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ABSTRACT 

An iterative method for solving general systems of linear inequalities is considered. 
Tile method, a relaxed generalization of Cimmino's scheme for solving linear systems, 
was first suggested by Censor and Elfving. Each iterate is obtained as a convex 
combination of the orthogonal projections of the previous iterate on the half spaces 
defined by the linear inequalities. The algorithm is particularly suitable for implemen- 
tation on computers with parallel processors. We prove convergence from any starting 
point for both consistent and nonconsistent systems (to a feasible point in the first 
case, and to a weighted least squares type solutions in the second). 

1. I N T R O D U C T I O N  

Recent applications which require the solution of huge systems of linear 
equations have provoked a renewed interest in iterative methods for general 
linear systems (e.g. linear programming [4,7], image reconstruction from 
projections [6]). 
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Several sequential methods (derived mostly from Kaczmarz's) have been 
suggested [1]. In these methods each iterate is obtained from the previous one 
by considering only one equality or inequality. Convergence results for the 
inequality case are limited to consistent systems. 

Cimmino [3] devised an iterative scheme for the solution of a finite system 
of linear algebraic equations. The method starts with an arbitrary point in R" 
as an initial approximation, and then calculates at each step the centroid of a 
system of masses placed at the reflections of the previous iterate with respect 
to the hyperplanes defined by the system of equations. This centroid is taken 
as a new iterate. Cimmino's method is discussed in [5]. See [8] for a lucid 
geometric description of both Kaczmarz's and Cimmino's methods, including 
considerations on the behavior of the latter in the inconsistent case. 

Censor and Elfving [2] generalized Cimmino's method to linear inequali- 
ties and gave convergence proofs only for the feasible case. In this paper we 
consider a special case of Censor and Elfving's method which converges from 
any starting point to a solution of the system of linear inequalities in the 
consistent case and to a weighted least squares solution in the general case. 
The study of the behavior of the algorithm in the practically important 
situation when the problem is infeasible is made possible by our approach to 
the convergence proof, which differs from Censor and Elfving's. 

Geometrically, each iterate lies in the half line determined by the previous 
one and a convex combination of its orthogonal projections on all the half 
spaces defined by the inequalities. 

These simultaneous algorithms (as opposed to successive ones) are particu- 
larly suitable for implementation on computers with parallel processors. 

2. THE ALGORITHM 

Consider the system of linear inequalities: 

where a ~, x ~ R ~ 
product. 

Let ~ 1 . . . . .  ~ be real numbers such that 

( . i , x )  ~< bi (1 ~< i ~ r ) ,  ( l )  

(a ~ 4: 0), b i ~ R, 2 ~ r, and ( , ) is the Euclidean inner 

• h , = l ,  O<h~ (1 ~< i ~< r) .  (2) 
i = l  



PROJECTIONS METHOD FOR LINEAR INEQUALITIES 245 

Define, for x ~ R", 1 ~< i ~< r, 

ci(x ) & min O, ilaill z 

where II II stands for the Euclidean norm in R". Then 

e ,x  = x + c , ( x ) . '  (4) 

defines the orthogonal projection of the point x on the closed half space 

C, ~= { x ~ R " :  (a ' , x }  4 bi }. 

Now, define P : R" --* R" by 

r = ~ X,e, (5) 
i=1 

and, for any a ~ R, 

eo=/+ ,~(e - i ) ,  (5') 

where I is the identity function. 
With these definitions at hand, we state the simultaneous projection 

algorithm for solving linear inequalities. 

ALGORITHM, 

with 0 < a < 2. 

Take an arbitrary x 0 ~ R n. Define inductively 

X k + l  = p a x  k (6) 

In the next section we introduce some properties of the operators P and 

3. AUXILIARY RESULTS 

We start with two elementary properties of orthogonal projections, which 
follow easily from Theorem 11.2 in [9]. 
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For a n y x ,  y ~ R " ,  l ~ i ~ r  

( e , ~ -  p , ~ . , x -  r,x> <, o, 

i i g v  - P ,  x l i  <..<. f l v  - x l i ,  

I t t ' , x  - I ' ,~ l I  : I tx - y l l  ~ 5 x  - r , ~  = x - u .  
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(7) 

(s) 

(8') 

LEMMA 1. bbr a n y  x ,  y e R " ,  t IPy - Pxll ~< t l y -  xll, 

P r o q f  . 

