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A Paradox Concerning Shrinkage Estimators:
Should a Known Scale Parameter Be Replaced by

an Estimated Value in the Shrinkage Factor?

Dominique Fourdrinier

Universite� de Rouen, Rouen, France

and

William E. Strawderman*

Rutgers University

When estimating, under quadratic loss, the location parameter % of a spherically
symmetric distribution with known scale parameter, we show that it may be that
the common practice of utilizing the residual vector as an estimate of the variance
is preferable to using the known value of the variance. In the context of Stein-like
shrinkage estimators, we exhibit sufficient conditions on the spherical distributions
for which this paradox occurs. In particular, we show that it occurs for t-distribu-
tions when the dimension of the residual vector is sufficiently large. The main tools
in the development are upper and lower bounds on the risks of the James�Stein
estimators which are exact at %=0. � 1996 Academic Press, Inc.

1. INTRODUCTION

We study the problem of estimating the mean vector % of a spherically
symmetric distribution when the scale parameter is known but when a
residual vector U is available: more precisely, let (X, U ) be a random
vector around (%, 0). The loss function is assumed to be &$&%&2.

This problem has recently been considered by Brandwein and Strawderman
[2, 3], Brandwein et al. [4], Cellier et al. [7], and Cellier and Fourdrinier
[6]. These papers study classes of estimators which improve on the usual

article no. 0056

109
0047-259X�96 �18.00

Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

Received March 19, 1996.

AMS 1991 subject classification: 62F10, 62H12, 62C20.
Key words and phrases: spherical symmetry, quadratic loss, James�Stein estimation, loca-

tion parameter, minimaxity, robustness.

* Research supported by National Science Foundation Grants DMS-9307727 and DMS-
9400476.



File: 683J 162602 . By:CV . Date:04:11:96 . Time:13:21 LOP8M. V8.0. Page 01:01
Codes: 3180 Signs: 2852 . Length: 45 pic 0 pts, 190 mm

minimax estimator X. A particularly important class of such estimators is
the class of James�Stein estimators (1&a�X$X)X. An alternative class,
when a residual vector U is available, is the class of robust James�Stein
estimators (1&aU$U�X$X)X. This latter class was shown in [7] and
[6] to have the important property that, for proper choices of a, they
dominate X simultaneously for all spherically symmetric distributions, with
appropriate mild moment conditions, hence the term ``robust'' James�Stein
estimators.

We show in the context of Stein-like shrinkage estimation that use of the
residual vector to estimate the variance in the shrinkage constant may be
superior to using the known value of the variance.

This phenomenon seems paradoxical in the sense that risk behavior of
an estimator may be improved by substituting an estimate for a known
quantity. Furthermore, it adds, at least somewhat (and perhaps substan-
tially), to the attractiveness of the robust James�Stein class by demonstrat-
ing not only domination of the usual estimator X simultaneously for all
spherically symmetric distributions, but also domination of the usual
James�Stein estimator in many cases.

We give, in Section 2, expressions for the risk of the James�Stein
estimator (1&a�X$X)X and of the robust James�Stein estimators
(1&aU$U�X$X)X (see [7] and [6] for the robustness property). As the
risks depend on expectations of the form E[(U$U)q�X$X], Section 3 is
devoted to upper and lower bounds on these expectations. Then Section 4
derives upper and lower bounds on the risk of James�Stein and robust
James�Stein estimators. These bounds are similar in spirit to those
developed in Casella and Hwang [5] in the normal case.

Using these bounds in Section 5, we are able to give sufficient conditions
for domination of the robust James�Stein estimator over the usual
James�Stein estimator. The main result consists in a sufficient condition for
domination of the robust James�Stein estimator over the class of the
James�Stein estimators. We also give conditions for domination when % is
in a neighborhood of 0 and in a neighborhood of infinity.

In Section 6, various examples of distributions illustrate the phenomenon.
A basic example is the t-distribution when the dimension of the residual
vector used for estimating the variance is large enough. We also consider
the context where such a phenomenon cannot arise: one such context is the
normal case. The reason is that an application of the Rao�Blackwell result
to any robust James�Stein estimator gives rise to a better estimate in the
James�Stein class.

Section 7 gives concluding remarks. We indicate that the paradox is
likely to occur in situations other James�Stein estimation.

Finally, we present an appendix which contains technical lemmas helpful
for risk calculations.

110 FOURDRINIER AND STRAWDERMAN



File: 683J 162603 . By:CV . Date:04:11:96 . Time:13:21 LOP8M. V8.0. Page 01:01
Codes: 2548 Signs: 1792 . Length: 45 pic 0 pts, 190 mm

2. JAMES�STEIN AND ROBUST JAMES�STEIN ESTIMATORS

Assume that the random vector (X, U )$ has a spherically symmetric dis-
tribution with location parameter (%, 0)$. The dimension of the subvectors
X and % is p while that of U and 0 is k.

We are interested in the estimation of the unknown parameter % under
the usual quadratic loss &%&$&2. Classical James�Stein estimators are of
the form

$a
JS=\1&

a
X$X+ X, (1)

where a is a positive constant and it is well known that such estimators
improve on the usual estimator X when p�3 and 0�a�2( p&2) in the
particular case of a normal distribution with identity covariance matrix.

Other competing estimators, improving on X, are those which take into
account the residual vector U, that is,

$a
RJS=\1&

aU$U
X$X + X. (2)

More general estimators of this form were proved to have in addition a
nice robustness property (cf. [7] and [6]) in the sense that the improve-
ment on X does not depend on the specification of the distribution. We will
refer to the estimators of the form (2) as robust James�Stein estimators.
For these last estimators, it is easy to see (cf. formula (4) of Section 4) that
improvement on X occurs when 0<a<2( p&2)�(k+2).

In the following, for any %, we denote by E% the expectation with respect
to the underlying distribution spherically symmetric around %, so that the
risk of any estimator $ is given by

R(%, $)=E%[&$&%&2].

The risks of the estimators (1) and (2) can be calculated simultaneously,
noting that they belong to the family of estimators

$a
:=\1&a

(U$U ):

X$X + X.

Finiteness of such risks is guaranteed as soon as the second moment of
the spherical distribution exists and E%[(U$U )2:�X$X]<�, which is what
we suppose in the following (see [6]).

The expression of the risk of $a
: is given by the following proposition.
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Proposition 1. For any % # R p, the risk of $a
: equals

R(%, $a
:)=E0[X$X]+a2E% _(U$U )2:

X$X &&2a
p&2

k+2:
E% _(U$U ):+1

X$X & .

