) = w such that w is the

longest prefix of some pattern such that w is a proper suffix of x. Figure 1 shows

a sample automaton where goto transitions are shown by solid edges and fail

transitions are shown by dotted edges. Whenever a transition cannot be made because

goto is undefined, we repeatedly replace the state withfuil(stute) until a transition can

be found. The basic search loop is:

while goto(stute, symbol) = I do

stute+fuiI(state)
stute+goto(stute, symbol)
symboltnextsymbol

For any given choice of state and symbol we may have to take the fail transition

repeatedly, but this shortens the length of the new state. The total time needed to scan

a text T using this algorithm is 0(I T I (g +f)), where g +f is the time needed to make

one evaluation of goto and fail [2].

Dynamic dictionary matching with failure functions 299

Fig. 1, Search automaton for the set of patterns {b, ab, aab}.

Like AC, we store the goto function as a directed rooted tree, where the nodes

correspond to automaton states (pattern prefixes). The arcs of the tree are directed

away from the root and every arc is labeled with a character from C. We organize the

outgoing arcs of an internal node into a binary search tree with the arc labels as the

keys for search, as suggested in [2]. The degree, or the maximum number of children

of an internal node, of a goto tree is bounded by 1 Cl. With this modification,

computing each goto takes 0 (log 1 C I), or 0 (log 1 D I) time by Assumption 2.4. We also

store with each node a pointer to its parent node. For each prefix x of a pattern, we

keep a count of how many patterns have x as a prefix.

We call a string a normal prejix if it is a prefix of some pattern in D. For each proper

prefix x we also define an extended prex, x, by appending the character $; the

extended prefixes help in detecting patterns. The corresponding states are called

normal or extended. In Example 2.1, the set of normal prefixes is

{E, a, b, $, aa, b$, aab, aab$} and the set of extended prefixes is (S, a$, b$, aa$, aab$}.
Note that some prefixes are both normal and extended. We extend the definition of

fail to accommodate the extended prefixes as follows: Let w be a prefix (normal or

extended). fail(w) = x such that Ix I < 1 w [and x is the longest suffix of w such that x

is a normal prefix. In Example 2.1, fuil(aab$)= b$ but fail(aa$)#a$ since a$ is

not a normal prefix.

We recognize patterns as follows. When we reach a position of a text, we pretend

that the next symbol is a $. If we can make a transition to some normal prefix ending

with a $, then we know that a pattern has been matched at that position, since any

normal prefix ending with a $ must be a pattern in the dictionary. By applying fail
repeatedly, we can report all the matching patterns in the order from the longest

pattern to the shortest.

Suppose we are searching the text abaabba for the occurrences of the patterns in the

dictionary D of Example 2.1. After reading the prefix abaab, we will be in the normal

state aab. When we pretend to read $ as the next symbol, we will temporarily enter

a state aab$ and since this is a normal state in the dictionary we report that a pattern

300 R.M. Idury, A.A. Schbfk

aab is recognized at the current location of the text. If we takefX(aab$)= b$ we see

that we have matched another (smaller) pattern b. Again, if we take fuil(b$) = $ we

realize that no more patterns can be matched as this corresponds to the empty pattern

E. Since we keep track of the state ub, we can continue our search by reading the next

symbol b from the text.

In [2], fail is stored as a directed, rooted tree with the arcs pointing towards the

root. If fail(s)= t then there will be an arc s-t. The (in)degree of the fail tree is

unbounded. We use a new method to storefail that enables us to insert new patterns,

updating the fail function. Before describing our representation of fail, we explain

some auxiliary prefixes and data structures that we use.

Let *$C be a new symbol such that * > a or any ~EC in lexicographic comparison.

For every prefix wgC* we define *w as the complement of w. We call w a regular prefix,
and *w a complementary prefix. For the purpose of representation, we extend the

definition offuil as follows: for a regular prefix x, iffuil(x)=z then fuil(*x)=z. We

define a total ordering on the set of prefixes and their complements and call it the

inverted order denoted by < in”. For two distinct strings w and x, w < in” x if wR comes

before xR in the lexicographic ordering, where xR is the reverse of the string x.

