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ABSTRACT The extracellular ribonuclease barnase and its intracellular inhibitor barstar bind fast and with high affinity.
Although extensive experimental and theoretical studies have been carried out on this system, it is unclear what the relative
importance of different contributions to the high affinity is and whether binding can be improved through point mutations. In this
work, we first applied Poisson-Boltzmann electrostatic calculations to 65 barnase-barstar complexes with mutations in both
barnase and barstar. The continuum electrostatic calculations with a van der Waals surface dielectric boundary definition result
in the electrostatic interaction free energy providing the dominant contribution favoring barnase-barstar binding. The results
show that the computed electrostatic binding free energy can be improved through mutations at W44/barstar and E73/barnase.
Furthermore, the determinants of binding affinity were quantified by applying COMparative BINding Energy (COMBINE)
analysis to derive quantitative structure-activity relationships (QSARs) for the 65 complexes. The COMBINE QSAR model
highlights ;20 interfacial residue pairs as responsible for most of the differences in binding affinity between the mutant
complexes, mainly due to electrostatic interactions. Based on the COMBINE model, together with Brownian dynamics
simulations to compute diffusional association rate constants, several mutants were designed to have higher binding affinities
than the wild-type proteins.

INTRODUCTION

The binding energetics of a protein-protein complex are

governed by several different factors including electrostatic

and hydrophobic interactions between the proteins and

solvent-protein interactions. Individually, these factors can

favor or disfavor binding; the binding affinity is determined

by the net effect. Stronger binding can be achieved by

balancing and optimizing the individual energy terms through

protein engineering. One of the recent advances is the design

of a high-affinity variant of human growth hormone contain-

ing 15 mutations and binding to the human growth hormone

receptor ;400-fold tighter than the wild-type protein (Pal

et al., 2003). But improving the affinity of barnase and barstar

is more challenging because the wild-type proteins already

bind very tightly.

The extracellular ribonuclease of Bacillus amyloliquefa-
ciens, barnase, and its intracellular inhibitor barstar bind fast

(kon ; 108 M�1 s�1) and with high affinity (kd ; 10�14M).

The binding interface consists mainly of polar and charged

residues, and contains a number of buried water molecules. It

shows high electrostatic complementarity, and the electro-

static attraction between the charged and polar residues of

barnase and barstar acts to stabilize the bound complex. On

the other hand, the desolvation cost for these residues when

the proteins bind destabilizes the bound complex. Prior

theoretical studies (Chong et al., 1998; Dong et al., 2003;

Lee and Tidor, 2001a,b; Sheinerman and Honig, 2002) on

the net contribution of electrostatics to the thermodynamics

of binding have shown contradictory results. Tidor and co-

workers (Chong et al., 1998; Lee and Tidor, 2001a,b), using

a continuum solvent electrostatic model, reported an un-

favorable computed electrostatic binding free energy of114

kcal/mol (Lee and Tidor, 2001b) even though they found that

barstar has an electrostatically optimized charge distribution

for tight binding to barnase. Continuum solvent electrostatic

calculations by Sheinerman and Honig (2002) showed, on

the other hand, that the electrostatic attraction and the charge

desolvation cost almost cancel each other and result in a net

contribution to binding affinity close to zero. Very recently,

Zhou and co-workers (Dong et al., 2003) computed favor-

able electrostatic contributions to binding affinity and

pointed out that the electrostatic contribution to barnase-

barstar binding strongly depends on the dielectric treatment

in the calculations.

Another notable characteristic of barnase-barstar binding is

the highly cooperative interactions between some interfacial

residues observed in double mutant cycle experiments

(Schreiber and Fersht, 1995) that result in nonadditivity of

the contributions of the interfacial residues to the binding

affinity. This cooperativity enhances the difficulty of pre-

diction of the effects of mutation on binding affinity.

Therefore, there is a need for models that quantitatively

interpret the correlation between mutation and binding free

energy, and which are useful in guiding the design of proteins

to alter their binding affinity.

A set of 32 mutant barnase-barstar complexes has been

analyzed by Covell andWallqvist (1997) by using a model of

binding free energy that is based on pairwise surface prefer-

ences. The effects of mutations were predicted within an error

margin of 1.5 kcal/mol and it was found that interfacial water

molecules contributed 25% of the binding free energy.
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Recently, Kortemme and Baker (2002) calculated the effects

of 14 single mutations on the binding free energy of barnase

and barstar by using a model based on an all-atom rotamer

description of the side chains with an energy function

dominated by Lennard-Jones interactions, solvation inter-

actions, and hydrogen bonding. The effects on binding of

some mutated residues involved in water-mediated hydrogen

bonds in the interface were underpredicted.

In this work, we studied the wild-type barnase-barstar

complex and 64 mutant complexes by using a Poisson-

Boltzmann continuum model for electrostatics calculations

(Madura et al., 1995) and performing COMparative BINding

Energy (COMBINE) analysis (Ortiz et al., 1995; Wade,

2001) to derive a system-specific quantitative structure-

activity relationship (QSAR) model for estimating overall

binding free-energy differences (electrostatic and nonelec-

trostatic). The aim was, through studying a large set of

mutants of the barnase-barstar system by complementary

theoretical methods, to estimate the relative importance of

different contributions to the binding affinity of barnase and

barstar, and to assess how optimal these proteins are for

binding by using the models to investigate whether mutants

could be designed to bind with higher affinity than the wild-

type proteins.

COMBINE analysis is based upon the premise that the

binding free energy (DG) can be correlated with a subset of

suitably weighted energy components determined from the

structures of the receptor(s) and ligands in bound and un-

bound forms. In this study, the energy terms computed are

the electrostatic desolvation energies of barnase (bn) and

barstar (bs) upon binding, DGdesol bn
ele and DGdesol bs

ele ; re-

spectively, and the pairwise electrostatic, Eele
i ; and Lennard-

Jones, Evdw
i ; interaction energies between each barnase and

each barstar residue in energy-minimized structures of

barnase-barstar complexes (see Methods section for details).

The binding free energy, DG, is estimated as a weighted

linear sum of these energy terms as given in Eq. 1:

DG ¼ w
desol

bn DG
desol bn

ele 1w
desol

bs DG
desol bs

ele

1 +
i

wvdw

i Evdw

i 1 +
i

wele

i Eele

i 1C: (1)

The contribution of each interaction energy term is repre-

sented by its weight, namely the parameter wdesol
bn ; wdesol

bs ;
wvdw
i ; or wele

i in Eq. 1. The weights are obtained by partial

least-squares (PLS) analysis using a training set of com-

plexes with experimentally determined binding affinities.

