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Abstract The fungal metabolite militarinone A (MILI A)
promotes neurite outgrowth in PC12 cells. This study was
conducted to investigate the signaling pathways involved in the
cellular differentiation processes induced by the compound, with
a focus on cascades implicated with nerve growth factor (NGF)-
mediated neuritogenesis. MILI A possessed pronounced amphi-
philic properties. The compound rapidly accumulated in the cell
membrane and was slowly released into the cytoplasma. In
primed PC12 cells, an early activation of protein kinase B (Akt),
representing a downstream target of phosphoinositol 3 (PI3)
kinase, and a delayed phosphorylation of extracellular signal-
regulated kinases 1 and 2 (ERK1/2), and of transcription factor
cAMP responsive element binding protein (CREB) was found.
The NGF-dependent activation of c-Jun amino terminal kinase
(SAPK/JNK1) was potentiated. Morphological differentiation of
cells and the phosphorylation of specific signal molecules were
blocked by the MAP kinase (MEK1) inhibitor PD098059, the
PI3-kinase (PI3K) inhibitor wortmannin and the adenylyl cyclase
inhibitor 9-cyclopentyladenine.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

The development of effective treatments for neurodegener-

ative diseases represents a major challenge for our aging so-

ciety. Prevention of neuronal apoptosis by supplementation

with endogenous trophic factors has been proposed as one of

the several new therapeutic strategies [1]. Clinical trials with

neurotrophic factors, however, have been rather disappointing

[2,3]. One reason for the failure was related to the obstacles of

delivering therapeutic proteins to the central nervous system

[4]. The development of non-peptidic small molecules acting

on signaling pathways for neurotrophins has been proposed as

an alternative [5]. Such compounds could exert neurotrophin-

like activities while penetrating through the blood–brain bar-

rier (BBB) without major difficulties.
* Corresponding author. Present address: Department of
Pharmaceutical Sciences, Institute of Pharmaceutical Biology,
University of Basel, Klingelbergstrasse 50, CH-4056 Basel,
Switzerland. Fax: +41-61-267-14-74.
E-mail address: matthias.hamburger@unibas.ch (M. Hamburger).

0014-5793/$22.00 � 2004 Published by Elsevier B.V. on behalf of the Feder

doi:10.1016/j.febslet.2004.10.045
We recently identified a novel fungal alkaloid, militarinone

A (MILI A) (Fig. 1), in the screening of natural products for

neuritogenic properties in PC12 cells [6–8]. Given that MILI A

was the first representative of a new chemical class of neuro-

trophic compounds, we decided to analyze in more detail the

signal transduction pathways underlying its effects in PC12

cells.

The PC12 cell line has been extensively used as model for

neuronal differentiation because of its ability to differentiate

into sympathetic neuron-like cells when treated with nerve

growth factor (NGF) [9]. The binding of NGF to its high af-

finity tyrosine kinase A (TrkA) receptor triggers mainly two

cascades of cellular signaling responses that mediate neuro-

trophic effects [10,11]. After binding to phosphotyrosine-

containing recognition elements of the receptor, signal mole-

cules on the MAPK Erk1/2 and inositol triphosphate (PI3)

kinase pathways are phosphorylated and thus activated, trig-

gering effects on gene transcription and regulation of the

cytoskeletal machinery.

There is increasing evidence that besides the Ras/ERK cas-

cade, another pathway involving stress-activated protein

kinase/Jun N-terminal kinase (SAPK/JNK) has substantial

influence on differentiation events. An approximately tenfold

overactivation of SAPK/JNK was found in a variant PC12 cell

line that spontaneously differentiates and extends neurites [12].

Recently, it was observed that the neuronal growth-associated

protein SCG10, which is enriched in the growth cones of

neurons, is specifically phosphorylated by SAPK/JNK. SCG10

destabilizes microtubules and thus contributes to the assembly

and disassembly of microtubules upon extracellular signals

transmitted by phosphorylation [13]. JNKs are rapidly acti-

vated following nerve injury and this activation persists for

weeks until successful regeneration or neuronal cell death. In

contrast, the stress activated kinase p38 is rapidly but only

transiently activated after axotomy [14].