Example 2.5. Consider the list of prefixes of d in Example 2.1 in the inverted order. It

can be represented as: s^= E, a, ua, *au, *a, b, aub, *uab, *b, S, us, au& *ua% *a% b% aab$,

*uub$, *b$, 4, *.

The number of extended prefixes is at most equal to the number of normal prefixes,

so the number of regular prefixes is 0(1 D I). The number of complementary prefixes is

exactly equal to the number of regular prefixes. Therefore, the total number of prefixes

in our dictionary structure is only O(\Dl), independent of C.

Let S denote the set of all normal and extended, regular and complementary

prefixes of patterns in D. An important property of S is that for any string x, if

S contains x then S contains every prefix of x. All string comparisons are made w.r.t.

< inv ordering unless stated otherwise. For a nonempty string xeS, pred(x) is the

largest string in S smaller than x. We need to compute pred(x) when inserting a new

string to know where the new string lies in the cinv order. In Example 2.5,

pred(aub)= b and pred(b) = *a. The following lemmas state some important properties

of the prefixes in S that follow directly from the definition of <in” and the

character (*).

Lemma 2.6. Let w,x~S be arbitrary regular prejxes. Let YES be any prefix.
1. w<inv *w; w is smaller than its complement.
2. W<inv~<inv*W if and only tfw<inv*x<inv *w; if we replace a regular prefix with

u’(’ and its complement with a’), then the prefixes of S in the <in” order yield a list of well

balanced parentheses.
3. If w < inv y < inv*~ then y = y’wfor some nonempty y’; w and *w are, respectively, the

smallest and largest prefixes in S with the suffix w.

Dynamic dictionary matching with failure functions 301

Lemma 2.7. Let xa be the prefix we are inserting into S. Suppose yb#xa is a prefix

already in S. Then the following relations hold:

1. E <invXU.

2. If b < inva then yb < inv xa. Similarly if a < invb then xa < inYyb.

3. If b = a then yb < in” xa ifand only ify < invx. Since x and y must already be in S we

can determine whether Y<~““x from S alone.

Lemma 2.7 suggests a way to obtain the relative order of two prefixes without

making a complete lexicographic comparison. We utilize Lemma 2.7 to compute the

pred function by building an auxiliary search tree, called ST, on the top of all the

prefixes of S. The elements of ST are basically pointers to the states of the goto tree

sorted by the inverted order of the corresponding prefixes. We actually store ST as an

aab tree [13] with all the prefixes as leaves. For any state corresponding to a prefix yb

we can determine the character b and the state with the prefix y in constant time as y is

the parent of yb in the goto tree and hence this information is available with the parent

pointer of yb. To utilize Lemma 2.7 we need to know the relative order of all the

existing prefixes in S. Since we implement ST as an a-b tree, we can determine the

relative order of two prefixes in O(loglD I) time.

We now describe one way to compute pred(xa) for a nonempty prefix xa not yet in

S. Our aim is to find the largest prefix in STsmaller than xa. We start the search at the

root of the ST and proceed towards the leaves. Suppose yb is the key associated with

an internal node of the ST. At the next level we take the right child of the node if

Yb < inv xa and the left child otherwise. With this scheme we need O(loglDl) tree

comparisons to find pred(xa). From now on we assume that we have a routine

FINDPRED that computes the pred of a new prefix. We can conclude the following

lemma.

Lemma 2.8. Let xa be a prefix to be inserted into S. We can compute pred(xa) using

FINDPRED(xa) in o(log’lDl) time.

Proof. We can determine pred:xa) with O(loglD() tree comparisons. Since ST is

organized as an a-b tree, the relative order of two existing prefixes can be determined

in O(loglD I) time. Therefore, by Lemma 2.7 each tree comparison takes O(loglD I)

time. From this it follows that we can determine pred(xa) in 0(log2 101) time. 0

To reduce the time to compute pred, we use a data structure invented by Dietz and

Sleator [lo] for solving the order maintenance problem efficiently. In the order

maintenance problem, we define the following operations on a linear list L, initially

containing one element. We attach an L to the name of every operation to distinguish

them from the dictionary operations.