The COMBINE analysis method has proved successful for

deriving high quality QSAR models for a variety of protein-

ligand complexes including enzyme-inhibitor (Ortiz et al.,

1997, 1995; Pastor et al., 2000; Perez et al., 1998b; Wang

and Wade, 2001), enzyme-substrate (Lozano et al., 2000;

Tomic and Kojic-Prodic, 2002), protein-peptide (Wang and

Wade, 2002), and nuclear receptor-DNA complexes (Tomic

et al., 2000). This study is the first application of COMBINE

analysis to protein-protein complexes.

The procedure and results are summarized here as follows.

First, the structures of 64 barnase-barstar complexes with

different interfacial mutations were modeled and energy min-

imized using the structure of the wild-type protein complex

as the template. See Table 1 for the 65 complexes and their

experimental binding free-energy values, which were taken

from two references (Frisch et al., 1997; Schreiber and Fersht,

1995). In this article, each complex is designated by themuta-

tion in barstar (bs) followed by the mutation in barnase (bn).

Fig. 1 shows thebinding interface and the locationof themutated

residues (six residues in barnase and eight residues in barstar).

The electrostatic contributions to binding in all 65

complexes were computed by solving the finite difference

Poisson-Boltzmann equation (Madura et al., 1995). In these

continuum electrostatic calculations, with a van der Waals

surface dielectric boundary definition, we find that electro-

static interactions are the dominant contribution favoring

barnase-barstar binding. On the other hand, we find that

wild-type barnase and barstar are not fully electrostatically

optimized at the binding interface.

Then the molecular mechanics interaction energies be-

tween barnase and barstar were decomposed on a per residue

pair basis and subjected to two chemometric analyses:

a principal component analysis (PCA) to investigate the

distribution of the 65 complexes in the energy space, and PLS

analysis to derive Eq.1. The PCA analysis highlights three

barnase residues and three barstar residues for which

mutations have substantial effects on the energetics of

barnase-barstar binding. The PLS analysis indicates that the

overall effects of interfacial mutations can be quantitatively

represented by the interaction energies between 16 barnase

and 11 barstar residues and the electrostatic desolvation

energies of barnase and barstar upon binding.

Based on the chemometric analysis results, some mutants

were designed to optimize binding affinity and their binding

free energies were predicted. The association rates of the

designed mutants were calculated by using Brownian

dynamics simulations (Gabdoulline and Wade, 2001). The

results provide mutants of barnase and barstar that are

predicted to have higher binding affinities than the wild-type

proteins due to both increased association rates and decreased

dissociation rates.

MATERIALS AND METHODS

Molecular mechanics modeling

Preparation of mutant complexes

The crystallographic structure of the pseudo wild-type barnase-barstar

complex(Vaughan et al., 1999) (Protein Data Bank code 1b27) was used as

the template for preparing most mutant complexes. The complex formed by

chains A and D, including 213 surrounding bound water molecules, was

extracted. Chain A was used for modeling barnase and chain D was used for

modeling barstar. A40 and A82 in barstar were mutated to cysteines to
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TABLE 1 Energetics of the wild-type barnase-barstar complex and 64 mutant complexes

No. Complex (bs:bn)* DGexp (kcal/mol) DGdesol bn
ele ðkcal=molÞ DGdesol bs

ele ðkcal=molÞ Ebn�bs
ele ðkcal=molÞ DGbinding

ele ðkcal=molÞ DGpred (kcal/mol)