Proof. Let % be fixed in R p. It is easy to see that

R(%, $a
:)=E%[&X&%&2]+a2E% _(U$U )2:

X$X &&2aE% _(U$U): (X&%)$ X
X$X & .

Now E%[&X&%&2]=E0[X$X] and the Corollary of Lemma 2 in the
Appendix applied with g(X)=X�X$X gives

E% _(U$U ): (X&%)$ X
X$X &=

p&2
k+2:

E% _(U$U ):+1

X$X & ,

recalling that div(X�X$X)=( p&2)�X$X.
Therefore the above risk expression is proved. K

It is easy to deduce from the risk expression of $a
: that, for any % # R p,

the constant a for which the risk is minimum is

a(%)=
p&2

k+2:

E% _(U$U ):+1

X$X &
E% _(U$U)2:

X$X &
and the corresponding risk is

E0[X$X]&\ p&2
k+2:+

2 \E% _(U$U ):+1

X$X &+
2

E% _(U$U )2:

X$X &
.

It is worth noting that, for the James�Stein estimator (i.e., for :=0), the
optimal constant typically depends on % and equals

a(%)=
p&2

k

E% _(U$U )
X$X &

E% _ 1
X$X&

while, for the robust James�Stein estimator (i.e., for :=1), the optimal
constant does not depend on % anymore and equals ( p&2)�(k+2).
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However, note that, in the normal case N(%, _2I ), the optimal constant
a(%) does not depend on % and is equal to (( p&2)�k) E0[U$U]=
( p&2) _2. In general, for independence of a(%) on %, it would be sufficient
that U$U and 1�X$X are uncorrelated for all % but we conjecture that this
only occurs in the normal case (of course, the independence of X and U is
a characterization of normality in the spherical case).

3. BOUNDS FOR E%[(U$U)q�X$X]

Proposition 1 indicates that bounds for the risks of the estimators (1)
and (2) rest on bounds on expectations of the type E%[(U$U )q�X$X] where
q is an integer. The following propositions yield such upper and lower
bounds. These bounds are expressed, for any fixed R�0, conditionally on
the radius R=(&X&%&2+&U&2)1�2 and we will denote by ER, % the corre-

sponding expectation (that is, the expectation with respect to the uniform
distribution UR, % on the sphere SR, %=[ y # R p+k�&y&%&=R] of radius R
and centered at %). Thus we can write E%[(U$U )q�X$X]=E[ER, %[(U$U )q�
X$X]] where E denotes the expectation with respect to the radial distribu-
tion (i.e., the distribution of R).

First we give an expression of ER, %[(U$U )q�X$X] in terms of integrals
with respect to a beta distribution.

For notational convenience we often use B(:, ;, dv) for the density of the
beta distribution with parameters :>0 and ;>0.

Proposition 2. For p�3, any R�0, any % # R p, and any integer q such
that &k�2<q, the expectation of (U$U )q�X$X conditionally on the radius R
is equal to

ER, % _(U$U )q

X$X &=
1 \ p+k

2 + 1 \k
2

+q+
1 \k

2+ 1 \ p+k
2

+q+
R2q

_|
1

0
|

1

0

R2u+&%&2

(R2u+&%&2)2&4 &%&2 R2uv

_B \1
2

,
p&1

2
, dv+ B \p

2
,

k
2

+q, du+ .

Proof. Lemma 1 applied with g(X$X )=1�X$X and h(U$U )=(U$U )q

gives, for R�0 and % # R p,
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ER, % _(U$U )q

X$X &=R2q |
1

0
(1&u)q

__|
1

0

R2u+%2

(R2u+&%&2)2&4%2R2uv
B \1

2
,

p&1
2

, dv+&
_B \p

2
,

k
2

, du+ .

Inserting (1&u)q into the beta distribution B(p�2, k�2, du) yields the
desired result. K

At %=0, Proposition 2 simplifies greatly in the following corollary.

Corollary 1. Under the conditions of Proposition 2, we have

ER, 0 _(U$U)q

X$X &=
1 \ p+k

2 + 1 \k
2

+q+
1 \k

2+ 1 \p+k
2

+q+
p+k+2q&2

p&2
R2q&2

and, in the particular cases where q=0, 1, and 2, we have

ER, 0 _ 1
X$X&=

p+k&2
p&2

1
R2

ER, 0 _U$U
X$X &=

k
p&2

ER, 0 _(U$U )2

X$X &=
k(k+2)

( p+k)( p&2)
R2.

The following proposition gives a lower bound for E%[(U$U )q�X$X].

Proposition 3. Let q be an integer such that &k�2<q. If p�5 then, for
any % # R p, we have

E% _(U$U )q

X$X &�
1 \ p+k

2 + 1 \k
2

+q+
1 \k

2+ 1 \ p+k
2

+q+
p+k+2q&2

p&2

_E _
R2q

R2+
p+k+2q&4

p&4
&%&2& .
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With q equal to 0, 1, and 2 we directly deduce the following corollary.

Corollary 2. If p�5 then, for any % # R p, we have

E% _ 1
X$X&�

p+k&2
p&2 _E

1

R2+
p+k&4

p&4
&%&2&

E% _U$U
X$X &�

k
p&2

E _
R2

R2+
p+k&2

p&4
&%&2&

E% _(U$U )2

X$X &�
k(k+2)

( p+k)( p&2)
E _

R4

R2+
p+k
p&4

&%&2& .

Proof of Proposition 3. Let R�0 and % # R p fixed. From the expression
of E%[(U$U)q�X$X] given by Proposition 1, it is clear that

ER, % _(U$U)q

X$X &�
1 \ p+k

2 + 1 \k
2

+q+
1 \k

2+ 1 \ p+k
2

+q+
R2q |

1

0

1
R2u+&%&2 B \p

2
,

k
2

+q, du+

=
1 \ p+k

2 + 1 \k
2

+q+
1 \k

2+ 1 \ p+k
2

+q&2+
4

( p&2)( p&4
R2q

_ |
1

0

u2

R2u+&%&2 B \p
2

&2,
k
2

+q, du+ .

As the function u � u2�(R2u+&%&2) is convex, we have by the Jensen
inequality

ER, % _(U$U )q

X$X &

�
1 \ p+k

2 + 1 \k
2

+q+
1 \k

2+ 1 \ p+k
2

+q&2+
4

( p&2)( p&4)
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_
\ p&4

p+k+2q&4+2

p&4
p+k+2q&4

R2+&%&2

R2q

=
1 \p+k

2 + 1\k
2

+q+
1 \k

2+ 1 \ p+k
2

+q&1+
2

p&2
R2q

R2+
p+k+2q&4

p&4
&%&2

=
1 \ p+k

2 + 1 \k
2

+q+
1 \k

2+ 1 \ p+k
2

+q+
p+k+2q&2

p&2
R2q

R2+
p+k+2q&4

p&4
&%&2

.