L_Znsert(x, y): insert a new element y after the element x in L.

L-Delete(x): delete the element x from L.

L-Order(x, y): return true if x is before y in L, false otherwise.

302 R.M. Idury, A.A. Schb’ffer

Theorem 2.9 (Dietz and Sleator [lo]). The aboue three operations can be implemented
in worst-case O(1) time.

We store the prefixes of S in an auxiliary list data structure that we call the

Dietz-Sleator list, or DSL. Using DSL we can determine the relative order of two

prefixes in constant time instead of O(log)Dl) time as achieved by using only ST.

Lemma 2.10. Let x and y be two prejxes in S. By building DSL for all the prefixes of S,

we can determine the relative order of x and y in constant time by Theorem 2.9. Hence,

we can compute pred in O(log 1 D I) time.

When we insert a new prefix xa, we need to find the value offail(Below we show

how to use pred(xa) to compute fuil(xa) quickly.

Lemma 2.11. Suppose w is a normal regular pre$x, and W <invX<inv*W. Then

fuil(x)=w if and only if there is no normal regular y such that

w < inv Y < inv x < inv *Y < inv *w.

Proof. By Lemma 2.6, w is a suffix of x. If there is a normal regular prefix YES such

that W<invy<i,,x<inv*Y<inv *w then y must be a suffix of x longer than w. By

definition, fail(x)#w because of the presence of y. On the other hand, if there is no

such y then fail(x)= w. 0

In Example 2.5, fuil(aab)=b since there is no normal y such that

b < invy < in”Uab < inv*y < inv*b, but fail(aab) # E since b can play the role of y in that case.

Lemma 2.12. Let x be a regular prefix. Suppose pred(x) = w. If w is normal and regular

then fail(x)= w else fail(x) =fail(w).

Proof. If w is normal and regular then w < in”X < in” *w. From the definition of pred,

there is no normal regular y such that w < invy < invx < inv*W. Hence by Lemma 2.11,

fail(x) = w. Suppose that w is not both normal and regular, and that fail(w) = z. Then

from Lemma 2.11, z < invw < in” *z and there is no normal regular y such that

Z<invY<invW<inv*Y<inv *z. Since x is right after w in the <in” order the same

conditions hold for x. Hence fail(x) = z =fuil(w). q

In Example 2.5, fuil(aab)= b since b=pred(aab) is normal and regular. Similarly

fail(b)=E=fail(*a) and one may observe that pred(b)= *a.
We show later how SEARCH, INSERT and DELETE can be implemented using the fail

and pred functions on the set S. We first describe how fail is represented. We store fail
as a forest of u-b trees. Amir and Farach [3] use 2-3 trees in their suffix-tree

automaton for a similar purpose. Each tree is called a fail tree, and the forest is called

a fail forest. There is a one-to-one correspondence between the set of a-b trees and the

Dynamic dictionary matching with failure functions 303

set of normal regular prefixes of S. If w is a normal regular prefix, then T,,, denotes the

a-b tree associated with w and contains as leaves all strings x such thatfail(w. In

Example 2.5, T, contains {au, *aa> as leaves, whereas Tallb is an empty tree. The root of

the tree 7” contains a pointer to x. Each prefix XES is a leaf in exactly one a-b tree, T,,

where y =fuil(x). The leaves of any a-b tree are sorted in < in” order. For any x,fuil(x)

can be computed by starting at the leaf x finding the root of the tree T, and taking the

pointer to y.

When we insert a new pattern P into D, we inset its prefixes and extended prefixes

into S, in increasing order of length. Thus, when we insert a string x into S, we have

already inserted all the prefixes of x. Using Lemmas 2.8 and 2.10 we can find

w = pred(x). From Lemma 2.12 we can obtain y =fuil(x). If w = y insert x into T, as the

leftmost leaf. Otherwise, insert x into Ty right after w. We can similarly find

z=pred(*x) (z could be x) and insert *x into T,, right after z. We keep a separate

bidirectional link between x and *x. Similarly when we delete a pattern P from D, we

delete its prefixes in the order of decreasing lengths.