1 WTWT �19.0 28.18 25.26 �75.67 �22.22 �18.35

2 WTK27Awm �13.6 25.59 24.61 �67.31 �17.11 �14.15

3 WTR59A �13.8 23.68 22.66 �61.22 �14.89 �14.49

4 D39AR59A �7.7 15.57 15.13 �35.04 �4.35 �9.28

5 WTR87A �13.5 23.61 23.45 �62.73 �15.66 �14.22

6 WTH102Awm �12.9 23.33 21.55 �64.37 �19.48 �13.66

7 Y29FWTwm �19.1 28.33 22.61 �72.53 �21.59 �17.60

8 Y29AWT �15.6 25.81 21.63 �68.16 �20.71 �16.11

9 D35AWTwm �14.5 27.41 18.75 �64.82 �18.65 �13.75

10 W38FWT �17.4 26.88 25.13 �73.77 �21.77 �16.97

11 D39AWT �11.3 20.66 17.23 �49.38 �11.48 �13.87

12 T42AWT �17.2 26.46 24.3 �72.70 �21.94 �16.62

13 W44FWT �19.0 27.32 24.33 �74.43 �22.78 �18.23

14 E76AWT �17.7 24.42 23.48 �64.70 �16.80 �16.06

15 E80AWT �18.5 25.79 23.5 �70.50 �21.22 �16.44

16 Y29AK27Awm �10.4 23.17 20.85 �59.01 �14.99 �11.97

17 D35AK27Awm �9.5 23.34 17.83 �54.84 �13.67 �8.33

18 W38FK27Awm �12.6 23.81 24.02 �63.76 �15.92 �13.64

19 D39AK27Awm �10.8 16.67 16.72 �41.94 �8.55 �8.69

20 T42AK27Awm �13.3 24.46 23.7 �64.91 �16.74 �14.00

21 E76AK27Awm �12.3 22.00 22.49 �55.88 �11.40 �12.70

22 E80AK27Awm �13.5 24.22 22.61 �63.90 �17.07 �13.35

23 Y29AR59A �10.9 21.04 19.12 �52.71 �12.54 �12.19

24 D35AR59Awm �12.7 21.01 17.26 �50.83 �12.56 �9.61

25 W38FR59A �12.8 22.87 22.78 �59.07 �13.43 �13.03

26 T42AR59A �12.2 21.67 21.95 �57.22 �13.61 �13.19

27 E76AR59A �14.1 23.09 21.59 �59.26 �14.59 �13.84

28 E80AR59A �13.9 22.27 21.55 �58.12 �14.30 �13.67

29 Y29AR83Q �10.7 17.79 19.47 �47.48 �10.22 �11.94

30 D35AR83Qwm �9.4 18.56 16.75 �44.22 �8.91 �9.05

31 W38FR83Q �12.3 19.29 23.38 �53.60 �10.94 �12.86

32 D39AR83Q �12.6 15.75 16.79 �43.28 �10.74 �11.62

33 T42AR83Qwm �12.9 18.40 22.26 �51.98 �11.33 �12.67

34 E76AR83Q �12.3 16.79 21.61 �44.89 �6.50 �12.45

35 E80AR83Q �13.3 19.62 22.15 �53.15 �11.37 �13.40

36 Y29AR87A �11.0 21.29 19.76 �55.44 �14.39 �12.14

37 T42AR87A �12.0 21.71 22.55 �58.37 �14.11 �12.31

38 E76AR87A �12.2 19.93 21.76 �51.13 �9.44 �11.84

39 E80AR87A �12.9 22.48 22.07 �58.82 �14.26 �12.73

40 Y29AH102Awm �12.7 20.74 18.16 �56.24 �17.34 �10.92

41 Y29FH102Awm �13.5 22.43 18.38 �59.78 �18.97 �11.51

42 W38FH102Awm �11.4 22.79 21.69 �63.07 �18.59 �12.49

43 D39AH102Awm �10.1 16.94 14.97 �42.81 �10.91 �8.54

44 T42AH102Awm �10.9 21.41 20.53 �60.20 �18.25 �12.26

45 E76AH102Awm �11.5 20.94 19.80 �55.40 �14.65 �12.40

46 E80AH102Awm �12.3 23.40 20.31 �62.35 �18.64 �13.17

47 D35AE73Wwm �13.3 33.59 19.88 �74.47 �20.99 �14.04

48 D39AE73A �11.9 25.28 17.30 �53.31 �10.73 �11.38

49 D39AE73Q �11.8 26.44 17.61 �55.21 �11.16 �11.17

50 E76AE73Q �15.5 30.91 23.73 �75.93 �21.28 �14.97

51 WTE73A �16.7 32.27 24.82 �83.56 �26.46 �16.91

52 WTE73C �16.5 33.02 24.96 �84.69 �26.71 �17.09

53 WTE73F �16.8 34.67 25.67 �88.44 �28.10 �16.98

54 WTE73Q �17.6 32.52 25.32 �84.39 �26.55 �15.89

55 WTE73S �16.0 33.59 25.24 �85.71 �26.89 �17.33

56 WTE73Y �16.6 33.74 25.35 �86.94 �27.85 �16.68

57 D35AE73Awm �12.6 32.74 18.67 �71.09 �19.68 �13.92

58 D35AE73Fwm �12.6 33.05 19.05 �72.08 �19.98 �13.72

59 D39AE73F �11.6 25.46 17.33 �53.44 �10.66 �11.38

60 D39AR87A �11.9 18.35 17.19 �47.45 �11.92 �12.78

61 E76AE73W �15.5 31.89 24.87 �79.09 �22.33 �16.03

62 W38FR87A �12.0 22.37 23.50 �60.10 �14.23 �12.38

(continued)
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restore the wild-type barstar sequence, and the N-terminal methionine

residue in barstar, which is located far from the interface and not noted in

most of the previous literature, was deleted for ease of cross-referencing.

Finally, the template contained 110 barnase residues, 89 barstar residues,

and 213 bound water molecules. The polar hydrogen atoms of barnase,

barstar, and the bound water molecules were added using the program

WHATIF (Hooft et al., 1996; Vriend, 1990). H102 in barnase was

protonated on He and H17 in barstar was protonated on Hd. The nonpolar

hydrogens were added using the tLeap module of AMBER7.0 (http://

amber.scripps.edu).

The mutant complexes were chosen based on two references (Frisch et al.,

1997; Schreiber and Fersht, 1995). The mutations were introduced on six

barnase interfacial residues (K27, R59, E73, R83, R87, and H102) and eight

barstar interfacial residues (Y29, D35, W38, D39, T42, W44, E76, E80) (see

Fig. 1). For the 36 complexes in which the mutations are only X/alanine,

the structures were modeled by deleting the side chains of the mutated

residues in the template. For the other 28 complexes, which involve X/
nonalanine mutations, the InsightII rotamer library (http://www.accelrys.

com/insight/) was used to determine the side-chain conformation of the

mutated residue while the backbone and the side chains of other residues

remained frozen.

Some mutations, particularly those with X/alanine, created cavities

accessible to water molecules. Therefore, three mutant complexes (Vaughan

et al., 1999), which are the only mutants with available crystallographic

structures in the Protein Data Bank (PDB) in the data set studied here, were

used as templates for adding additional interfacial water molecules. These

three complexes are K27A/bn-D35A/bs with the PDB entry code of 1b2u,

H102A/bn-Y29F/bs with the entry code of 1b3s, and K27A/bn-T42A/bs

with the entry code of 1b2s. Comparison of interfacial water molecules in

these mutants and the wild-type complex indicated the following additional

water molecules to be added to the mutant complexes: HOH48 in 1b2u for

the K27A/bn mutant, HOH58 and HOH98 in 1b3s for the H102A/bn

mutant, HOH2 and HOH35 in 1b2u for the D35A/bs mutant, and HOH85

and HOH65 in 1b3s for the Y29F/bs mutant.

All mutant complexes were prepared according to the above strategy with

two exceptions: mutants with Y29F/bs-H102A/bn or E73W/bs. In the

crystallographic structure of the mutant Y29F/bs-H102A/bn (PDB code

1b3s), F29 shows two conformations (Vaughan et al., 1999): swinging out of

the interface in the complexes formed by chains A:D and chains C:F with

significant backbone movement and side-chain conformational changes on

barstar residues 28–30 and barnase residue Ser-85, and pointing to the

interface in the complex formed by chains B:E. The inward-pointing

conformation of F29 in the complex of chains B:E may be due to crystal

packing. Therefore, the barstar residues 28–30 and the barnase residue Ser-

85 in the mutant Y29F/bs-H102A/bn were modeled by using chains A:D in

1b3s as a reference structure, as the outward-facing orientation of F29 would

not be obtained by energy minimization alone from the wild-type protein

conformation. For complexes with the mutation E73W/bs, the best rotamer

still had a serious steric clash with the neighboring residues, and energy

minimization by DISCOVER in InsightII was carried out on this residue.

The final conformation required the removal of three water molecules.

The 65 complexes are listed in Table 1 with their experimental binding

free energies. The binding free energy of the wild-type complex is

�19.0 kcal/mol (Schreiber and Fersht, 1995) and all mutants except Y29F/

bs-WT/bn and W44F/bs-WT/bn show lower binding affinities.

Energy minimization

The all-atom AMBER 95 force field (Cornell et al., 1995) was used to obtain

all the parameters for the proteins and water molecules. The tLeap module of

AMBER7.0 was used to obtain the topology and coordinate files of each

complex. Then the energy minimization of each complex was carried out

using the Sander module of AMBER7.0 and consisted of three stages. In the

first stage of 200 steps, the protein nonhydrogen atoms were restrained to

their starting positions by a harmonic potential with a force constant of

32 kcal/(mol.Å2) whereas the hydrogen atoms and the water molecules were

unrestrained. In the second stage of 200 steps, the constraint was released

from the side-chain atoms of the proteins and remained on the backbone

atoms only. In the third stage of 400 steps, no constraint was used at all. A

nonbonded cutoff of 10.0 Å and a distance-dependent dielectric constant

(e ¼ rij) were used throughout. In each stage, the first 100 steps were

TABLE 1 (Continued )

No. Complex (bs:bn)* DGexp (kcal/mol) DGdesol bn
ele ðkcal=molÞ DGdesol bs

ele ðkcal=molÞ Ebn�bs
ele ðkcal=molÞ DGbinding

ele ðkcal=molÞ DGpred (kcal/mol)

63 WTE73W �17.4 34.16 26.42 �88.83 �28.25 �17.21

64 WTR83Q �13.6 18.52 22.96 �52.92 �11.44 �13.75

65 D39AE73W �12.4 26.77 17.52 �54.68 �10.39 �11.73

*Complexes are named by the mutation in barstar (bs) followed by the mutation in barnase (bn). Complexes with additional water molecules are indicated by

the last two letters ‘‘wm’’ in the names. The wild-type is indicated by ‘‘WT’’.