Then, when we uncondition, we obtain the desired result. K

An upper bound for E%[(U$U )q�X$X] is given by the following proposi-
tion.

Proposition 4. Let q be an integer such that &k�2<q. If p�6 then, for
any % # R p, an upper bound for E%[(U$U)q�X$X] is given by

E% _(U$U )q

X$X &�
1 \ p+k

2 + 1 \k
2

+q+
1 \k

2+ 1 \ p+k
2

+q+
p+k+2q&2

p&2

_E _
R2q

R2+
( p+k+2q&2)( p&6)

( p&2)2 &%&2& .

As above we gather the particular cases q=0, 1, and 2.

Corollary 3. If p�6 then, for any % # R p, we have

E% _ 1
X$X&�

p+k&2
p&2

E _
1

R2+
( p+k&2)( p&6)

( p&2)2 &%&2&
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E% _U$U
X$X&�

k
p&2

E _
R2

R2+
( p+k)( p&6)

p&2)2 &%&2&
E% _(U$U )2

X$X &�
k(k+2)

( p+k)( p&2)
E _

R4

R2+
( p+k+2)( p&6)

( p&2)2 &%&2& .

Proof of Proposition 4. Let R�0 and % # R p be fixed. In the expression
of ER, %[(U$U )q�X$X] given by Proposition 2, the inner integral can be
written as

|
1

0

R2u+&%&2

(R2u+&%&2)2&4 &%&2 R2v
B \1

2
,

p&1
2

, dv+
=

p&2
p&3 |

1

0

(R2u+&%&2)(1&v)
(R2u+&%&2)2&4 &%&2 R2u+4 &%&2 R2u(1&v)

_B \1
2

,
p&3

2
, dv+

�
p&2
p&3

(R2u+&%&2)
p&3
p&2

(R2u+&%&2)2&4 &%&2 R2u+4 &%&2 R2u
p&3
p&2

(by Jensen inequality)

�
1

R2u+\1&
4

p&2
R2u

R2u+&%&2+ &%&2

�
1

R2u+
p&6
p&2

&%&2

since p�6.
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Therefore ER, %[(U$U )q�X$X] is bounded from above by

1 \ p+k
2 + 1 \k

2
+q+

1 \k
2+ 1 \ p+k

2
+q+

R2q |
1

0

1

R2u+
p&6
p&2

&%&2

B \ p
2

,
k
2

+q, du+

=
1 \ p+k

2 + 1 \k
2

+q+
1 \k

2+ 1 \ p+k
2

+q&1+
2

p&2
R2q

_|
1

0

u

R2u+\1&
4

p&2+ &%&2

B \p
2

&1,
k
2

+q, du+ .

As the integrand is a concave function of u we have by Jensen inequality

ER, % _(U$U )q

X$X &�
1 \ p+k

2 + 1 \k
2

+q+
1 \k

2+ 1 \ p+k
2

+q&1+
2

p&2

_R2q

p&2
p+k+2q&2

p&2
p+k+2q&2

R2+
p&6
p&2

&%&2

=
1 \p+k

2 + 1 \k
2

+q+
1 \k

2+ 1 \ p+k
2

+q+
p+k+2q&2

p&2

_
R2q

R2+
( p+k+2q&2)( p&6)

( p&2)2 &%&2

.

Finally when we uncondition the desired result follows. K

Remark 1. All bounds given in this section are exact at %=0. This
follows easily from Corollary 1 and expressions of the bounds.
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4. BOUNDS FOR THE RISKS OF THE JAMES�STEIN AND
THE ROBUST JAMES�STEIN ESTIMATORS

In this section, we give lower and upper bounds for the risks of the
James�Stein estimator (1) and the robust James�Stein estimator (2). Their
risks correspond respectively to the cases :=0 and :=1 in Proposition 1.
See Casella and Hwang [5] for similar bounds in the normal case. Thus
we have

R(%, $a
JS)=E0[X$X]+a2E% _ 1

X$X&&2a
p&2

k
E% _U$U

X$X & (3)

and

R(%, $a
RJS)=E0[X$X]+\a2&2a

p&2
k+2+ E% _(U$U )2

X$X & . (4)

It is clear, from formula 4, that domination of $a
RJS over X occurs when

0<a<2( p&2)�(k+2). In this context, bounds for R(%, $a
JS) and

R(%, $a
RJS) are immediately deduced from the corollaries of Propositions 3

and 4.

Proposition 5. If p�6 then, for any % # Rp, we have

E0[X$X]+a2 p+k&2
p&2

E _
1

R2+
p+k&4

p&4
&%&2&

&2aE _
R2

R2+
( p+k)( p&6)

( p&2)2 &%&2&
�R(%, $a

JS)

�E0[X$X]+a2 p+k&2
p&2

E _
1

R2+
( p+k&2)( p&6)

( p&2)2 &%&2&
&2aE _

R2

R2+
p+k&2

p&4
&%&2&
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and

E0[X$X]+\a2&2a
p&2
k+2+

k(k+2)
( p+k)( p&2)

_E _
R4

R2+
( p+k+2)( p&6)

( p&2)2 &%&2&
�R(%, $a

RJS)

�E0[X$X]+\a2&2a
p&2
k+2+

k(k+2)
( p+k)( p&2)

_E _
R4

R2+
p+k
p&4

&%&2& .

Remark 2. All the bounds given above are exact at 0 since they are
deduced from bounds of E%[(U$U )q�X$X] which are also exact at 0.
However, it is often desirable to have bounds in terms of moments of R2.
By applications of the Jensen inequality to the function R2q�(R2+A),
where q is a fixed integer and A is a fixed non-negative constant, it can be
shown that

(E[R2q&2])2

E[R2q&2]+AE[R2q&4]
�E _ R2q

R2+A&�
E[R2q] E[R2q&2]

E[R2q]+AE[R2q&2]
.