= r i<~ , 

lieu - exll ~ 2~,(gu - g x )  ~ X,llgu - P, xll 
~=1  i = l  

t l u -  xlF 

[using (8) and (2)]. 

LEMMA 2. L e t  r w ~ 0~". T h e n  

t 

~=1 i=i 

x ( l lg~ - r?qlllI ' ,w - P F I I -  Itgv - Pit'It ~ ). 

Proq f .  From (7), for any i, 

r 

i = 1  
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Substracting (Pw - I v ,  P v  ) from the last inequality, get 

( e w  - I v ,  v - I v )  ~ ~ h~(p~w - l~v, t~v) - ( e w  - Iv ,  I v )  
i=1 

j = l  i= l  

i = l j = l  

i = l j = l  

= l j = i  

~. ~ ~ ~,~(tlr,~-P,~lIH~-Pj~ll-ll~,v-l~l~ ~) • 
= l j = i  

Consider the (possibly empty up to now) set F of fixed points of P, i.e. 
F = ( z ~ R n : Pz  = z }. Then we have the following lemma: 

LEMMA 3. For  a n y  z ~ F ,  x ~ R n, ( z  - I x ,  x - I x  ) <~ O. 

Proof .  Define aij = IlI~x - t jx l l ,  b=j = I IP~z  - I j z l l ,  Apply Lemma 2 with 
W = Z ,  / ) = X :  

i = l j = i  

Apply Lemma 2 with w = x, v = z: 

o=<~x-tz,~-Pz><. ~ ~X,X~(b,a,-b~,,). 
i = l j = i  

(10) 
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Add (9) and (10) together: 

. . . .  £ 
i = 1  j = ~  

Define now the positive function f :  R" ~ R: 

and let G be the set of minimizers of f.  It is clear that f is a convex function, 
since it is a positive combination of distances to closed convex sets. See e.g. [8, 
pp. 28, 32]. 

We proceed now to show that F = G. We need the following lemma: 

Summing on i, 

L E M M A  4 .  b))r a n y  x ~ R , ,  

Proof. Since Pix is the closest point to x in Q, 

IIPie~x - P.x l l  2 <~ !lP~x - P.x t t  2 

= IIP, x - x l f f  + tlx - P.xl l  2 - 2 ( P i x  - x ,  P~x - x)~ 

i 

f ( e o x )  = S .  x , l l e ,  e o x -  e,.xll ~ 
i = 1  

r 

~ X , l l e ,  x - xll 2 + IIx - G x l l  ~ - 2 ( e x  - x .  t 'ox - x> 
i = 1  

f ( x ) =  ~ ~ , l l P ~ x -  x[I 2 ( 1 1 )  
i = l  
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It follows that f is a descent function for the algorithm (6) (with 
0 < a < 2) and, as a special case for a = 1, 

,f( Px ) <~ .f( x ) - I l e x  - xl l  2, 

Let g~:R"  ~ R  >~o be defined as g , ( x ) =  Ile,s - xl l  2. 

(12) 

THEOREM 1. F = G.  

Proof.  

(i) G c F. Take x ~ G, so f ( x )  - f ( P x )  <~ O. From (12), 0 ~< gl(x) ~< 
f (  x ) - f (  Px ). Therefore gl(X)= 0 and Px = x. 

(ii) F c G. Take z ~ F, x ~ R". Assume, by negation, f ( x )  < f ( z ) .  
Consider the level set 

A= (y an:f(y) f(xl}. 