FIGURE 1 (A) Stereo view of barnase (blue)-barstar (red) binding

interface ( yellow mesh). 2-D projections onto the interface of (B) the six

residues in barnase and (C) the eight residues in barstar that are mutated in

the data set studied. All pictures were made with MolSurfer (Gabdoulline

et al., 1999, 2003).
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performed with the steepest descent algorithm and the rest of the steps were

performed with the conjugate gradient method.

During the minimization, the backbone atoms of the proteins did not

show observable movement, and only water molecules, particularly the

additional interfacial water molecules, and some side-chain atoms showed

significant movements. More extensive optimization of the structures of the

mutants, e.g., by simulated annealing, which might help to predict the

structures of mutants like Y29FH102A, would be possible but is beyond the

scope of this work, which relied on the observation that most single-point

mutants result in little effect on protein structure.

Electrostatic binding free-energy calculations

To investigate the electrostatic contributions to barnase-barstar binding, we

first carried out continuum electrostatic calculations by using the University

of Houston Brownian Dynamics (UHBD) ProgramUHBD6.1 (Madura et al.,

1995). The electrostatic binding free energy DGbinding
ele is defined as in Eq. 2:

DG
binding

ele ¼ DG
desol bn

ele 1DG
desol bs

ele 1E
bn�bs

ele : (2)

The electrostatic contribution to the desolvation energy of barnase,

DGdesol bn
ele (or barstar, DGdesol bs

ele ), was defined as the loss of the electrostatic

interaction between the solvent and barnase (or barstar) upon binding, as

calculated by the two-step procedure described by Perez et al.(1998a): 1),

calculate the electrostatic energy of barnase (or barstar) and the surrounding

solvent in the absence of barstar (or barnase); 2), calculate the electrostatic

energy of barnase (or barstar) and the surrounding solvent with the second

protein bound but without partial charges. The electrostatic desolvation

energy (DGdesol bn
ele or DGdesol bs

ele ) is the difference between the electrostatic

energies computed from these two steps.

The electrostatic interaction Ebn�bs
ele was calculated by Eq. 3. fi is the

electrostatic potential generated by barstar at the position of atomic charges

qi of barnase:

E
bn�bs

ele ¼ +
N

i

fi qi: (3)

The finite difference method implemented in UHBD6.1 was used to solve

the Poisson-Boltzmann equation. The interior dielectric constant of the

protein was set to 2 and the solvent dielectric constant was set to 78 with an

ionic strength of 50 mM and ionic radius of 1.5 Å. The coarse grid spacing

was set to 0.80 Å and the fine grid spacing was set to 0.35 Å. The dielectric

boundary was defined as the van der Waals surface. Both the coarse grid and

the fine grid were dimensioned to 110 3 110 3 110 with the center on the

position of the Cg atom of D39/bs. The coarse grid enclosed the whole

protein complex whereas the fine grid enclosed the interface including all

residues mutated.

Before doing the UHBD calculations, the minimized structures of all the

complexes were superposed with the minimized structure of the wild-type

barnase-barstar complex to ensure the same reference coordinates. Then,

a separate program was written to convert the superposed structures of the

complexes to qcd format files for input to UHBD6.1, with all water

molecules removed.

In both steps 1 and 2 described above, structures of barnase and barstar as

found in the bound conformation in the complexes were used.

Interaction energy decomposition

For the COMBINE analysis, the interaction energies between barnase and

barstar were decomposed on a per residue pair basis. The ANAL module of

AMBER7.0 (slightly modified) was used to calculate the Coulombic and the

Lennard-Jones interaction energies between each protein residue in the

energy minimized complex. A separate code was written to extract the

intermolecular energy terms between each barnase residue and each barstar

residue, generating 19580 (¼110 barnase residues 3 89 barstar residues 3
2) energy descriptors for each complex.

Chemometric analysis

The GOLPE4.5.1 program (Baroni et al., 1993) was used to carry out the

chemometric analysis. A matrix was constructed with each row representing

an object, in this case a protein-protein complex. Each object is represented

by the same number of columns in the matrix corresponding to the chemical/

physical descriptors (called X variables) and responsive variables (called Y

variables). Here, there are 19582 X variables: 9790 Coulombic energy terms,

9790 Lennard-Jones energy terms, and two desolvation energies. There is

one Y variable, assigned as the binding free energy.

To reduce the size of the matrix, the X variables showing little variation

among the complexes, below 0.1 kcal/mol for Lennard-Jones terms and

below 0.9 kcal/mol for the Coulombic terms, were zeroed. As a result, 233 X
variables were retained for further analysis. To investigate the distribution of

the 65 complexes in the energy space defined by these X variables, a PCA

was performed. The distances between complexes were measured by the

PCA scores. Then, the X variables were correlated with the Y variable by

PLS analysis to yield initial PLS models of varying dimensionality. Leave-

one-out cross-validation was performed to determine the optimal di-

mensionality for predictive performance. To remove the noisy variables and

improve the predictive abilities of the PLS models, an X variable selection

procedure consisting of a D-optimal preselection and a fractional factorial

design was performed for up to eight latent variables. The D-optimal

preselection removed nearly half of the X variables without affecting model

quality, and the fractional factorial design further removed a few X variables

while retaining uncertain variables. Final PLS models were built for the

remaining 111 X variables, with interaction energies between 28 barnase and

21 barstar residues. The final models displayed significantly higher predic-

tive cross-validation and slightly higher fitting performance than the initial

PLS models.

To further evaluate the robustness of the data and the models, we

randomly selected five test sets, each containing 55 complexes for training

and 10 complexes for external prediction.

