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Abstract

It has been shown in [J.D. Hamkins, A. Miasnikov, The halting problem is decidable on a set of asymptotic probability one,
Notre Dame J. Formal Logic 47(4) (2006) 515–524] that the classical Halting Problem for Turing machines with one-way tape is
decidable on a “large” set of Turing machines (a so-called generic set). However, here we prove that the Halting Problem remains
undecidable when restricted to an arbitrary “very large” set of Turing machines (a so-called strongly generic set). Our proof is
independent of a Turing machine model.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In [1,3,4] it was shown that many classical algorithmically undecidable problems in algebra are generically
decidable (even quickly decidable). This means that for every such problem there is a correct partial decision algorithm
whose halting set is generic (see definition below).

This generic complexity approach has numerous applications, especially in cryptography, where cryptosystems
must be based on problems which are hard in almost all (random) instances. Usually the behavior of such problems is
studied in terms of average-case complexity, but generic-case complexity and generic computability are much more
convenient to use in applications, in particular they allow the study of the complexity of undecidable problems.

It has been shown in [2] that the classical Halting Problem is generically decidable (even quickly decidable) for
Turing machines with one-way infinite tape. Namely, the set of all Turing machines, such that the head of the machine
falls off the tape (starting on the empty tape) before repeating a state, is generic. This result is model sensitive and it
is an open problem to transfer it to Turing machines with two-way tape.

In this paper we prove that any generic set on which the Halting Problem is decidable cannot be very large (i.e.
strongly generic). Our proof does not depend on the model of Turing machines and holds for machines with one-way
and two-way tape.

The Turing machine M has a finite set of states Q = {q1, . . . , qn}, with q1 designated as the start state, and an
extra special state q f designated as the final state. The head of the machine M can read and write symbols from the
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alphabet Σ = {0, 1, �} (� is the blank symbol) while moving on a infinite tape divided into cells. The program PM
of a Turing machine M consists of a finite set of instructions (one for every qi ∈ Q and s ∈ Σ )

(qi , s) → (q j , t, D),

where q j ∈ Q ∪ {q f }, t ∈ Σ , and D ∈ {R, L} — shift to the right or to the left. This instruction says that M being in
state qi with the head, reading symbol s on the tape, must change state on q j , write symbol t instead of s and move
the head (to right or left adjacent cell). We identify machine M with its program PM .

Note that our result does not depend on the size of alphabet Σ and holds for any alphabet with at least two symbols.
At the beginning of the computation M is in the start state, an input string of 1s and 0s is written on the tape (all

other cells contain the blank symbol �), and the head of M is over the cell with first symbol of the input string. The
computation proceeds by iteratively performing the instructions, halting when the state q f is reached.

Let δ be some effective coding of all Turing machines by binary strings. So a set S of programs is decidable if and
only if the set δ(S) is decidable. The Halting Problem is the set HP of Turing machine programs P that halt when
computing on input δ(P).

Following [2] we define generic sets of Turing machine programs via asymptotic density. Let P be the set of all
programs and Pn be the set of all programs with precisely n non-final states. The asymptotic density of a subset S ⊆ P
is the following limit (if it exists)

ρ(S) = lim
n→∞

|S ∩ Pn|

|Pn|
.

S is called generic (negligible) if ρ(S) = 1 (ρ(S) = 0). Clearly, S is generic if and only if its complement in P is
negligible. Following [3] we call a set S strongly negligible if the sequence of portions in the limit exponentially fast
converges to 0, i.e. there are constants 0 < σ < 1 and C > 0 such that for every n ≥ 1

|S ∩ Pn|

|Pn|
< Cσ n .

Similarly, S is called strongly generic if its complement is strongly negligible.
Recall that HP is decidable on a strongly generic set S if there is a partial computable function f : {1}

∗
→ {0, 1}

such that S ⊆ Dom( f ) and if f (δ(M)) = 1 then M halts on δ(M), and if f (δ(M)) = 0 then M does not halt on
δ(M), and also f (x) is undefined if x 6= δ(M) for any Turing machine M . In this case, we say that f is a strongly
generic decision function for HP. In particular, it follows that the domain Dom( f ) is a strongly generic recursively
enumerable set on which HP is decidable.

2. Main result

At the beginning we count the number of all programs of size n.

Lemma 1. The number of Turing machines with n non-final states is

|Pn| = (6(n + 1))3n .

Proof. A program of a Turing machine with n non-final states has the following form

(q1, 0) → (q j1 , t1, D1),

(q1, 1) → (q j2 , t2, D2),

(q1, �) → (q j3 , t3, D3),

(q2, 0) → (q j4 , t4, D4),

(q2, 1) → (q j5 , t5, D5),

. . .

(qn, �) → (q j3n , t3n, D3n).

For every instruction there are precisely 3 possibilities to chose a symbol ti , 2 possibilities to chose a shift Di , and
n + 1 possibilities for the next state q ji . So we have (4(n + 1))3n possible programs. �

Denote by C( f ) for a partial computable function f : {0, 1}
∗

→ {0, 1} the set of all Turing machines computing f .
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Lemma 2. For any partial computable function f the set C( f ) is not strongly negligible.

Proof. Let M be a Turing machine with k non-final states computing f . For any n > k, one can construct a new
machine M∗ with n non-final states with the following program

3k fixed instructions of M

(q1, 0) → . . . ,

. . .

(qk, �) → . . . ,

arbitrary 3(n − k) instructions

(qk+1, 0) → . . . ,

. . .

(qn, �) → . . . .

It is easy to see that M∗ computes the same function as M because the new states are not attainable from the states of
M , and new instructions do not affect the computation. The number of such new machines is (6(n + 1))3(n−k). Now
we have

an =
|C( f ) ∩ Pn|

|Pn|
>

(6(n + 1))3(n−k)

(6(n + 1))3n =
1

(6(n + 1))3k .

It means that the sequence an does not converge to 0 exponentially fast, so C( f ) is not strongly negligible. �

Theorem 3. There is no strongly generic set on which the Halting Problem is decidable.

Proof. We follow here the classical proof of undecidability of the Halting Problem. Suppose, to the contrary, that
there exists a strongly generic set S on which HP is decidable. Then there exists a strongly generic decision function
f : {0, 1}

∗
→ {0, 1} for HP such that S ⊆ Dom( f ). We may assume from the beginning that S = Dom( f ). It is easy

to see then that the following function is partial computable

h(x) =

undefined, if f (x) = 1,

undefined, if f (x) is undefined,

1, if f (x) = 1.

Notice, that the set P \ S is strongly negligible, so by Lemma 2 the set C(h) is not a subset of P \ S, hence, there
is a machine M from S computing h. Now let’s look at the result of computation of M on the input δ(M). Observe,
first, that f (δ(M)) is defined since M ∈ S. If M halts on δ(M) then f (δ(M)) = 1, hence h(δ(M)) is undefined, so
M does not halt on δ(M) — contradiction. If M does not halt on δ(M) then f (δ(M)) = 0, so h(δ(M)) = 1, which
implies that M halts on δ(M) — contradiction. This shows that such S does not exist, as required. �
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