In addition to direct receptor tyrosine kinase (RTK) medi-

ated signal transduction, other pathways and molecules are

considered to induce biological responses such as neuronal

differentiation and survival. Cyclic AMP can act as inducer of

such effects, either on its own or via activation of RTKs [15]. In

PC12 cells, cAMP elevation induces the development of neu-

rites and the activation of ERK similar to the treatment with

NGF [16]. Forskolin, an activator of adenylyl cyclase, in-

creases the intracellular cAMP level, which in turn is followed

by neuronal differentiation [17,18]. The transcription factor

cAMP-responsive element binding protein (CREB) appears to

be required for NGF-mediated induction of primary response
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Fig. 1. Chemical structure of militarinone A (MILI A).
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genes encoding transcription factors like c-fos and thus playing

a role in the initiation and regulation of subsequent responses

to NGF [19,20]. CREB binds to several separate sequences

within the c-fos promotor, suggesting that it is a general me-

diator of stimulus-dependent transcription of c-fos [21,22].

Phosphorylation of CREB is critical for learning processes,

mainly in the conversion of short-term to long-term memory

[23,24].

With regard to the neuritogenic effects of MILI A in PC12

cells, we here focused on an analysis of the signaling pathways

implicated in NGF-mediated differentiation processes.
2. Materials and methods

2.1. Chemicals
Antibodies that recognize CREB and the phosphorylated forms of

ERK1/2 (Thr202/Tyr204), SAPK (Thr183/Tyr185), p38 (Thr180/
Tyr183), Akt (Ser 473) and CREB (Ser 133) were from New England
Biolabs (Beverly, USA). Anti-Akt, anti-ERK1 and anti-ERK2 were
from BD Biosciences (San Diego, USA). PD098059 and wortmannin
were obtained from Merck (Darmstadt, Germany) and 9-cyclopenty-
ladenine from Sigma–Aldrich (Taufkirchen, Germany). Murine 7S
NGF was purchased from Roche Diagnostics (Mannheim, Germany).
MILI A was previously isolated in our laboratory [6]. The purity of the
compound was >95%, as determined by HPLC and NMR. The 10 mM
methanolic stock solution of MILI A was diluted in the medium to a
final methanol concentration of 0.4% in the assay.

2.2. Cell culture
Rat PC12 cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 5% fetal bovine serum (FBS,
Biochrom, Berlin, Germany), 10% horse serum (HS, Biochrom), 100
IE/ml penicillin and 100 lg/ml streptomycin in 5% CO2 atmosphere.

2.3. Neurite outgrowth assay
PC12 cells were treated for 4 days with 50 ng/ml NGF in DMEM

under serum starved conditions (1% HS, 0.5% FBS). This NGF-
priming leads to higher TrkA receptor density and higher sensitivity to
stimuli [25]. The cells were washed three times with ice cold medium to
remove traces of NGF. Cells were plated in 24-well plates coated with
collagen (105 cells/well) and after 2 h of cultivation incubated with test
substances and inhibitors, respectively, for 16–24 h. Cells were ana-
lyzed by phase contrast microscopy and photographed.

2.4. Subcellular fractionation
PC12 cells were incubated in 10 ml of DMEM in 6-well plates

(2� 107 cells/well) with MILI A (60 lM final concentration) or with
0.4% methanol as negative control. Cells were harvested at defined
times, washed with phosphate-buffered saline and resuspended in ice
cold lysis buffer lacking detergent Igepal CA-630 to preserve the cell
membranes. After incubation for 10 min on ice, cells were homoge-
nized by a threefold freeze/thaw cycle with liquid nitrogen. The dis-
ruption of cells was monitored by microscopy. The homogenates were
centrifuged (24 000� g, 10 min, 4 �C) to obtain a membrane pellet and
a cytosolic fraction. The membrane pellet was extracted for 30 min
with lysis buffer containing 1% Igepal, followed by a second centrifu-
gation step at 24 000� g. The concentration of MILI A was deter-
mined at 380 nm from aliquots of the cytosolic fraction and membrane
extract (supernatant of second centrifugation step).
2.5. Western blot analysis
Native PC12 cells were serum-starved overnight in serum-reduced