Then, from the corollaries of Propositions 3 and 4, we deduce the following
bounds when p�6:

p+k&2
p&2

\E _ 1
R2&+

2

E _ 1
R2&+

p+k&4
p&4

&%&2

�E% _ 1
X$X&�

p+k&2
p&2

E _ 1
R2&

1+
( p+k&2)( p&6)

( p&2)2 &%&2 E _ 1
R2&

k
p&2

1

1+
p+k&2

p&4
&%&2 E _ 1

R2&
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�E% _U$U
X$X &�

k
p&2

E[R2]

E[R2]+
( p+k)( p&6)

( p&2)2 &%&2

k(k+2)
( p+k)( p&2)

(E[R2])2

E[R2]+
p+k
p&4

&%&2

�E% _(U$U )2

X$X &
�

k(k+2)
( p+k)( p&2)

E[R4] E[R2]

E[R4]+
( p+k+2)( p&6)

( p&2)2 &%&2 E[R2]
.

It worth noting that these new bounds are also exact at 0. Then it is easy
to derive bounds for the risks of $JS and $JRS in terms of moments of R2

which are exact at 0 (but note that they are less sharp than those of
Proposition 5).

Proposition 6. If p�6 then, for any % # Rp, we have

E0[X$X]+a2 p+k&2
p&2

\E _ 1
R2&+

2

E _ 1
R2&+

p+k&4
p&4

&%&2

&2a
E[R2]

E[R2]+
( p+k)( p&6)

( p&2)2 &%&2

�R(%, $a
JS)

�E0[X$X]+a2 p+k&2
p&2

E _ 1
R2&

1+
( p+k&2)( p&6)

( p&2)2 &%&2 E _ 1
R2&

&2a
1

1+
p+k&2

p&4
&%&2 E _ 1

R2&
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and

E0[X(X]+\a2&2a
p&2
k+2+

k(k+2)
( p+k)( p&2)

_
E[R4] E[R2]

E[R4]+
( p+k+2)( p&6)

( p&2)2 &%&2 E[R2]

�R(%, $a
RJS)

�E0[X$X]+\a2&2a
p&2
k+2+

k(k+2)
( p+k)( p&2)

(E[R2])2

E[R2]+
p+k
p&4

&%&2

.

5. DOMINATION OF THE JAMES�STEIN ESTIMATOR BY
THE ROBUST JAMES�STEIN ESTIMATOR

From (4) it is easy to see that the optimal constant a for the risk of the
robust James�Stein estimator is ( p&2)�(k+2) (that is, the constant for
which the risk of $RJS is minimum).

Then the corresponding estimator $opt
RJS has risk

R(%, $opt
RJS)=E0[X$X]&\ p&2

k+2+
2

E% _(U$U )2

X$X & . (5)

The main result of this section is Theorem 1 which yields a sufficient
condition for the optimal robust James�Stein estimator to dominate any
James�Stein estimator.

Theorem 1. The optimal robust James�Stein estimator $opt
RJS uniformly

(in %) dominates all the James�Stein estimators $a
JS provided, for any % # R p,

\E% _U$U
X$X &+

2

E% _(U$U )2

X$X & E% _ 1
X$X&

<\ k
k+2+

2

. (6)
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Proof. According to (3), the optimal choice of the constant a leading
to a minimum risk for the James�Stein estimator $a

JS depends on % and
equals

a(%)=
p&2

k

E% _U$U
X$X&

E% _ 1
X$X&

.

Then the corresponding risk is

R(%, $a(%)
JS )=E0[X$X]&\ p&2

k +
2 \E% _U$U

X$X &+
2

E% _ 1
X$X&

.

Therefore, according to (5), the difference in risk between $opt
RJS and $a

JS

is bounded from above by

\p&2
k +

2 \E% _U$U
X$X &+

2

E% _ 1
X$X&

&\p&2
k+2+

2

E% _(U$U )2

X$X & .

Thus $opt
RJS uniformly dominates all the estimators $a

JS (for any a) if this
last quantity is negative, that is, if

\E% _U$U
X$X &+

2

E% _(U$U )2

X$X & E% _ 1
X$X&

<\ k
k+2+

2

which is the desired result. K

Condition (6) may be difficult to verify directly and a convenient way is
to express an upper bound of the left-hand side of (6) using the bounds
obtained in Section 3. This easily leads to be the following corollary.

Corollary 4. For p�6, a sufficient condition for which $opt
RJS dominates

uniformly (in %) all the estimators $a
JS is
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\E _ R2

R2+(( p+k)( p&6))�(( p&2)2) &%&2&+
2

E _ R4

R2+( p+k)�( p&4) &%&2& E _ 1
R2+( p+k&4)�( p&4) &%&2&

<
k

k+2
p+k&2

p+k
. (7)

However, it is interesting to first consider condition (7) for %=0 and for
&%& at infinity since there it reduces to simple conditions that are easy to
check. These are the subject of the following corollaries.

Corollary 5. The optimal James�Stein estimator at %=0 is $a0
JS where

a0=( p&2)�( p+k&2)(1�E[1�R2]. Then the optimal robust estimator $opt
RJS

dominates $a0
JS at %=0 if and only if

E[R2] E _ 1
R2&>

k+2
k

p+k
p+k&2

. (8)

Proof. The result is a straightforward application of Corollary 4 for
%=0. The ``only if '' part follows from the fact that the left-hand side of (6)
equals the left-hand side of (7) at %=0. K

The dominance conditions of $opt
RJS over $a

JS , for &%& at infinity, are
deduced from (7) by dividing the numerator and denominator of the left-
hand side of (7) by &%&4.

Corollary 6. For p�7, the optimal robust James�Stein estimator $opt
RJS

dominates all the estimators $a
JS for &%& at infinity if

(E[R2])2

E[R4]
<

k
k+2

( p&4)2 ( p&6)2

( p&2)4

p+k&2
p+k&4

. (9)

Remark 3. Straightforward calculations show that the right-hand side
of (9) is less than 1 (for p�7).

6. EXAMPLES AND COUNTEREXAMPLES

This section is devoted to examples (and counterexamples) of domina-
tion of the optimal robust James�Stein $opt

RJS estimator over the James�Stein
estimators $a

JS .
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6.1. Condition at %=0

We start with three counterexamples for which domination of $opt
RJS over

$a
JS cannot happen. Then we give two examples of such a domination.

1. If (X, U )$ is normal with the identity covariance matrix, then the
square of the radius has a /2

p+k distribution and condition 8 becomes

p+k
p+k&2

>
k+2

k
p+k

p+k&2

which is never satisfied. Of course, in this situation, as noted earlier, $ p&2
JS

uniformly dominates $opt
RJS .

2. If (X, U )$ has a distribution which is uniform on the sphere
SR0

=[ y # R p+k�&y&=R0] of radius R0 and centered at 0, then condi-
tion (8) becomes

1>
k+2

k
p+k

p+k&2

which is not satisfied for any k and p.