BD calculations

Bimolecular diffusional association rates were computed at 50 mM ionic

strength (the ionic strength used in experiments) using the same protocol as

described in Gabdoulline and Wade (2001) with minor differences. As

previously, the rates to form two hydrogen bond donor-acceptor contacts

(observed in the bound complex of the wild-type proteins) were computed

by Brownian dynamics simulation using SDA software (Gabdoulline and

Wade, 1997, 1998). Here, however, we used the energy minimized

structures of the complexes of barnase and barstar prepared in this work

and the AMBER 95 force field rather than the OPLS force field. As a result,

because the energetic optimization of the structures improves their

electrostatic interactions and because the 2 times smaller radii of polar

hydrogen atoms in the AMBER force field compared to the OPLS force field

allow shorter and stronger intermolecular interactions, the computed

association rate for the wild-type barnase-barstar complex was 2.5 times

higher than that computed for barnase and barstar earlier (Gabdoulline and

Wade, 2001). Therefore, we adjusted the interatomic contact distance to

define encounter complex formation from 6 Å to 5 Å. This resulted in

satisfactory computed association rates ;2 times higher than experimental

values. The rate constants for formation of two donor-acceptor contacts at

5 Å were therefore used to quantify association rate changes due to mutation

of the proteins.
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RESULTS AND DISCUSSION

Computed electrostatic binding free energies
are favorable

The calculated DGdeso bn
ele ; DGdesol bs

ele ; Ebn�bs
ele ; and DGbinding

ele

values from the Poisson-Boltzmann electrostatics calcula-

tions are listed in Table 1 along with the values of the

experimental binding free energy, DGexp: With the param-

eterization used in the calculations, the electrostatic inter-

actions can compensate and surpass the desolvation costs in

the complexes analyzed. For the wild-type complex, the

electrostatic binding free energy is �22.2 kcal/mol,

exceeding the experimental binding free energy (�19.0

kcal/mol) by 3.2 kcal/mol. Most mutants (46 out of 64) also

have an electrostatic binding free energy that is more

negative (favorable) than the experimental binding free

energy.

It should be noted that the values reported were computed

with a dielectric boundary defined by the protein van der

Waals surface. We also did the calculations with the

dielectric boundary defined by the solvent-accessible

molecular surface (SAMS) (composed of the contact and

reentrant surfaces of a solvent probe of radius 1.4 Å), which

gave positive (unfavorable) electrostatic binding free

energies for almost all the complexes. For the wild-type

complex, the electrostatic binding free energy was 19 kcal/

mol. Literature reports (Dong et al., 2003; Dong and Zhou,

2002; Vijayakumar and Zhou, 2001; Xu et al., 1997) have

also shown that continuum electrostatic calculations are

sensitive to the dielectric boundary definition, and greater

agreement with experiment has been found by using the van

der Waals surface boundary definition (Dong et al., 2003).

The SAMS boundary definition leads to higher desolvation

costs.

Computed electrostatic binding free energies
correlate with experimental binding
free energies

The linear correlation coefficients between the experimental

binding free energy DGexp; and the electrostatic binding free

energy DGbinding
ele ; the electrostatic interaction energy Ebn�bs

ele ;
the electrostatic desolvation energy of barstar DGdesol bs

ele ; and
the electrostatic desolvation energy of barnase DGdesol bn

ele are

0.777, 0.796, 0.739, and 0.655, respectively (see Fig. 2). The

unfavorable desolvation energies oppose the favorable

interaction energies. Thus, the experimental binding free

energy is positively correlated with the electrostatic in-

teraction energy between barnase and barstar and negatively

correlated with the desolvation energies of both barnase and

barstar. It is worth mentioning that the experimental binding

free energy DGexp shows a much poorer correlation (with

a coefficient of 0.4) with the electrostatic binding free energy

DGbinding
ele computed by using the SAMS dielectric boundary

definition (data not shown).

The mutations, with the exception of those at
W44/bs and E73/bn, are unfavorable for the
computed electrostatic binding free energies

Mutations of interfacial residues in most cases resulted in

a decrease of the magnitude of the electrostatic binding free

energy, the exceptions being the complexes with W44F/bs

and those with single mutations of E73/bn.

It appears that W44/bs can be a site to design mutants with

improved electrostatics and therefore we modeled three

single-point mutants: W44Y/bs, W44E/bs, and W44D/bs.

All three mutants have computed electrostatic binding free

energies that are more favorable than that of the wild-type

protein (�22.2 kcal/mol) but similar to that of W44F/bs

(�22.8 kcal/mol). The experimental binding free energy of

theW44F/bs mutant (�19 kcal/mol) is the same as that of the

wild-type complex.

E73/bn is critical for the catalytic activity of barnase

(Schreiber et al., 1997) and, in the complex, it is located in

the vicinity of the negatively charged binding surface resi-

dues of barstar (in most complexes, these are D35 and D39).

Although the attractive electrostatic interaction between

barnase and wild-type barstar increases with the mutation of

E73 to neutral residue types (by 4–6 kcal/mol), the exper-

imental binding affinities actually decrease by 1.5–3 kcal/

mol. This is mainly because an indirect favorable interaction

observed in double-mutant experiments (Schreiber et al.,

1997) between E73/bn and D39/bs is lost upon mutation.

This stabilizing interaction is between E73/bn and its neigh-

boring positively charged residues K27/bn, R83/bn and R87/

bn, which are close to D39/bs in the complex.

The complexes with W44/bs and E73/bn mutants demon-

strate that the binding of barstar and barnase is not fully

electrostatically optimized. When Lee and Tidor considered

single-point mutations of barstar to the 20 common amino

acids (Lee and Tidor, 2001a), they found that wild-type

FIGURE 2 Linear correlations between the experimental binding free

energyDGexp and the computed continuum electrostatics binding free energy

DGbinding
ele ; the electrostatic interaction energy Ebn�bs

ele ; the electrostatic

desolvation energy of barstar DGdesol bs
ele ; and the electrostatic desolvation

energy of barnase DGdesol bn
ele :
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barstar is electrostatically optimized in the sense that,

although charge optimization (allowing unnatural charges)

could result in improved electrostatic binding free energies

of up to;1 kcal/mol at residues 38, 72, and 76 of barstar, no

modeled mutations of these residues resulted in greater

computed binding affinity than the wild-type proteins. On

the other hand, Lee and Tidor (2001b) found that the

electrostatic complementarity of the barnase-barstar complex

could be significantly improved by optimizing the charge

distribution by allowing for unnatural charge distributions

and that the charge distribution of barstar was more optimal

for binding than that of barnase.

For the set of mutations that we have studied, we find, in

accord with Lee and Tidor, that barstar appears to be more

electrostatically optimized than barnase. This is consistent

with barstar’s function as an inhibitor and barnase’s need to

have a charge distribution suitable for catalysis as well as

binding barstar. We find that it is possible to modestly

improve the electrostatic free energy of binding of barstar by

mutation to one of the 20 common amino acids at position

44, as well as the positions 38 and 72 identified by Lee and

Tidor (2001a). The differences in the results of the Poisson-

Boltzmann calculations most likely arise primarily from the

fact that Lee and Tidor optimized only the partial atomic

charges of the amino acids in barstar, whereas our models of

mutants accounted for changes in charge magnitude,

position, and dielectric boundary location, and employed

a different dielectric boundary definition. It should be noted

that improved electrostatic binding free energy for the

W44F/bs and E73/bn mutants does not result in improved

overall binding affinity: the experimentally measured

binding affinity is comparable to or weaker for these mutants

than for the wild-type proteins.