DMEM (0.5% FBS, 1% HS) to reduce basal levels of phosphoryla-
tion. After treatment with test substances, cells were resuspended in
ice-cold lysis buffer containing 50 mM Tris–HCl (pH 7.4), 1% Igepal
CA-630, 150 mM NaCl, 1 mM EGTA, 1 mM PMSF, 1 mg/ml
aprotinin and 1 mg/ml leupeptin and incubated for 10 min on ice.
Cell lysates were separated by centrifugation at 24 000� g for 10 min
at 4 �C. The protein concentration of resulting supernatants was
measured by the Bradford method (Coomassie Protein Assay, Pierce,
Rockford, USA) and the same amounts of total protein were loaded
in each lane.
After 4–12% sodium dodecyl sulfate polyacrylamide gel electro-

phoresis (Invitrogen, Karlsruhe, Germany), the separated proteins
were transferred to PVDF-membranes (BioRad, M€unchen, Germany).
Immune complexes with antibodies were visualized by enhanced
chemiluminescence detection system (Pico Substrate, Pierce, Rockford,
USA) and X-ray films.
3. Results and discussion

3.1. Militarinone A accumulates in the cell membrane

Differentiation, survival and neuronal development are

regulated by many different external signals. Membrane bound

receptors like TrkA (NGF-receptor), or signal molecules such

as adenylyl cyclase transmit signals to the cytoplasmatic

pathways and the nucleus. The structure (Fig. 1) and chro-

matographic behavior of MILI A [6] suggested pronounced

amphiphilic properties and, hence, the possibility for interac-

tion with membrane associated proteins. We therefore deter-

mined the concentration of MILI A in the soluble cytoplasmic

fraction and in the nuclear and cytoplasmic membrane extracts

after exposure of PC12 cells for different times of incubation.

The concentration of MILI A was determined by UV–Vis

spectroscopic measurement at the absorption maximum of the

compound. The curves obtained for the membrane and cyto-

solic fractions are shown in Fig. 2. A maximal concentration in

the cytosolic fraction was reached after 6 h with a value of

OD380 6. The concentration in the membrane extract was

fourfold higher (OD380 24). A further increase of absorption

(ODmax of 36 after 24 h) was detected in the membrane

extracts.

A direct interaction with the extracellular and/or trans-

membrane domains of signal proteins like TrkA, but also of

membrane bound molecules such as adenylyl cyclase was, in

principle, possible. On the other hand, the enrichment of MILI

A in the membrane could change membrane fluidity and thus

modulate the function and activity of signal molecules in a

non-specific manner [26,27]. Given that a portion of the ad-

ministered MILI A reached the cytosol, a direct effect on in-

tracellular was not excluded at this point.

3.2. Militarinone A activates MAP kinases

To examine whether the MILI A-mediated neurotrophic

effect involved the activation of MAP kinases ERK1 and

ERK2, we checked the phosphorylation state of these kinases

in PC12 cells after different times of treatment. A noticeable

increase of phosphorylated ERK1/2 was found after 2 h of

treatment and a maximal effect was obtained after 24 h

(Fig. 3A). The degree of phosphorylation was comparable to

that obtained by treatment with NGF (10 ng/ml). There was,

however, a significantly different time course of the activa-

tion. NGF caused rapid activation of ERK1/2 and a return

to basal levels after 20 h (data not shown). The delayed onset
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Fig. 2. Time-dependent distribution of MILI A in PC12 cell fractions.
The graph shows the concentration of MILI A in the soluble (cytosol)
fraction and in the pellet (cell membrane and nucleus) when cells were
exposed to the compound over an incubation time of up to 24 h. The
relative concentrations were determined via measurement at the ab-
sorption maximum of MILI A at 380 nm.

Fig. 3. The activation state of different signaling cascades was inves-
tigated by immunoblotting of total PC12 cell lysates. Cells were ex-
posed to MILI A (10 and 40 lM final concentrations) and/or NGF (10
ng/ml) for 30 min or 24 h, respectively, and subsequently transferred in
lysis buffer. Equal amounts of cellular proteins were subjected to SDS–
PAGE, electrotransferred to PVDF-membrane and treated with
phosphorylation state specific antibodies. Uniform protein loading was
checked using anti-ERK1/2 antibodies. The loading control also rep-
resents the other two MAP kinases because of parallel loadings of
same extracts. (A) MILI A stimulated ERK1/2 activation and poten-
tiated the NGF-mediated SAPK/JNK phosphorylation. Immunoblots
with phospho-MAP kinase antibodies (p-ERK1/2, p-SAPK/JNK, p-
p38). (B) Activation of CREB (after 24 h) and Akt (after 30 min). (C)
Inhibition of ERK1/2 activation by PD098059 and of CREB activa-
tion by 9-cyclopentyladenine. Prior to MILI A exposition, PC12 cells
were pretreated for 30 min with selective inhibitors of MEK
(PD098059, 20 lM), PI3K (wortmannin, 100 nM) and adenylyl cyclase
(9-cyclopentyladenine, 200 lM). C, control; M10, MILI A 10 lM;
M40, MILI A 40 lM; PD, PD098059; WM, wortmannin; CPA, 9-
cyclopentyladenine.
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and prolonged activation of these MAPKs by MILI A

seemed in accord with its slow appearance in the cytosolic

fraction.