3. If (X, U )$ has a distribution which is uniform on the ball
BR0

=[ y # R p+k�&y&�R0] of radius R0 and is centered at 0, then condi-
tion (8) becomes

p+k
p+k&2

>
k+2

k

which is not satisfied for any k and p�3.

4. If the square of the radius has a gamma density #(:, ;) where :>0
and ;>0, then condition (8) is equivalent to

1<:<
(k+2)( p+k

2( p+2k)
.

Hence this is an example of domination, at %=0, of $opt
RJS over $a

JS (note
that (k+2)( p+k)�(2p+4k)>1 for k>2 and any value of p). Note that
this condition is independent of ;.
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5. Suppose that (X, U )$ has a Student distribution with m degrees of
freedom. Straightforward calculations show that the density of the radial
distribution is given by

21 \m+ p+k
2 +

1 \m
2 + 1 \ p+k

2 + m( p+k)�2 \1+
R2

m +
&((m+ p+k)�2)

R p+k&1.

hence E[R2]=m( p+k)�(m&2), if m>2, and E[1�R2]=1�( p+k&2), if
p+k>2. Thus condition (8) is equivalent to m�(m&2)>(k+2)�k, that is,
to m<k+2.

Remark 4. It follows easily from Corollary 5 that, in the general case of
variance mixture of normals, condition 8 becomes

E [_2] E _ 1
_2&>

k+2
k

.

6.2. Condition at Infinity for &%&

We will see that domination of $opt
RJS at infinity for &%& is obtained in the

cases of the distributions considered in 6.1(4) and 6.1(5).

1. When the square of the radius has a gamma density #(:, ;), condi-
tion (9) is equivalent to

:
:+1

<
k

k+2
( p&4)2 ( p&6)2

( p&2)4

p+k&2
p+k&4

.

It is easy to check that the left-hand side of this inequality increases from
0 to 1 when : goes from 0 to infinity. Then domination of $opt

RJS is assured
for small values of :.

More precisely it can be shown that the corresponding range of values
of : is the interval ]0, *�(1&*)[ where * denotes the right-hand side of the
previous inequality.

Note that, since the upper bound of this interval is an increasing func-
tion of * # ]0, 1[ and its value at *=1 equals infinity, there exists a
* # ]0, 1[ such that this bound is greater than 1. As a consequence we can
find a range of values of : for which the condition of domination of $opt

RJS

is satisfied at 0 and infinity for &%&.
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2. In the context of 6.1 (5) we have E[R4]=(m2�(m&2)(m&4))
(( p+k)( p+k+2)) and then, when m>4, condition (9) is equivalent to

m&4
m&2

<
k

k+2
( p&4)2 ( p&6)2

( p&2)4

p+k+2
p+k

p+k&2
p+k&4

.

It is clear that, for p�7 and for any k,

*=
( p&4)2 ( p&6)2

( p&2)4

p+k+2
p+k

p+k&2
p+k&4

<
( p&4)2 ( p&6)2

( p&2)4 <1.

Hence condition (9) is satisfied as soon as

m<
2

(1&*) k+2
(k+2)+2.

Lastly it is clear, since 0<*<1, that

k+2<
2

(1&*) k+2
(k+2)+2.

Thus the domination condition at 0 implies the domination condition at
infinity whenever the fourth moment exists.

6.3. Uniform Domination in %

It is of course more difficult to obtain uniform domination of $opt
RJS over

$a
JS uniformly in % # R p. The case where the radial distribution is concen-

trated on two points is a first example. Of course, this example may not be
a reasonable model for data likely to be encountered in practice. However,
it is the simplest class of distributions beyond the class where the radial dis-
tributions is degenerate. It is therefore particularly interesting that the
paradox occurs for this simple example.

Thus we assume that

P[R2=*]=:=1&P[R2=H*]

for fixed *>0 and H>0 and we have the following result.

Proposition 7. For := 1
2, any *>0, and sufficiently large p and k, there

exists H0 such that for all H>H0 the robust estimator $opt
RJS uniformly and

simultaneously dominates all estimators $a
JS .
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Proof. Condition 6 upon setting A=( p+k)( p&6)�( p&2)2, B=
( p+k)�( p&4), and C=( p+k&4)�( p&4) becomes

\ *
*+A &%&2+

H*
H*+A &%&2+

2

\ *2

*+B &%&2+
H 2*2

H*+B &%&2+\ 1
*+C &%&2+

1
H*+C &%&2+

�
k( p+k&2)

(k+2)( p+k)

or equivalently

{(*+B &%&2)(H*+B &%&2)(*+C &%&2)(H*+C &%&2)
[(*+A &%&2)(H*+A &%&2)]2 =

_{ [*(H*+A &%&2)+H*(*+A &%&2)]2

[*2(H*+B &%&2)+H 2*2(*+B &%&2)][(H*+C &%&2)+(*+C &%&2)]=
�

k( p+k&2)
(k+2)( p+k)

. (10)

For p�4 and p+k�6, A�C�B and the first term in brackets on the
left-hand side of (10) is bounded above by

B2C2

A4 =\ p+k&4
p+k +

2

\ p&2
p&4+

4

\ p&2
p&6+

4

. (11)

The second term in brackets is bounded above (for A�C�B) by
replacing A with C and B with C. Hence by letting X=*�&%&2 condition
(10) will be satisfied, provided

sup
X

GH(X )�\ k
k+2+\

p+k
p+k&4+\

p+k&2
p+k&4+\

p&6
p&2+

2

\ p&4
p&2+

4

(12)

when

GH(X )=
[(HX+C)+H(X+C)]2

[HX+C+H 2(X+C)][(HX+C)+(X+C)]
. (13)

The right-hand side of (12) approaches 1 as p and k get large. In fact,
for any k>2, p may be chosen sufficiently large so that it is strictly greater
than 1�2+= for any 1�2>=>0. It therefore suffices to show that we may
choose H0 so that, for H>H0 ,

sup
X

G(X )< 1
2+=. (14)
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A detailed calculation (checked with Maple) gives the derivative of
GH(X ) as

[&2HC 2(1&4H+6H 2&4H3+H 4)(1+X )]
Q(X )

,

where Q(X ) is a positive fourth degree polynomial. Hence for H sufficiently
large G(X ) is decreasing, and its supremum occurs at X=0. Therefore it
suffices to choose H0 so that, for H>H0 , G(X ) is decreasing and

GH(0)=
1
2

(1+H)2

1+H2 >
1
2

+=.

But limH � 0 GH(0)= 1
2 and hence such H0 exists. The theorem follows.