After inserting x and *x into S we must create TX. For this we must first identify

those prefixes whose fail value changes to x. By Lemma 2.11, these are the prefixes

with a suffix x and whose current fair value is y. But these are exactly the leaves of

T, properly enclosed between x and *x. We change fail for these nodes by a special

split of T,, into T, and TX. We can similarly handle the case when a normal prefix

x withfuil(x) = y becomes extended as a result of deletion of some pattern. In this case

we fuse Ty and TX into TV with a special concatenate. These special operations were

used similarly in [3].

As an example, consider inserting a new pattern ub$ into the dictionary d of

Example 2.1. For this we need to insert the prefixes a, a$, ub, and ub$ into the set s^ of

Example 2.5. Since a and a$ are already present in s^ we simply increment the reference

count for them. We insert ub after pred(ub) = b, and *ub afterpred(*ub) = *uub. After

this we have s^= { b,ub, uub, *uub, *ub, *b ,...}. Tb contained {uub, *uub} as leaves

before the insertion of ub and *ub. We create Tab by splitting Tb as described above.

After this step, T,, contains {uab, *uub} as leaves, and Tb contains {ub, *ub} as leaves.

We similarly insert ub$ and *ab$.

We summarize the algorithms by giving pseudocode to describe our procedures for

searching a text, and inserting and deleting a pattern from a dictionary. We use

prefixes instead of states for clarity.

SEARCH(T=tl .,. t,)

state+&

for icl to n do

while goto(stute, ti) = 1

stutecjuil(stute)

stute+goto(stute, ti)

temp+goto(stute, $) /* Pretend a $ is read to check if any patterns match */

if temp is not normal then temp+fuil(temp)

304 R.M. Idury, A.A. Schbxer

while temp#$ do /* Report all nonempty patterns */

Print the pattern associated with temp /* Since temp ends in $ we have matched

a pattern */

temp+fail(temp) /* See if any smaller patterns match */

INSERT(P = p1 . . . p,) /* pm = $ */

suppose p1 . . . pj is the longest prefix of P shared by some other pattern.

increment the reference count for the prefixes of p1 . . . pi.

for itj+ 1 to m do

1. let x=p, . . . pi_ 1. Let a = pi. /* xa is being inserted. x is already in S*/

2. compute y=pred(xa) using FINDPRED

3. compute w =fail(xa) using Lemma 2.12

4. if w #y then

insert xa into T, right after y.

else insert xa into T, as the leftmost leaf.

5. insert xa into ST after y.

6. L-Insert xa into DSL after y.

7. compute z=pred(*xa) USing FINDPRED /* w =fuil(*xa). */

8. insert *xa into T, right after z.

9. insert *xa into ST after z.

10. L-Insert *xa into DSL after z.

11. repeat steps l-10 to insert xa$ and *~a$. /* extended prefixes */

12. from TX, by a split of T, into T, and T,,.
DELETE(P=pl . . . p,) /* p,=$ */

suppose p1 . . . pj is the longest prefix of P shared by some other pattern.

decrement the reference count for the prefixes of p1 . . . pj.

for icm downto j+ 1 do

let x=pl . . . pi /* x is a normal prefix */

if x$ is still in S then

delete x$ and *x$ from their fail tree.

delete x$ and *x$ from ST.
L-Delete x$ and *x$ from DSL.

let y=fail(x). Fuse TX and T, into T, by a concatenate.
delete x and *x from T,.

delete x and *x from ST,,.

L-Delete x and *x from DSL.

The correctness and running time bounds for the above procedures follow from the

previous lemmas.

Theorem 2.13. Let D be a dictionary of patterns over an alphabet C. We can search
a text Tfor occurrences of patterns of D in time 0(1 T 1 (log1 C (+ log 1 D I) + tocc log (D I),
where tocc is the total number of patterns reported. We can insert or delete a pattern P in

Dynamic dictionary matching with failure functions 305

time O(IPI(logICl+logJDl)). M oreover, we require only 0(IDI) space to store the

automaton.