A is closed and convex, because of the continuity and convexity of f .  Let yo 
be the closest point to z in A. By (12), f ( p y O ) < ~ f ( y o ) ,  i.e. p y O ~  A .  T h e  

definition of yo implies now I l e y  ° - z l l  > / I l y  ° - z l l .  From Lemma 1, i l e y  ° - 

z l l  = I l e y  ° - ezll <~ I ly  ° - z l l .  S o  I l e y  ° - z l l  = I ly  ° - z l l .  T h u s  pyo = yo. 
Therefore IlY ° - z l l  = I l e y  ° - ezll ~ E T = l h i l l P ~ y  ° - ~ z l l  ~ IlY ° - z l l  [ u s i n g  

(8)]. Then IIP~y ° - P~zll = IlY ° - zll f o r  any i. From (S') get Piz - z = P i v  ° - 
po. So f ( z )  = f ( y o )  <~ f ( x ) ,  a contradiction. So f ( z )  ~< f ( x )  for any x ~ R", 
that is to say z ~ G. • 

Let now F~ be the set of fixed points of P~. It is immediate, from the 
definition of P~ that F, = F for any a > 0. So we have 

COROLLARY 1. F,, = G fo r  a n y  a > O. 

Observe that if the sequence defined in (6) converges, the limit point 
belongs to F~. We conclude that whenever the algorithm converges, it 
converges to a point which minimizes the weighted average (with the ~'i 's) of 
the squares of the distances to the C/'s, i.e. a weighted least squares solution. 

The next proposition shows that in the feasible case F is exactly the set of 
feasible points. 
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PROPOSITION 1. I f  C - N , ~ .  l "~ ¢ 0 , t h e n  F = C. 

Proof .  Obviously C c F .  Take z ~ F ,  x ~ C  Since x e C, t'~x ..... x and  

IIPix - Pix[I = 0 for any i, j .  Now, as in Lemma 3, 

0 : ( x  - Pz ,  z - t ' z }  : ( P x  -- Pz ,  : - l ' z )  

So Piz  = P i z  for all i, j. Then z = Z',:~i~it ' ,  - = Piz. for any j, i.e., z ~.--:: C i for 
any j, implying z ~ C. • 

4. C O N V E R G E N C E  RESULTS 

In this section we give convergence results for the algorithm defined in 
(6). The main one is that the algorithm converges for any initial point 
x ° ~ R % whether the system (1) is consistent or not. From now on, let { x k } 
be the sequence defined by (6). 

LEMMA 6. l f  l; 4:~, t hen  I I x ~ - - - z l l  decreases  fi~r a n y  z ~ F ,  x~ ~_R '~ 
i .e . ,  { x k } is F e j e r - m o n o t o n e  w i t h  respect  to the  set  F. 

Proof .  

IIx k ~ - z t l  2 - - I l x  k - z i l  :~ + a 2 ! l t ' x  k - xk l l  2 + 2 ~ ( x  k - z ,  t ' x  k - x ~  

=II xk -- zl! ~- + a ( a -  2)llex ~ - xkff 2 

+ 2 a ( P x  k - x k, Px k - z ) .  (13) 

The second term of (13) is negative because a ~ ( 0 , 2 ) ,  and the third is 
nonpositive by Lemma 3. • 

THEOREM 2. I f  { x k } d e f i n e d  b y  (6) is b o u n d e d ,  t h e n  it  converges  f o r  
a n y  x ° ~ R  ", a n d  F ¢ ~ ,  
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Proof. 

So 

By Lemma 4, 

If (x k } is bounded there exists a convergent subsequence 

X kj  --~ X .  
j ~OC 

go(x ,) - ,  
j --, oc  

g.(x J) 

Since f i x  k) is decreasing and bounded below by 0, f i x  k) - f i x  k+l ) tends to 
0. So g , ( x ) = 0  ~ P , x = x  ~ x ~ F .  So F # ~ .  Given ( > 0 ,  take j so that 
IIx kj - xll < c, Now for any m > k i, apply Lemma 6: IIx . . . .  xll ~< IIx kj - xll < ~. 
So xk ~ x. • 

COROLLARY 2. I f  F -~ f~, then ( x k } converges for  any x ° ~ R"  to a 
point  in F. 