We note that a similar result can be proven for any fixed :>0. Addi-
tionally, numerical calculations indicate that p and H need not be nearly
as large as the proof of the theorem indicates for domination to hold. K

Remark 5. From the point of view of practical modelling of multi-
variate data, the t-distribution is perhaps, next to the normal distribution,
the most important and widely used. It is therefore interesting and poten-
tially important that the paradox holds when the dimension k of the
residual vector is sufficiently large, whatever the value of p (�7) and the
degree of freedom m (�5).

Precisely, we have the following result:

Proposition 8. Assume that (X, U )$ has a Student distribution with m
degrees of freedom. Then, for any p�7 and any m�5, there exists k0 such
that, for any k�k0 , the robust estimator $opt

RJS uniformly and simultaneously
dominates all estimators $a

JS .

Proof. As the density of the radius of the tm distribution is proportional
to (1+R2�m)&( p+k+m)�2 R p+k&1, the left-hand side of condition (7)
equals, by letting

A=
( p+k)( p&6)

( p&2)2 , B=
p+k
p&4

, and C=
p+k&4

p&4
,

r=
\|

�

0

R p+k+1

R2+A &%&2 \1+
R2

m +
&( p+k+m)�2

dr+
2

.

_|
�

0

R p+k&1

R2+C &%&2 \1+
R2

m +
&( p+k+m)�2

dr

_|
�

0

R p+k+3

R2+B &%&2 \1+
R2

m +
&( p+k+m)�2

dr &
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Through the change of variable R=(m(1&t)�t)1�2 the quantity r can be
written, after obvious simplifications, as

r=
\|

1

0

((1&t)�t)( p+k+1)�2

m((1&t)�t)+A &%&2 t( p+k+m)�2 t&3�2

(1&t)1�2 dt+
2

_|
1

0

((1&t)�t)( p+k&1)�2

m((1&t)�t)+C &%&2 t( p+k+m)�2 t&3�2

(1&t)1�2 dt

_ |
1

0

((1&t)�t)( p+k+3)�2

m((1&t)�t)+B &%&2 t( p+k+m)�2 t&3�2

(1&t)1�2 dt&
=

\|
1

0

1
1&t(1&A(&%&2�m))

t (m&2)�2(1&t)( p+k)�2 dt+
2

_|
1

0

1
1&t(1&C(&%&2�m))

tm�2(1&t)( p+k&2)�2 dt

_|
1

0

1
1&t(1&B(&%&2�m))

t(m&4)�2(1&t)( p+k+2)�2 dt&
=

m&2
m

p+k
p+k+2 \|

1

0

1
1&t(1&A(&%&2�m))

B \m
2

,
p+k+2

2
, dt++

2

.

_|
1

0

1
1&t(1&C(&%&2�m))

B \m+2
2

,
p+k

2
, dt+

_|
1

0

1
1&t(1&B(&%&2�m))

B \m&2
2

,
p+k+4

2
, dt+&

Convexity, for fixed z, of (1&zt)&1 and Jensen's inequality for the
integrals of the denominator give

r�
m&2

m
p+k

p+k+2

_
_|

1

0

1
1&t(1&(A�m) &%&2)

B \m
2

,
p+k+2

2
, dt+&

2

_
1

1&((m&2)�( p+k+m+2))(1&(B�m) &%&2)

_
1

1&((m+2)�( p+k+m+2))(1&(C�m) &%&2)&
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=
m&2

m
p+k

p+k+2

_|
1

0

m&2
p+k+m+2

B _ p+k+4
(m&2) B

+
&%&2

m &
tA _1&t

tA
+

&%&2

m &
B \m

2
,

p+k+2
2

, dt+

_|
1

0

m+2
p+k+m+2

C _ p+k
(m+2) C

+
&%&2

m &
tA _1&t

tA
+

&%&2

m &
B \m

2
,

p+k+2
2

, dt+

=
m&2

m
m&2

p+k+m+2
m+2

p+k+m+2

_
p+k&4
p+k+2

( p&2)4

( p+k)2 ( p&6)2

_|
1

0

1
t

( p+k&4)( p&4)
(m&2)( p+k)

+
&%&2

m
1&t

t
( p+k)( p&6)

( p&2)2 +
&%&2

m

B \m
2

,
p+k+2

2
, dt+

_|
1

0

1
t

( p+k)( p&4)
(m+2)( p+k&4)

+
&%&2

m
1&t

t
( p+k)( p&6)

( p&2)2 +
&%&2

m

B \m
2

,
p+k+2

2
, dt+

where we have replaced A, B, and C by their values in the last expression.
Applying Lemma 3 to each integral in the last expression yields

r�
m&2

m
m&2

p+k+m+2
m+2

p+k+m+2
p+k&4
p+k+2

( p&2)4

( p+k)2 ( p&6)2

__
B \m

2
&1,

p+k+2
2 +

B \m
2

,
p+k+2

2 +
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+
( p+k&4)( p&4)( p&2)2

(m&2)( p+k)2 ( p&6)

B \m
2

,
p+k

2 +
B \m

2
,

p+k+2
2 +&

__
B \m

2
&1,

p+k+2
2 +

B \m
2

,
p+k+2

2 +

+
( p&4)( p&2)2

( p+k&4)( p&6)(m+2)

B \m
2

,
p+k

2 +
B \m

2
,

p+k+2
2 +& . (15)

Noting that B((m�2)&1, ( p+k+2)�2)�B(m�2, ( p+k+2)�2)=( p+k+m)�
(m&2) and B(m�2, ( p+k+2)�2)�B(m�2, ( p+k)�2)=( p+k+m)�( p+k),
inequality (15) can be rewritten as

r�
m&2

m \ p+k+m
p+k+m+2+

2 p+k&4
p+k+2

( p&2)4

( p&6)2

1
( p+k)2

__1+
1

( p+k2

p+k&4
p+k

( p&4)( p&2)2

p&6 &
__m+2

m&2
+

1
( p+k&4)( p+k)

( p&4)( p&2)2

p&6 & . (16)

Note that the right-hand side of (16) goes to zero when p and m are fixed
and k goes to infinity. Now the right-hand side of (7) goes to 1 under these
conditions. Hence the theorem follows. K

Remark 6. Proposition 8 does not give an explicit value of k0 such
that, for k�k0 , we have uniform domination of $opt

RJS over all $a
JS . Compar-

ing with Maple the right-hand side of (16) with the right-hand side of (7)
yields Table I which gives values of k0 corresponding to fixed values of m
(�5) and p (�7).