The Dietz-Sleator [lo] list plays an interesting role in the generalization to two

dimensions [6]. A key component in the semi-dynamic two-dimensional dictionary

algorithm [4] is a subroutine that answers queries of the form: “Is x a prefix of y?“,

where x and y are suffixes of dictionary patterns in constant time. In [4] the prefix

query is converted into a least common ancestor query on a suffix tree; least common

ancestor queries on fixed trees can be answered quickly with enough preprocessing.

One of the obstacles to making the algorithm of [4] dynamic is that it is not known

how to efficiently answer the least common ancestor queries in a dynamic setting.

Therefore, we find a different way to handle the prefix queries in a dynamic setting.

First, we convert the prefix queries into suffix queries on the reversed strings. To

answer a suffix query, we can use the following lemma (closely related to Lemma 2.6).

Lemma 2.14 (Amir et al. [6]). x is u &fix O~JJ zj” and only if x -=c inv Y-C inv*Y < inv*x.

The middle <in” ordering always holds and the outer two can be tested in constant

time using the L-Order operation. This works even when the lists are dynamically

changing due to insertions and deletions.

3. Linear time searching

We show how to improve the search time in this section. From Theorem 2.13, a text

T can be searched in O(logITl(ICI+logIDI)+tocclog)DI) time. The loglC/ factor

comes from the computation of each goto and the log ID) factor from the computation

of each fail. We show that it is possible to speed up the computation off&l and achieve

a faster searching algorithm. When ICI is small and finite, or when ICI 6 1 D j, this is

better than the searching algorithm of Section 2. It does, however, slow down the

update times of the dictionary.

In Section 2, we used a-b trees to store every fail tree. In an a-b tree, the number of

children or the degree of a nonroot internal node v, denoted by 6(v), must be in the

range [a,b], and must be in the range [2,b] if v is a root. In this section, we use

a variant of a-b trees, which we call hybrid a-b trees, to store the fail trees. In a hybrid

a-b tree different nodes may have different ranges for the number of children

permitted. The ranges depend on the number of leaves in the fail forest.

Our hybrid a-b trees depend on a parameter, which is a fixed integer independent of

ID /. For any k 3 2, the hybrid trees will allow us to perform afindroot in O(k) time, and

any update operation in O(k nllk) time, where n is the total number of leaves in the

forest of fail trees. Recall that n is twice the number of states in the automaton.

Let aa 16 be the smallest power of 2 such that u~<~Q(~c()~. Each internal node is

designated as small or big, but may change its designation during the algorithm.

306 R.M. Idury, A.A. Schiiffer

A small nonroot u has S(D)E[CI, 21~1, a small root u has c?(u)E[~, 2~x1, a big nonroot u has

6(o)~[2a,4~], and a big root u has 6(u)~[2,4cr]. We maintain lists of small and big

nodes using a separate link. Let #small and # big denote the number of such nodes.

Our ranges imply that any nonroot has O(nljk) children and there will be O(k) levels

in any hybrid tree.

The operations insert, delete, concatenate, and split can be implemented in a similar

fashion to that used for regular a-b trees. Each operation visits or modifies at most

b nodes at each level of the tree and may cause at most a constant number of nodes per

level to violate the constraints on the number of children allowed.

In the rest of the section we show how to handle overflows and underflows in the

number of children of a node of a hybrid tree. Define excess = n- ak, and

m = (CC~ + (2a)k)/2. We maintain two invariants:

small + excess 6 (2~)~ - Clk (1)

big d excess (2)

Note that all nodes will be small when n = uk, and big when n = (2~)~. If n goes above

(~cx)~, we redefine all the big nodes as small nodes and start operating in the interval

(2~r)~<n<(4a)~ with small nonroot nodes having the range [2a,4~] and big nonroot

nodes having the range [4a, 81x1. We redefine excess and m accordingly. We can do

a similar thing when n falls below ak. The following two lemmas simplify invariant

maintenance.

Lemma 3.1. If there are n leaves in the fail forest, then the number of internal nodes of

the fail trees is at most 3nj.5.

Proof. The number of fail trees is equal to the number of normal regular prefixes.

Since there is a complementary prefix for every regular prefix, the total number of

prefixes n is at least twice the number of normal regular prefixes. This implies that the

number of fail trees is at most n/2. Thus the number of root nodes is at most n/2.