Proof. Take z ~ F. Then Ilxkll ~ II xk  - zl l  + Ilzll ~ IIx ° - zl l  + Ilzll 
(Lemma 6). So (x k } is bounded. Since g ,  is continuous, the limit point 
b e l o n g s  to F~ = F. • 

COROLLARY 3. I f  C =fqT=iCi -~ ~ , then (x  k ) converges for any x ° ~ R"  
to a point in C. 

Proof, Immediate from Corollary 2 and Proposition 1. • 

There is one last step to obtain a general convergence theorem for our 
algorithm: to prove that F is always nonempty. 

PROPOSITION 2. F v ~ .  

Proof. In view of (3) and (5) the function Pix - x is piecewise affine. In 
fact there are just two pieces: the two closed half spaces (a  i, x )  <~ b i and 
( a  i, x )  >~ b i. So f is a piecewise quadratic function, and there is a covering of 
R n by closed polyhedra (intersections of closed half spaces associated with 
the equations (a  i, x)  = bi) such that f coincides with an affine function on 
each one of them. Since f is bounded below by 0, we apply Frank-Wolfe's 
theorem [9, Corollary 27.3.1] and conclude that f attains its minimum on 
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each of these polyhedra. Since there are finitely many of them, f attains its 
global minimum. So F = G ~ 0 .  II 

THEOREM 3. For any  start ing point  x ° ~ R"  the sequence  { x ~' } gener- 
a ted  by  (6) converges.  I f  the sys t em (1) is consis tent ,  the l imit  point  is a 
f eas ib l e  po in t  for  (1). Otherwise ,  the l imit  po in t  m in imi ze s  f (  x ) - ~'~ ~ ~ X t i} P, x 
- xlt ~, i.e., it is a we igh t ed  ( w i t h  the ?t~'s) least squares  solution t¢~ (1). 

Proqf: Immediate from CoroUaries 2 and 3 and Proposition 2. 

5. THE CASE OF A VARIABLE RELAXATION PARAMETER 

Consider now the following modification of the algorithm: 

xk ~ t _  x ~ _~ e~k( t,x k _  x k) !14) 

with ~k ~ ( c i , 2 - -%) ,  et, e_~ > 0. This algorithm has the same convergence 
properties as the algorithm defined by (6). In effect, substituting x ~ for x, 
x k + ~ for P,x ,  and a k for a in the proof of Lemma 4, we get 

( 2 _ l ) l l x h , l  .rklte ' 115t t (  x ~ ' ) ~ f ( x  k ) _ . "~  

where { x k } is defined by (14). Lemma 6 also holds for { x k } as in (14) with 
a k substituting for a. We only need to establish Theorem 2 for this case. 

LEMMA 8. l h e o r e m  2 holds' for  { x k } as in (14). 

Proof. Again there is a convergent subsequence 

X k~ -~  X .  
J 

By (15) f is a descent fimction for x k. So f i x  k) is convergent and lim[f(x ~ ) 
- f(xk+ x)] = 0. Since 

~k _ f (  xk + l e !Ix" + ' - xkll~ < 2 _ ~ - ~  [ f ( x * )  )]<~[f(x~)-fI.,:~")l, 
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it follows tha t  limllx k _ x k-  ill = 0. By continuity of P 

l imPx k, = Px, (16) 
J 

- j 

(17) 

From (16) and (17) conclude that  Px = x. Hence  x ~ F and F : ~ .  Using 
L e m m a  6, conclude as before that the whole sequence tends to x. • 

It  follows that  Corollaries 2 and 3, and therefore Theorem 3, also hold for 
the case of a variable relaxation parameter .  

In [2] a more general relaxation scheme is considered, where the parame-  
ter, which depends on x k, may be greater  than 2. We conjecture that our 
proof for the infeasible case may be extended also to this algorithm. 
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