Magnitude and duration of ERK activation determine the

nature of the cellular response [28]. In PC12 cells, a prolonged

activation of the MAPKs caused by NGF via the TrkA re-

ceptor induces differentiation, whereas the phosphorylation of

ERK1/2 as a consequence of EGF receptor activation is

transient and stimulates proliferation. It therefore seems

plausible that the late and prolonged activation of ERK1/2 by

MILI A could be responsible for the neuritic differentiation.

The MEK inhibitor PD098059 (20 lM) completely blocked

both the MILI A induced phosphorylation of ERK1/2

(Fig. 3C) and the outgrowth of neurites (Fig. 5B). Interest-

ingly, also the PI3K inhibitor wortmannin (100 nM) caused a

complete block of neuritogenesis (Fig. 5C). These data suggest

that other pathways such as the PI3 kinase and Ras/ERK

cascades could be involved in the signal transduction modu-

lated by MILI A.

The exposure of PC12 cells to MILI A potentiated the NGF-

mediated SAPK/JNK activation (Figs. 3A and 4). The weak

phosphorylation signal after NGF addition was transient and

characterized by a rapid onset (within 30 min) [31]. In our

experiments, MILI A did not influence the duration of NGF-

mediated SAPK/JNK activation.

SAPK/JNK was initially considered as an exclusively stress

activated kinase, but there is increasing evidence for specific

physiological functions in cell differentiation [13]. Activation

of SAPK/JNK is involved in the spontaneous neuritogenesis in

PC12 cells and may be an alternative pathway in the regulation

of neuronal differentiation [12]. An active cross-talk between

SAPK/JNK and MAPK/ERK pathways results in the regu-

lation of c-Jun expression and its activation state and finally in

differentiation response [31]. This cooperation appears neces-

sary for regulation and maximal activation of the neurofila-

ment light chain promoter (NFLC), which is essential for the

expression of major proteins of the neuronal cytoskeleton [32].

In contrast to the effects on MAP kinases ERK1/2 and

SAPK/JNK, treatment of PC12 cells with MILI A did not

activate the stress activated MAP kinase p38 at defined time of
exposure (30 min, 24 h), neither in the presence of NGF nor on

its own (Fig. 3A). This result suggests that MILI A does not

induce a non-specific stress reaction in the cells represented by

activation of MAP kinases.

As previously shown [6], neuritic processes developed after

16–24 h stimulation of NGF-primed PC12 cells with MILI A,

whereas the control cells without further treatment retained a

spherical shape. The pre-treatment of cells (priming) with

NGF under serum-reduced conditions has a significant in-

fluence on intensity and occurrence of the MILI A effect [7].

It is known that a continuous presence of NGF is required

for complete differentiation of PC12 cells. The reaction of

PC12 cells to this pre-treatment is not clear in detail, but an

increase of TrkA receptors density following the stimulation

of a transcription-dependent synthesis and accumulation of

material, which enables the cells to produce neuritic pro-

cesses, have been discussed [25,29]. This is in agreement with

our findings concerning the noticeable increase in respon-

siveness of TrkA overexpressing PC12 cells [30] to MILI A

(data not shown).