Since a> 16, the degree of any nonroot internal node in a fail tree must be at least

16. This means that the number of nonroot internal nodes can be at most n/15. Hence

the total number of internal nodes of all fail trees is at most n/2+n/15 which is less

than 3n/5. 0

Lemma 3.2. If n d m then invariant 1 is satisfied. Similarly if n > m then invariant 2 is

satisjied.

Proof. If n <m then excess <((2cOk -ak)/2. From Lemma 3.1 it follows that

#small < 3n/5 d 3/5((a” + (2~1)~/2). Hence #small + excess d $(2~)~ - ak/5 d (2~)~ - ak;

the last inequality holds provided k > 2. One can similarly verify that #big d excess

whenever n>5ak/2, which holds if n>m and k>2. 0

Dynamic dictionary matching with failure functions 307

Lemma 3.2 implies that when n d m we only have to control #big, as invariant 1 is

always satisfied in this case, and the value of #small has no effect on invariant 2.

Similarly when II 2 m, we only have to control #small.

If n d m, we do any update operation in such a way that #big never increases. Any

update operation can increment or decrement the value n by at most one. If invariant

2 is satisfied before a delete but violated afterwards, we have to decrement #big by

only one to maintain invariant 2. Similarly, when n 3 m, we update in such a way that

#small never increases. We may have to decrement #small by at most one after an

insert. The operations concatenate and split do not change the value of n.

Two primitive operations needed for implementing hybrid trees are those that

handle overflow and underflow of an internal node. Those are the cases when the

degree of an internal node goes one above or below its declared range. We show how

overflow and underflow can be eliminated without violating the invariants. We

annotate each line of pseudocode by an ordered pair (i, j) implying that #small

changes by i and #big by j after executing the line.

overfZow(u):
Suppose we are controlling #small.

If u is small redesignate it as a big node. { (- 1, l)}

If v is big break it into two big nodes. { (0, 1))
Suppose we are controlling #big.

(*) If u is small break it into two small nodes. {(LO)}

(*) If u is big break it into one big and one small node. ((1,O))

underf7ow(u):
suppose v is a root node.

if degree(u) = 1 remove v. Name its only child as the new root. { (- 1,0) or (0, - l)]

suppose v is a nonroot node with an immediate sibling w.

let [a, b] be the range of w.

if 6(w) 2 a + 1 transfer one child of w to u. { (0, 0)}

otherwise

if u and w are both big(smal1) then

fuse them into one big(smal1) node. { (0, - 1) or (- l,O)}

if one of them is big and the other small fuse them into one big node. { (- LO)}

One can check that each change in #small or #big does not violate the invariants.

Also underflow(v) never increases #small or #big. If an invariant is violated by 1 as

a result of an insert or delete, applying overflow or underflow does not exacerbate the

violation, and we restore the violated invariant as explained below.

A single overflow or underflow can be handled in O(U) time. Correcting the over-

flow(underflow) of a node may cause an overflow(underflow) of its parent. This is the

way any update operation is implemented; we make changes to an internal node and

correct any overflows or undertlows that may propagate all the way to the root. Since

there are O(k) levels in any tree, we can implement any update operation in O(k ~1) time.

308 R.M. Idury, A.A. Schiiffer

Finally we show how to decrement #small or #big by at least one in O(k CX) time.

These operations are necessary to restore the invariants that may be violated after an

insert or delete operation. There is no problem with the invariants if the following

operations cause #small or #big to go down by more than one.

decreasesmall(): Pick some small node v. If v is a root, redesignate it as a big node.

If v is not a root, it must have an immediate sibling w. If w is small, then fuse v and

w into a big node. If w is big, fuse v and w into one or two big nodes depending on

ASP. This may propagate underflows to the ancestors of v which can be

handled without increasing #small as we noted earlier that #small does not increase

during an underjow operation.

decreasebig(): Pick some big node v. Split v into one or two small nodes depending

on 6(v). Any propagated overllows can be handled without increasing #big as can be

observed from the lines marked (*) of overflow.

Theorem 3.3. For a jixed integer k 22, we can search a text T in
0(1 TI (k + log 1 Cl) + k tocc) time. Furthermore we can insert or delete a pattern P into

a dictionary D in O(IPl(klDl”k+loglCI)) time.