Computed electrostatic binding free energies
account to varying extents for pairwise
residue cooperativity

The cooperative interaction energy or the coupling energy

between two residues X and Y, DDGint (X-Y), is defined as

DDGintðX/YÞ ¼ DDGX/A;Y/B � DDGX/A � DDGY/B;

(4)

where DDGX/A (or DDGY/B) is the change in binding free

energy on mutation of X to A (or Y to B), and DDGX/A,

Y/B is the change upon the simultaneous mutation of X to A

and Y to B. Based on Eq. 4, the electrostatic coupling

energies of the six residue pairs showing significant

experimental coupling energies were computed as shown

in Table 2. It can be seen that the extent to which the

continuum electrostatics interaction energy accounts for the

cooperativities depends on the relative orientations and

electrostatic properties of the residue pairs: completely for

a charged-charged residue pair making side-chain hydrogen

bonds like D39/bs and R87/bn with a 6–7 kcal/mol coupling

energy, partially for a charged-polar residue pair making

side-chain hydrogen bonds like D39/bs and H102/bn

(coupling energy of ;5 kcal/mol and computed electrostatic

energy of ;2 kcal/mol), and not at all for a polar-polar

residue pair making no hydrogen bond like Y29/bs and

H102/bn (with a coupling energy of ;3 kcal/mol). D35/bs

and R59/bn form only a backbone hydrogen bond

(D35:OD1-R59:N) and therefore the alanine truncation of

R59 still retained most of the electrostatic interaction. This

makes the cooperativity defined in Eq. 4 smaller (coupling

energy of ;3 kcal/mol) than when side-chain hydrogen

bonds only are involved and this is only partially accounted

for by the electrostatic energy (1.3 kcal/mol). The cooper-

ativity between D39A/bs and K27A/bn that is unaccounted

by electrostatic interactions (2.6 of the 4.8 kcal/mol coupling

energy) may be due to the hydrophobic effect generated by

the long exposed side chain of K27/bn, although there is

a hydrogen bond between K27:NZ and D39:OD1.

Principle component analysis highlights six
important residues for barnase-barstar
binding energetics

The score plot of the first two principle components (PC1

and PC2) is given in Fig. 3 and shows how the barnase-

barstar complexes are distributed in interaction energy space.

All complexes except D39AR59A, E76AR83Q, and

E76AR87A are clustered into five groups: A), mutants of

D39A/bs with the largest positive PC1; B), mutants of

R83Q/bn with the second largest positive PC1; C), mutants

of R87A/bn; D), mutants of E76A/bs and mutants of R59A/

bn; and E), most single mutants. In PC3 and PC4 (Fig. 4), the

complexes are distributed more widely, but it is clear that all

mutants of D35A/bs have positive values of PC4. The PCA

results imply that mutations at D35/bs, D39/bs, E76/bs,

R59/bn, R83/bn, and R87/bn have substantial effects on the

energetics of barnase-barstar binding. The correlation be-

tween these effects and the binding affinities will be illus-

trated by the following PLS analysis.

TABLE 2 Coupling energies (kcal/mol) of six barstar

(bs)-barnase (bn) residue pairs

Residue pair Experimental

Calculated

Electrostatic

Poisson-Boltzmann

COMBINE

analysis

D35A/bs-R59A/bn 3.4 1.3 �0.3

D39A/bs-H102A/bn 4.9 2.2 �1.7

D39A/bs-K27A/bn 4.8 2.2 �1.0

D39A/bs-R87A/bn 6.1 7.0 3.0

D39A/bs-R83Q/bn 6.7 10.0 2.4

Y29A/bs-H102A/bn 3.3 �0.6 �0.5
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COMBINE analysis models are predictive for
binding affinity

The statistical parameters of the COMBINE PLS models are

given in Table 3. The optimal dimensionality was de-

termined as seven latent variables because the model quality

(as measured by fitting (R2 and standard deviation of the

error of calculation), and cross-validation (Q2 and standard

deviation of the error of prediction (SDEP)) parameters—see

Table 3 for the definitions of these parameters) does not

increase significantly by adding more latent variables (see

Fig. 5). At this number of latent variables, the predictive Q2

value is 0.82 (where a Q2 value of 1 corresponds to perfect

prediction and aQ2 value.0.4 indicates a predictive model).

The SDEP is 1.07 kcal/mol. The predicted binding free

energies are listed in Table 1 and a plot against the

experimental values is shown in Fig. 6. In leave-one-out

cross-validation, 54 of the 65 complexes were predicted with

an error,1.5 kcal/mol. In five external random test sets (see

Methods), the external SDEP values are 1.16, 0.80, 1.17,

0.96, and 1.37 kcal/mol, respectively, at the optimal latent

variable number of 7. These SDEP values are mostly close to

the SDEP value obtained in leave-one-out cross-validation,

indicating robustness of the model.

The predictive ability of the COMBINE model compares

favorably with other published models for barnase-barstar

FIGURE 4 Score plot of the third (PC3) and fourth (PC4) principal

components of the interaction energy terms for the 65 complexes. All

mutants of D35A/bs were distinguished by a large positive PC4.

FIGURE 3 Score plot of the first (PC1) and second (PC2) principal

components of the interaction energy terms for the 65 complexes. All the

complexes except D39AR59A, E76AR83A, and E76AR87A are clustered

into five groups: (A) D39A/barstar mutants with the largest positive PC1; (B)

R83Q/barnase mutants with the second largest positive PC1; (C) R87A/

barnase mutants; (D) E76A/bs and R59A/bn mutants; and (E) most single

mutants.

TABLE 3 Predictive performance of the COMBINE analysis

models derived for 65 wild-type and mutant barnase-barstar

complexes

*LV R2

SDEC

(kcal/mol) Q2

SDEP

(kcal/mol)

Constant C

(kcal/mol)

6 0.87 0.90 0.77 1.21 7.04

7 0.91 0.75 0.82 1.07 8.83

8 0.93 0.68 0.85 0.97 7.39

*LV is the number of latent variables. Q2 is the cross-validated predictive

performance and is given by

Q2 ¼ 1�
+
n

i¼1

ðyexpðiÞ � ypredðiÞÞ2

+
n

i�1

ðyexpðiÞ � ÆyexpæÞ2
;

where ypredðiÞ corresponds to the value of the quantity predicted with the

model for complex i, yexpðiÞ is the experimental value of the quantity for

complex i, and Æyexpæ is the average experimental value of the quantity for the

complete set of n complexes. A Q2 value of 1 corresponds to a perfect

prediction and a Q2 value .0.4 is considered indicative of a predictive

model. R2 is the equivalent of Q2 calculated for fitting. SDEP is the standard

deviation in cross-validated prediction and is given by

SDEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
n

i¼1

ðyexpðiÞ � ypredðiÞÞ2

n

vuuut
:

SDEC is the equivalent of SDEP for fitting. The constant C is as given in Eq.