7. CONCLUSION

Since Stein's fundamental 1956 article [10] many papers have studied
properties of Stein like shrinkage estimators. In 1961 James and Stein [8]
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TABLE I

Minimum Values of k for Which $opt
RJS Dominates All the $a

JS

m "p 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 22 13 11 10 9 9 10 10 10 11 11 11 12 12
6 21 13 10 10 9 9 9 10 10 10 11 11 12 12
7 21 13 10 10 9 9 9 10 10 10 11 11 11 12
8 21 13 10 9 9 9 9 9 10 10 10 11 11 12
9 20 12 10 9 9 9 9 9 10 10 10 11 11 12

10 10 12 10 9 9 9 9 9 10 10 10 11 11 12
11 10 12 10 9 9 9 9 9 10 10 10 11 11 11
12 10 12 10 9 9 9 9 9 10 10 10 11 11 11
13 10 12 10 9 9 9 9 9 10 10 10 11 11 11
14 10 12 10 9 9 9 9 9 10 10 10 11 11 11
15 10 12 10 9 9 9 9 9 10 10 10 11 11 11
16 10 12 10 9 9 9 9 9 10 10 10 11 11 11
17 10 12 10 9 9 9 9 9 10 10 10 11 11 11
18 10 12 10 9 9 9 9 9 10 10 10 11 11 11

showed that $a
JS dominates the usual estimator, X, in the N(%, _2I ) case

for 0<a<2( p&2) _2 when _2 is known and also that $opt
RJS improves X

when _2 is unknown. Several authors have studied improvements in the
nonnormal case with the broadest developments occurring for spherically
symmetric distributions. Typically, $a

JS has been shown to dominate X
or a range of values depending on the distribution (see Brandwein and
Strawderman [1] for an extensive bibliography). Cellier et al. [7] showed
hat $opt

RJS dominates X for all spherically symmetric distributions
simultaneously.

A key feature of this last result is that it holds whether the variance of
the underlying distribution is known or unknown (provided a residual vec-
tor is present). This extremely strong distributional robustness property of
$opt

RJS makes it a very attractive alternative to $a
JS even in the known

variance case.
It was this distributional robustness property that led us to the com-

parison of the two estimators and to the paradox studied in this paper
��namely that substituting an estimated value U$U�(k+2) for the known
value _2 can lead to an improved procedure. In particular, it was most
interesting that the paradox occurs for the multivariate-t model, perhaps
the most important alternative to the normal model, as soon as the dimen-
sion of the residual vector is sufficiently large.

That the paradox can occur at all is of course due to the fact that, as
soon as one departs from the normal model, even in the known variance
case, X is no longer sufficient and (X, U$U ) is a minimal sufficient statistic
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with U$U being ancillary. Of course this does not explain why the paradox
occurs, only that it is not impossible.

The James�Stein estimator is not the only, and in practice is usually not
the best, estimator to dominate X. Other alternatives such as the Lindley�
Smith estimator X&(a�&X&X� 1&2)(X&X� 1) (see [9]) offer substantial
improvements in certain portions of the parameter space and effectively
utilize prior information about %. A very general class of such estimators,
X+a_2g(X ) where a &g(X )&2+2 div g(X )<0, was shown in Stein [11] to
dominate X in the N(%, _2I ) case with _2 known.

Again, this result has been extended to the general spherically symmetric
case by Brandwein and Strawderman [2]. Cellier and Fourdrinier [6]
showed that the distributionnaly robust version X+(U$U�(k+2)) g(X )
dominates X for all spherically symmetric distribution simultaneously.

We have not studied the paradox in any detail for this broader class but
it seems likely that it persists. In particular, for estimators of the Lindley�
Smith type or others which shrink to a subspace, our calculations do apply
and show that the robust version will dominate for the t-distribution if the
dimension of the residual vector is large.

We believe that the results add substantially to the attractiveness of the
robust forms of general shrinkage estimators and have the potential to be
more than just an interesting paradox.

APPENDIX

The first two lemmas deal with expectations conditioned on the radius of
a spherically symmetric distribution in R p_Rk centered at (%, 0) where
% # R p. These expectations reduce to integrals with respect to the uniform
distribution UR, % on the sphere SR, %=[ y=(x, u) # R p_Rk�(&x&%&2+
&u&2)1�2=R]. If ER, %[�] is the expectation of some function � with respect
to UR, % , the expectation with respect to the entire distribution is given by
E%[�]=E[ER, %[�]] where E is the expectation with respect to the dis-
tribution of the radius. For %=0, we denote by SR , UR and ER the respec-
tive expressions SR, 0 , UR, 0 , and ER, 0 .

When the spherical distribution has a density with respect to the
Lebesgue measure, it is necessarily of the form f (&x&%&2+&u&2) for some
function f. Then the radius has density R � _p+kf (R2) R p+k&1 where
_p+k=2? p+k�1(( p+k)�2). Therefore the expectation of any function �
can be written as

E%[�]=|
�

0 _|SR, %

�( y) UR, # (dy)& f (R) dR.

134 FOURDRINIER AND STRAWDERMAN



File: 683J 162627 . By:CV . Date:04:11:96 . Time:13:21 LOP8M. V8.0. Page 01:01
Codes: 2448 Signs: 1239 . Length: 45 pic 0 pts, 190 mm

Note that for a vector y=(x, u) # SR, % , we have x=?( y) and &u&2=
R2&&?( y)&%&2 where ? is the orthogonal projector from R p_Rk onto
Rp. Under UR, % , the distribution ?(UR, %) of this projector has a density
with respect to the Lebesgue measure on R p given by x � C p, k

R (R2&
&x&%&2)k�2&11BR , % (x) where C p, k

R =(1(( p+k)�2) R2& p&k�(1(k�2) ? p�2)
and 1BR, % is the indicator function of the ball BR, %=[x # R p�&x&%&�R]
of radius R centered at % in R p.

According to the above, as a spherically symmetric distribution on R p

around %, the radius of ?(UR, %) has density

r � _pC p, k
R (R2&r2)k�2&1 1]0, R[(r) r p&1

=
2R2& p&k

B \p
2

,
k
2+

r p&1(R2&r2)k�2&11]0, R[(r).

We repeatedly use the fact that any such projection onto a space of
dimension greater than 0 and less than p+k is spherically symmetric with
a density. Then we also often make use of its radial density.