Proof. For any state v,fail(v) can be obtained with ajindroot operation. Since this

takes only O(k) time on a hybrid a-b tree we can search T in

0(1 Tl(k +log/CI)+ k tocc) time. Any update operation will be accompanied by at

most one decreasesmall or decreasebig operation. Each of these operations take O(k ~1)

time. Since CI is 0(1 D I Ilk), it follows that P can be inserted or deleted in the specified

time. 0

4. Building D in linear time

In this section, we show how to build the initial dictionary in 0(1 D 1 log] Cl) time.

This is better than building the dictionary by repeated insertion of patterns which

requires O(IDIlogIDI) (as in [3,5]) or O(lDl IDlllk) time depending on the data

structure used. We can build the dictionary in linear time using either regular a-b

trees or hybrid a-b trees to store the fail function.

Let D = {PI ,. . . , Ps} be the initial set of patterns given. Our first major goal is to sort

all the (normal and extended, regular and complementary) prefixes of S in <in” order.

For this purpose we partition S into two disjoint sets S, and S,. S, contains those

prefixes of S ending in a $ and S2 contains the rest of S.

We start by building a sorted list of the prefixes of Sz. These prefixes are exactly the

prefixes of the patterns PI ,..., P, and *PI ,..., *P, with the $ stripped from their right

ends. We build a suffix tree for the reverses of these 2s strings using the suffix tree

construction of [12] as modified by [S]. There will be a one-to-one correspondence

between the leaves of the suffix tree and the prefixes of S2 as proved in [5, Section 2,

Lemma 21. If we sort the children of every internal node of the suffix tree by the labels

Dynamic dictionary matching with failure functions 309

of the edges connecting the children and the parent, then the left-to-right order of the

leaves of the suffix tree is the cinv order of the prefixes of SZ. We can build the suffix

tree in 0(ID Ilog Cl) time. Rearranging the children and scanning the leaves in the

left-to-right order takes only 0(I D I log I Cl) time. So we can order all the prefixes of

S2 in O(IDIlogICI) time.

The prefixes of S1 (and S,) occur consecutively in S (this follows from the assump-

tions made on $ in Section 2). Furthermore, the prefixes of Si are in one-to-one

correspondence with the prefixes of S2, and occur in exactly the same cinv order as

the corresponding prefixes of S2. Thus we can build a sorted list of the prefixes of

S1 by scanning the list of the prefixes of SZ, and for each prefix x of S2 inserting (in the

same relative order) the prefix x$ into S1 . Finally we concatenate both S2 and S1 to

obtain S in the cinv order. This takes O(lDl) time.

In our dictionary structure, we used both a binary search tree and a Dietz-Sleator

list on the sorted list of prefixes. Both of these can be built in O(lDl) time (see the

discussion on building a-b trees below).

Our second major goal is to compute thefail function. Specifically, to each prefix w,

we want to associate those strings x, such that_/&/(x) = w. We temporarily keep these

strings associated with w in a sorted list in < in” order, which we call w’s fail list. The

strings on the fail list will become the leaves of the fail tree T,. By Lemma 2.11, these

are precisely the strings x such that w <inv~<inv*~, and there is no y such that

W<invY<i,,X<i”,*Y<inv *w. Intuitively, if we think of each regular complementary

pair of a normal prefix as a pair of matching parentheses, we want to find the deepest

pair of parentheses containing x; if w is the left parenthesis in that pair, thenfuil(x) = w.

The natural way to do this is to scan the list S keeping track of the unmatched normal

prefixes on a stack STK. We use the following scanning rules in the order below:

1. If X#E is regular, then fuil(x)=top(STK), so append x to the fail list for

top(STK).
2. If x is normal and regular, then push(x) onto STK.

3. If x is normal and complementary, pop(STK).
4. If x # $ is complementary, thenfuil(x) = top(STK), so append x to the fail list for

top(STK).
The scanning rules ensure that fail(x) is never x for a regular prefix, and

fuil(*x)=fuil(x) for every complementary prefix, as desired. Scanning the list takes

constant time per prefix, so this step takes O(lDl) time.