1 for each COMBINE analysis model.

FIGURE 5 Development of the fitting and predictive cross-validation

performance of the COMBINE analysis models during derivation. The R2

and Q2 values are plotted against the number of latent variables in the

COMBINE analysis model.
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binding affinity, providing overall better accuracy over

a larger set. However, it should be born in mind that the

COMBINE model is system-specific and its derivation re-

quires a number of complexes with experimentally de-

termined binding affinities that can constitute a training set.

Once the COMBINE QSAR model has been derived, it can

be applied to any number of designed mutations. The

complexes for these mutations should be constructed and

energy minimized, and the energy components fed into the

COMBINE QSAR model.

COMBINE analysis models highlight the
interaction energies of 27 residues and the
protein desolvation energies as particularly
important for binding affinity

To investigate how the binding free energy was weighted by

the energy terms, we plotted the PLS coefficients of the 111

selected X variables (energy terms), namely the weight

parameterswdesol
bn ;wdesol

bs ;wvdw
i ; andwele

i in Eq. 1, in Fig. 7. The

most significant coefficients, with absolute values.0.06, are

labeled in Fig. 7. They relate to the two desolvation terms and

the interaction terms between 16 barnase residues and 11

barstar residues, including the 11 hot-spot residues defined by

Bogan and Thorn (1998). All these residues are located in the

binding interface. In particular, most of the large coefficients

involve the barnase residues K27, E73, and H102, and the

barstar residues D35 and D39. This means that, given the

same values (interaction energies), these energy terms will

have larger effects on the binding free energies than the other

energy terms in the COMBINE model.

The positive value of the constant C (8.83 kcal/mol at 7

latent variables) suggests that the overall effect of the energy

terms in the COMBINE analysis model is favorable to

binding in all the complexes. The constant C can be

interpreted as in part due to the translational, rotational, and

conformational entropy lost upon protein binding, which is

largely independent of residuemutations. However, as shown

in Fig. 7, an individual residue can contribute to the binding

free energy in opposing ways, depending on its interactions

with other residues. For example, a positively charged residue

at the position of D39/bs would favor binding by the

attractive electrostatic interaction with K27/bn but disfavor

binding by the repulsive electrostatic interaction with D75/

barnase.

Both barnase and barstar electrostatic desolvation energies

have negative PLS coefficients (�0.208 for barnase and

�0.213 for barstar). This means that, surprisingly, the

electrostatic desolvation cost has a favorable contribution to

the binding free energy represented in this model. However,

we should understand this as the net effect of all the energy

terms used in the model, not the effect of the electrostatic

desolvation cost alone, i.e., the electrostatic desolvation

energies implicitly include the effects of other, favorable,

energy terms.

Overall, COMBINE analysis provides a model for binding

free energy with terms and weights that can be well related to

the underlying physics determining binding affinity. It is

worth noting, though, that it is possible in COMBINE anal-

ysis for a particular variable to be included in the model that

is of less physical relevance than a variable, or combination

of variables, with which it varies approximately collinearly

over the data set. A variable may also have an apparently

unphysical weight for similar reasons, as is the case for the

electrostatic desolvation terms discussed above. These po-

tential problems can be minimized by using suitable structure

preparation procedures and conservative variable selection

procedures (see Methods). Apparently unphysical terms or

FIGURE 6 Plot of experimental versus predicted binding free energies

(kcal/mol) for the COMBINE analysis model for the 65 complexes from

leave-one-out cross-validation at seven latent variables. Fifty-four com-

plexes were predicted to within 1.5 kcal/mol (as indicated by the flanking

diagonal lines).

FIGURE 7 PLS coefficients (in red ) of the 111 selected energy terms (X

variables) in the COMBINE model. Those with absolute values .0.06 are

labeled by the barnase and barstar residue pairs. The energy terms on the left

and right sides of the vertical line are from Lennard-Jones and Coulombic

interactions, respectively. The values of the 111 energy terms in the wild-

type complex after scaling by 100 kcal/mol are shown in black.
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weights in COMBINE models may also arise if the training

set is not sufficiently broad and balanced to provide the

required information for the prediction problem. For the case

of models for protein-protein binding affinity, the training set

should include information about mutations of the major

‘‘hot-spot’’ residues.

COMBINE models only partially represent
pairwise residue cooperativity

Although for the majority of the complexes (54 out of

65) the binding free energies were predicted with errors

,1.5 kcal/mol, some single-point mutants, especially D39/bs,

were overpredicted whereas the related double mutants

were underpredicted, which resulted in underprediction of

the cooperativities of these residues. Only the coopera-

tivities of D39A/bs-R87A/bn and D39A/bs-R83Q/bn were

partially reproduced (3.0 kcal/mol and 2.4 kcal/mol) (see

Table 2).

As shown in the Electrostatics section, continuum electro-

statics alone can fully or partially account for the coop-

erativities of five of the six residue pairs. So we decomposed

the continuum electrostatic interaction Ebn�bs
ele on a per

residue pair basis and used it to replace the Coulombic

interaction variables and rebuild the COMBINE analysis

models. However, we obtained very similar COMBINE

models with the incomplete representation of cooperativity

remaining.

It is generally believed that cooperativity mainly arises

from the close interactions between the residues (Buczek

et al., 2001; Li et al., 2003; Pielak and Wang, 2001; Roisman

et al., 2001; Wells and Cunningham, 1993; Zhang et al.,

2002). As electrostatic interactions and Lennard-Jones

interactions are included in our models, one possible missing

interaction is the hydrophobic interaction. Following this

consideration, we calculated the solvent accessible surface

area (SASA) change of each residue upon binding by using

the program NACCESS2.1 (Hubbard and Thornton, 1993)

and separated it into two parts: SASA of polar atoms and

SASA of nonpolar atoms. This resulted in an additional 2 3
199¼ 398 terms (X variables) that were used for building the

COMBINE models. However, no improvement in model

predictive ability was obtained.

The COMBINE model, together with Poisson-
Boltzmann electrostatic and Brownian dynamics
calculations, assist design of mutants

For the wild-type complex, the individual Lennard-Jones and

Coulombic contributions of each residue pair were obtained

by multiplying the corresponding PLS coefficient and the X
variable (interaction energy to which the PLS coefficient

belongs) in Fig. 7. The favorable (more negative than �0.5

kcal/mol) and unfavorable (more positive than 0.3 kcal/mol)

contributions are shown in Fig. 8, A and B, respectively. For

the purpose of designing mutants with higher binding

affinity, one should think about eliminating unfavorable

contributions while keeping favorable contributions intact.