Lemma 1. Assume p�2. If g and h are two measurable real valued
functions then, for any R>0 and any % # R p,

ER, %[ g(X$X ) } h(U$U)]

=|
1

0
h(R2(1&u)) |

1

0

1
2

[ g(R2u+&%&2&2 &%& Ru1�2v1�2)

+ g(R2u+&%&2+2 &%& Ru1�2v1�2)]

_B \1
2

,
p&1

2
, dv+ B \ p

2
,

k
2

, du+,

provided these expectations exist.

Proof. Let R�0 and % # R p be fixed. Then

ER, %[ g(X$X ) h(U$U )]

=|
SR, %

h(&y&?( y)&2) g(&?( y)&2) UR, % (dy)

=|
SR, %

h(R2&&?( y)&%&2) g(&?( y)&2) UR, % (dy)
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=|
BR, %

h(R2&&x&%&2) g(&x&2) ?(UR, %)(dx)

=
2R2& p&k

B \ p
2

,
k
2+

|
R

0
h(R2&r2) _|Sr, %

g(&x&2) Ur, % (dx)& r p&1(R2&r2)k�2&1 dr

using the density of the radius of the distribution ?(UR, %). Then, with the
change of variable r=R - u, we obtain

ER, %[ g(X$X ) h(U$U )]

=|
1

0
h(R2(1&u)) _|SR - u, %

g(&x&2) UR - u, % (dx)& B \ p
2

,
k
2

, du+ .

The rest of the calculation depends on the evaluation of the innermost
integral of the last expression. Indeed, for r�0 fixed, we have

|
Sr, %

g(&x&2) ur, # (dx)

=|
2% _|2%

=
g(&u&2+&t&2) Ur, % (du�?%=t)& ?% (Ur, %)(dt)

where 2% is the one-dimensional linear subspace spanned by %, 2=

% is its
( p&1)-dimensional orthogonal subspace, ?% is the orthogonal projector
onto 2% , and Ur, % ( } , �?%=t) is the conditional probability of Ur, % given
?%=t.

In the right-hand side of the last equality, as Ur, % ( } �?%=t)=
U- r2&&t&%&2 �$t (where $t is the Dirac measure in 2% at t), the innermost
integrals equals

| S- r2&&t&%&2 g(&u&2+&t&2) U- r2&&t&%&2(du)= g(r2&&t&%&2+&t&2).

Hence using the density of ?% (Ur, %), we obtain

|
Sr, %

g(&x&2) Ur, % (dx)

=
2r2& p

B \1
2

,
p&1

2 +
|

r

0 _|S{, %

g(r2&&v&%&2+&v&2) U{, % (dv)&
_(r2&{2)(( p&1)�2)&1 d{.
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Since the sphere S{, % is one-dimensional, then U{, %= 1
2($%&{&+$%+{&)

where &=%�&%&. Therefore

|
Sr, %

g(&x&2) Ur, % (dx)

=
r2& p

1 \ p&1
2

,
1
2+

|
r

0
[ g(r2&{2+&%&{&&2)+ g(r2&{2+&%+{&&2)]

_(r2&{2)(( p&1)�2)&1 d{

=|
1

0

1
2

[ g(r2+&%&2&2 &%& rv1�2)+ g(r2+&%&2+2 &%& rv1�2)]

_B \1
2

,
p&1

2
, dv+

after expanding the variable in g and using the change of variable {=r - v.
Replacing this integral in the expression of ER, %[ g(X$X ) h(U$U )] found

above gives the desired result. K

Lemma 2. If g is a vector-valued function and h is a real valued function
then, for any % # R p, provided these expectations exist, we have

E%[h(U$U)(X&%)$ g(X )]=&E% _ H(U$U )
(U$U )k�2&1 div g(X )&,

where H is the indefinite integral, vanishing at 0, of the function
t � & 1

2h(t) tk�2&1.

Proof. Conditionally on the radius R, we have

ER, %[h(U$U )(X&%)$ g(X )]

=C p, k
R |

BR, %

h(R2&&x&%&2)(x&%)$ g(x)(R2&&x&%&2)k�2&1 dx

=C p, k
R |

BR, %

({H(R2&&x&%&2))$ g(x) dx

since

{H(R2&&x&%&2)=&2H$(R2&&x&%&2)(x&%)

=h(R2&&x&%&2)(R2&&x&%&2)k�2&1 (x&%).
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Then, by the divergence formula,

ER, %[h(U$U )(X&%)$ g(X )]

=C p, k
R |

BR, %

div (H(R2&&x&%&2) g(x)) dx

&C p, k
R |

BR, %

H(R2&&x&%&2) div g(x) dx.

Now, if _R, % denotes the area measure on the sphere SR, % , the divergence
theorem insures that the first integral equals

C p, k
R |

SR, %

(H(R2&&x&%&2) g(x))$
x&%

&x&%&
_R, % (dx)

and is null since, for x # SR, % , R2&&x&%&2=0 and H(0)=0.
Hence, in terms of expectation, we have

ER, %[h(U$U )(X&%)$ g(X )]

=&C p, k
R |

BR, %

H(R2&&x&%&2)
(R2&&x&%&2)k�2&1 div g(x)(R2&&x&%&2)k�2&1 dx

=&ER, % _ H(U$U )
(U$U )k�2&1 div g(X )&

which is, when we uncondition, the desired result. K

Corollary. For any : # R and any % # R p, we have

E%[(U$U ): (X&%)$ g(X )]=
1

k+2:
E%[(U$U ):+1 div g(X )]

provided these expectations exist.
Then, if :=0,

E%[(X&%)$ g(X )]=
1
k

E%[(U$U) div g(X )]

and, if :=1,

E%[(U$U)(X&%)$ g(X )]=
1

k+2
E%[(U$U)2 div g(X )].
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Proof. The result comes from the fact that, if h(t)=t:, then the
indefinite integral of &1

2h(t) tk�2&1=&1
2 tk�2&1+: vanishing at 0 is H(t)=

&tk�2+:�(k+2:). K

Lemma 3. Let F be a probability distribution on [0, 1] and a and b be
two positive constants. Then, for any x�0, we have

|
1

0

1
t

a+x

b
1&t

t
+x

dF(t)�|
t1

0

1
t

dF(t)+
a
b |

1

t1

1
1&t

dF(t)

�E _1
t&+

a
b

E _ 1
1&t&

where t1 is such that (a�b)(t1 �(1&t1))=1 (i.e., t1=(1+b�a)&1) and E is the
expectation with respect to F.

Proof. Note that for 0�t�t1 (respectively, t1�t�1) (a+x)�
(b(1&t)�t)+x) is an increasing (respectively decreasing) function of x. The
result follows by bounding this function by its value at infinity (respec-
tively, at 0).
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