Finally we organize each fail list into a fail tree. For each w, we have computed the

leaves of T, in sorted order as w’s fail list. To build T, we build a search tree with the

elements of the fail list as leaves. How we proceed depends slightly on whether we are

using standard a-b trees or hybrid a-b trees. We can build any standard a-b tree

given the sorted list of leaves in linear time [13]. To build hybrid a-b trees, let n be the

total number of leaves in all trees. Given k > 2, choose c(as described in Section 3 and

define the value m. Build the trees with all small nodes if n < m, and with all big nodes if

n>m. The correctness of this construction follows from Lemma 3.2. This also takes

only O(lDl) time.

310 R.M. Idury, A.A. Schtiffer

We can summarize our linear time construction algorithm as follows:

BUILD(D={&...,P,})

1. Build suffix tree on the reverses of PI ,..., P,, *P, *PI ,... , to order SZ.

2. Scan SZ and build S, .

3. Concatenate S2 and S1 to obtain S.

4. Build the search tree, ST, and the Dietz-Sleator list DSL for the sorted list of

prefixes.

5. Scan the sorted list and compute the fail list of each prefix.

6. Convert each fail list into a (regular or hybrid) a-b tree.

The entire process takes linear time as every step has been shown to take

0(1 D 1 log1 Cl) time. We can summarize:

Theorem 4.1. The initial dictionary D can be constructed in 0(1 Dllogl Cl) time.

Acknowledgments

We thank Amihood Amir for answering our questions about [3,5] and for pointing

out the importance of the large/unbounded alphabet case, thereby motivating us to

find a simpler, more general solution to the basic problem.

References

[l] A.V. Aho, Algorithms for Finding Patterns in Strings, in: J. van Leeuwen ed., Handbook of Theoretical

Computer Science (Elsevier, Amsterdam, 1990) 255-300.

[2] A.V. Aho and M.J. Corasick, Efficient string matching: an aid to bibliographic search, Comm. ACM 18
(1975) 333-340.

[3] A. Amir and M. Farach, Adaptive dictionary matching, Proc. 32nd IEEE Symp. Found. Comput. Sci.
(1991) 760-766.

[4] A. Amir and M. Farach, Two-dimensional dictionary matching, Inform. Process. L&t. 44 (1992) 233-239.

[S] A. Amir, M. Farach, Z. Galil, R. Giancarlo and K. Park, Dynamic dictionary matching, J. Comput.

System Sci., to appear.

[6] A. Amir, M. Farach, R.M. Idury, J.A. La Poutrt- and A.A. Schgffer, Improved dynamic dictionary

matching, Proc. 4th Ann. ACM-SIAM Symp. on Discrete Algorithms (1993) 392401.
[7] R.S. Boyer and J.S. Moore, A fast string searching algorithm, Comm. ACM 20 (1977) 762-772.

[S] M.T. Chen and J. Seiferas, Efficient and elegant subword-tree construction, in: A. Apostolico and

Z. Galil eds., Combinatorial Algorithms on Words, NATO ASI Series, Vol. F12 (Springer, Heidelberg,

1985) 97-107.

[9] B. Commentz-Walter, A string matching algorithm fast on the average, Proc. ZCALP’79, Lecture

Notes in Computer Science, Vol. 71 (Springer, Berlin, 1979) 118-132.

[lo] P. Dietz and D.D. Sleator, Two algorithms for maintaining order in a list, Proc. 19th ACM Symp.
Theoret. Comput. Sci. (1987) 365-372.

[llJ D.E. Knuth, J.H. Morris and V.B. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (1977)
323-350.

[12] E.M. McCreight, A space economical suffix tree construction algorithm, J. ACM 23 (1976) 262-272.
[13] K. Mehlhorn, Data Structures and Algorithms 2: Sorting and Searching (Springer, Berlin, 1984).

[14] B. Meyer, Incremental string matching, Inform. Process. Lett. 21 (1985) 219-227.

[15] P. Weiner, Linear pattern matching algorithms, Proc. 14th IEEE Symp. on Switching and Automata
Theory (1973) l-l 1.