As can be seen in Fig. 8 b, unfavorable contributions came

from interactions between both oppositely charged residues

(D39/bs-R59/bn and D35/bs-K62/bn) and residues of like

charge (D39/bs-D75/bn and E80/bs-D54/bn). The former

can be due to indirect interactions, which are hard to consider

for designing mutants. Therefore, we designed mutants by

taking into account the residue pairs of like charge and

modeled the following single-point mutants: D54N/bn and

D75N/bn. The training data set of 65 complexes does not

contain any complexes with mutations at these two positions.

Nevertheless, predictions of the effects of mutations can be

made due to the energetic description employed in the

COMBINE QSAR model. For both mutants, the predicted

FIGURE 8 The individual contribution of each residue pair to the binding

free energy of the wild-type barnase-barstar complex. (A) Favorable

contributions (.0.5 kcal/mol in magnitude) and (B) unfavorable contribu-

tions (.0.3 kcal/mol). The contributions are Coulombic interactions unless

labeled VDW, indicating a Lennard-Jones interaction.
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binding affinities are stronger than for the wild-type (�18.4

kcal/mol). With seven latent variables in the COMBINE

analysis model, the predicted binding free energy is �19.7

kcal/mol for the D54N/bn mutant and�21.6 kcal/mol for the

D75N/bn mutant. The calculated electrostatic binding free

energies are �25.1 kcal/mol for the D54N/bn mutant and

�24.9 kcal/mol for the D75N/bn mutant (compared to�22.2

kcal/mol for the wild-type). These predictions could be

modulated by changes in the stability of barnase due to

mutation. For E73A/bn (a very low activity mutant), the

measured change in stability of barnase upon mutation is

unfavorable (2.30 kcal/mol) (Meiering et al., 1992).

Although this change in stability is much larger than for

most mutants for which this has been measured and which

alter stability by,0.6 kcal/mol, the COMBINE model gives

a good prediction with an error of only 0.2 kcal/mol. For

D54N/bn, the change in stability upon mutation is also

unfavorable and of similar magnitude (2.67 kcal/mol) but,

although the kcat and Km values for activity are altered, the

enzyme activity (as quantified by kcat/Km) is slightly greater

than for the wild-type barnase (Meiering et al., 1992).

In addition, we also made mutations of D86/bn as its

interaction with D39/bs has a positive PLS coefficient (see

Fig. 7) and so an unfavorable contribution (small, not shown

in Fig. 8) to the wild-type binding free energy. Two mutants

D86N/bn and D86K/bn were constructed and their binding

free energies were predicted. As expected, only D86K/bn

showed notable improvement, with a COMBINE-predicted

binding free energy of �19.2 kcal/mol and a calculated

electrostatic binding free energy of �23.6 kcal/mol.

As described in the Electrostatics section, we modeled

three single-point mutants of W44/bs: W44Y/bs, W44E/bs,

and W44D/bs. Their binding free energies were predicted

with the COMBINE model as �19.4 kcal/mol for W44Y/bs,

�19.3 kcal/mol for W44E/bs, and �18.8 kcal/mol for

W44D/bs, indicating modestly improved binding compared

to the wild-type protein.

The designed mutants were further quantified by comput-

ing their association rate constants, kon; using Brownian

dynamics simulations (Gabdoulline and Wade, 2001). A

change in binding free energy can be due to a change in

association or dissociation rate constant or both. For example,

Schreiber and co-workers (Selzer et al., 2000) designed faster

associating mutants for binding of b-lactamase and an

inhibitor protein that were also shown to bind tighter than the

wild-type proteins but did not affect the dissociation rate. If

the results of Brownian dynamics calculations of kon; and the
COMBINE analysis calculations of binding free energy can,

despite the differences in the theoretical models, be

combined, then koff values can be derived. For the barnase

and barstar mutants studied here, the calculations indicate that

both changes in association and dissociation rate constants

contribute to the binding free-energy differences. The

complexes with D54N/bn and D75N/bn mutants have

computed association rate constants 3.3 and 2.4 times,

higher, respectively, than the wild-type proteins at 50 mM

ionic strength. This means that the contribution of the change

in association rate to overall binding free energy, derived

from the relation DG ¼ kBT3 lnðkdÞ ¼ kBT3 lnðkoff=konÞ
is ;�0.7 and �0.5 kcal/mol, respectively. The remaining

�0.7 and �2.8 kcal/mol changes are, respectively, expected

to be due to a changed koff : The computed enhancement of

association rate for the D54N/bn mutant is consistent with the

experimental assignment of Schreiber and Fersht of a 4.4-fold

increase in the association rate constant at zero ionic strength

(Vijayakumar et al., 1998) and a 1.5-fold increase in the

association rate constant at 100 mM ionic strength (Schreiber

and Fersht, 1993) for the D54A/bn mutant compared to the

wild-type protein. Moreover, the binding affinity of the

D54A/bn mutant has been measured to be 0.2 kcal/mol more

favorable than for wild-type proteins at 100mM ionic strength

(Schreiber and Fersht, 1993) with a slightly higher dissoci-

ation constant (1.8 vs. 1.5 s�1).

The mutant D86K/bn also showed an increased computed

association rate and contributions of�0.4 and�0.5 kcal/mol

to DDG from changes in kon and koff ; respectively.
The mutant W44Y/bs does not show any changes in

computed association rate, but mutants W44E/bs and W44D/

bs associate ;2 times faster. This means that in the case of

W44E/bs, DDG is made of �0.4 and �0.6 kcal/mol con-

tributions from changes in kon and koff ; respectively. For the
W44D/bs mutant, almost all the change in computed binding

free energy is due solely to the change in kon:

CONCLUDING REMARKS

A large set of 65 wild-type and mutant complexes of barnase

and barstar was studied. For these complexes, Poisson-

Boltzmann electrostatic calculations with the van der Waals

surface dielectric boundary definition show electrostatic

interactions as the dominant term favoring barnase-barstar

binding. The electrostatic binding free energies became

slightly more favorable in the single mutants W44/bs / F,

Y, E, and D, and significantly more favorable in the single

mutants E73/bn / A, C, F, Q, S, Y, and W. This indicates

that barstar is more electrostatically optimized than barnase

but neither wild-type barnase nor wild-type barstar is fully

electrostatically optimized for binding with respect to

mutation to the 20 common amino acids.

The overall effects of interfacial mutations can be

quantitatively predicted by the COMBINE QSAR model

and are represented mainly by the interaction energies be-

tween 16 barnase and 11 barstar residues and the electrostatic

desolvation energies of barnase and barstar upon binding.

The COMBINE analysis model can provide a useful guide for

interface design, as shown by the examples of the mutant

complexes D54N/bn and D75N/bn. The COMBINE analysis

model, together with Poisson-Boltzmann electrostatics calcu-

lations and Brownian dynamics simulations, give predictions
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of mutants that should bind faster and with higher affinity

than the wild-type proteins.
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