Fig. 5. Selective inhibition of MILI A-induced neuritic differentiation
of NGF-primed PC12 cells. (A) Neuritogenesis following MILI A
treatment (40 lM final concentration) was blocked by pretreatment for
30 min with (B) the MEK inhibitor PD098059 (20 lM), (C) the PI3K
inhibitor wortmannin (100 nM), and (D) the adenylyl cyclase inhibitor
9-cyclopentyladenine (200 lM). (E) Primed PC12 cells treated with
solvent (methanol 0.25% final concentration) alone were used as neg-
ative control. These cells did not show any spike formation.
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Fig. 4. Potentiation of NGF-mediated SAPK/JNK activation by MILI
A. Quantitative analysis of band density (54 kDa) of three independent
Western blot analyses. PC12 cells were treated for 30 min with 40 lM
MILI A, followed by separation on SDS–PAGE of total cell lysates
adjusted to same protein amount, electrotransfer on PVDF-membrane
and immunoblot with phospho-specific antibody against SAPK/JNK.
The data are presented as means (�S.D.) of three independent ex-
periments. Significant (P < 0:05) increases in phosphorylation of
SAPK/JNK compared to NGF control values are indicated with an
asterisk.
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3.3. Militarinone A induces the phosphorylation of Akt

NGF activates different intracellular signaling pathways

leading to neurite outgrowth and cell survival. The inhibition

of MILI A induced neurite formation by wortmannin sug-

gested involvement of the PI3K pathway. Indeed, microinjec-

tion of a constitutively active mutant of phosphatidylinositol-3

kinase induced neurite formation in PC12 cells through the

Rac-JNK transduction pathway [33].

The effects of MILI A on the PI3K pathway were investi-

gated via the measurement of the phosphorylation of protein

kinase B/Akt, a downstream target of PI3K. We found a rapid

and distinct increase of Akt phosphorylated at Ser473

(Fig. 3B) after 30 min of exposure to MILI A. The signal was

remarkably persistent, as pAkt was detected even after 24 h of

exposure. This was in contrast to the more transient response

induced by treatment with NGF. The suppression of MILI A-

mediated neuritogenesis by the PI3K inhibitor wortmannin

(Fig. 5) corroborates the involvement of the PI3K pathway in

the neuritogenic effect of this alkaloid.

3.4. Activation of transcription factor CREB

Activation of the ERK/RSK pathway in PC12 cells by a

treatment with NGF leads to the phosphorylation of CREB at

Ser-133 [34]. MILI A had a similar effect. Incubation for 30

min resulted in the phosphorylation level of CREB compara-

ble to that induced by NGF (Fig. 3B). The combination of

NGF and MILI A led to a remarkable enhancement and

persistence of phosphorylated CREB and was still pronounced

after an exposure of 24 h.

To elucidate if the activation of CREB resulted from ade-

nylyl cyclase-mediated elevation of cAMP levels, we applied

the inhibitor 9-cyclopentyladenine (CPA; 200 lM). A moder-

ate decrease of activated CREB was observed (Fig. 3C). In-

terestingly, CPA completely blocked the neuritogenesis in

PC12 cells (Fig. 5D). The possibility of a direct interaction of

MILI A with adenylyl cyclase was checked in assays with
isolated PC12 membranes (data not shown). However, there

was no indication of an activating effect similar to that of the

well-known activator of adenylyl cyclase activity forskolin [16].

In contrast to 9-cyclopentyladenine, both the MEK inhibitor

PD098059 (10 lM) and the PI3 kinase inhibitor wortmannin

(100 nM) had no detectable effect on MILI A mediated CREB

phosphorylation (Fig. 3C). This suggests that the activation of

CREB occurs not via the ERK and PI3 kinase pathways but

rather by processes like adenosine receptor coupled modula-

tion of adenylyl cyclase activity or other cAMP elevating

mechanisms [35]. Given the interaction of MILI A with

membrane bilayers, the effect on adenylyl cyclase could be

indirectly caused by a change in membrane properties. The

membrane fluidity reportedly affects intracellular cAMP levels

[26,27].

In summary, the fungal metabolite MILI A exerts its neu-

ritogenic activity in PC12 cells via activation of pathways that

are involved in NGF-mediated neuritic differentiation. How-

ever, MILI A activates the MAP kinase and Akt/PI3 kinase

pathways with a time course that clearly differs from a NGF-

mediated response. It is thus unlikely that MILI A could act as

a direct ligand of TrkA and thereby trigger the MAP kinase

cascade. Our data suggest rather an indirect effect on the TrkA

receptor via the elevation of the intracellular cAMP levels,

which is followed by transphosphorylation of the receptor. The

potentiation of NGF-mediated phosphorylation of SAPK/

JNK corroborates this notion. As a next step, the time course

of TrkA receptor phosphorylation will be studied. Also, the

possibility of an activation of kinases downstream of TrkA

needs to be addressed.
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