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Stability and Multiattractor Dynamics of a Toggle Switch Based
on a Two-Stage Model of Stochastic Gene Expression
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ABSTRACT A toggle switch consists of two genes that mutually repress each other. This regulatory motif is active during cell
differentiation and is thought to act as a memory device, being able to choose and maintain cell fate decisions. Commonly, this
switch has been modeled in a deterministic framework where transcription and translation are lumped together. In this descrip-
tion, bistability occurs for transcription factor cooperativity, whereas autoactivation leads to a tristable system with an additional
undecided state. In this contribution, we study the stability and dynamics of a two-stage gene expression switch within a prob-
abilistic framework inspired by the properties of the Pu/Gata toggle switch in myeloid progenitor cells. We focus on low mRNA
numbers, high protein abundance, and monomeric transcription-factor binding. Contrary to the expectation from a deterministic
description, this switch shows complex multiattractor dynamics without autoactivation and cooperativity. Most importantly, the
four attractors of the system, which only emerge in a probabilistic two-stage description, can be identified with committed and
primed states in cell differentiation. To begin, we study the dynamics of the system and infer the mechanisms that move the
system between attractors using both the quasipotential and the probability flux of the system. Next, we show that the residence
times of the system in one of the committed attractors are geometrically distributed. We derive an analytical expression for the
parameter of the geometric distribution, therefore completely describing the statistics of the switching process and elucidate the
influence of the system parameters on the residence time. Moreover, we find that the mean residence time increases linearly
with the mean protein level. This scaling also holds for a one-stage scenario and for autoactivation. Finally, we study the impli-
cations of this distribution for the stability of a switch and discuss the influence of the stability on a specific cell differentiation
mechanism. Our model explains lineage priming and proposes the need of either high protein numbers or long-term modifica-
tions such as chromatin remodeling to achieve stable cell fate decisions. Notably, we present a system with high protein abun-
dance that nevertheless requires a probabilistic description to exhibit multistability, complex switching dynamics, and lineage
priming.
INTRODUCTION
During differentiation, a cell and its progeny cascade
through a number of lineage decisions from stem cells
over progenitor cells to mature functional cells. Many deci-
sions are assumed to be binary and realized by a toggle
switch, a simple cellular memory device. This network
module consists of two genes, inhibiting each other via
mutual promoter binding. In each differentiating cell, one
gene will eventually win this biomolecular battle, inhibiting
the other gene and subsequently activating its lineage-deter-
mining downstream targets. In hematopoiesis, the genera-
tion of blood cells, a series of gene switches has been
found to determine the differentiation path of hematopoietic
stem cells and to direct the ratio of mature blood cells (1,2).
The most prominent example in this context is the mutual
inhibition of Gata-1 and Pu.1, two transcription factors
responsible for the development of erythroid and myeloid
blood cells from common myeloid progenitors (3–5).

Due to its importance in development, toggle switches are
subject to both experimental and theoretical investigations
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(for a review, see Macarthur et al. (6)). Using a deterministic
framework under the assumption of large molecule
numbers, Cherry and Adler (7) discussed criteria for
working switches. More specifically Roeder and Glauche
(8), Huang et al. (9), and Chickarmane et al. (10) used a
simple deterministic model of the toggle switch based on
ordinary differential equations to describe the Pu.1–Gata-1
switch in hematopoiesis. A comprehensive overview and
comparison of the different deterministic toggle switch
models is provided by Duff et al. (11).

All these studies focus on the steady states of the switch
and the parameter dependent bifurcations in a deterministic
framework. However, protein variations of a differentiating
cell influence the dynamics of the decision-making process
and lead to stochastic transitions between the two steady
states. This randomness is induced by gene expression
noise, which has been shown to be ubiquitous in biological
systems due to low molecule numbers (12). Thus, the prob-
abilistic frameworks, developed to account for gene expres-
sion noise (see Paulsson (13) for a review), have to be
applied to understand fundamental aspects of toggle switch
properties.

Probabilistic models of the toggle switch account for
low copy numbers and intrinsic fluctuations. In Kepler and
Elston (14), the dynamics of an exclusive switch, where
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FIGURE 1 Scheme of the two-stage switch. (Open) Species associated

with gene A; (shaded) species associated with gene B. (Solid arrows)

Synthesis and binding. (Jagged arrows) Degradation. mRNAA is tran-

scribed from DNAA with rate aA. It decays with rate gA and is translated

into ProteinA with rate bA. ProteinA decays with rate dA and can bind

(unbind) DNAB with rate tþAðt�AÞ. Protein-bound DNA leads to transcrip-

tional arrest. The topology is symmetric with respect to the genes A and

B, thus, the same reactions exist for B.
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two genes share the same promoter, is discussed within
a probabilistic framework. A comparison of simple switch
circuitries is given in Warren and ten Wolde (15). Contrary
to deterministic models, transitions between the two macro-
scopic regimes where one of the two genes dominates are
possible due to the inherently noisy gene transcription
(16,17), even without cooperative binding of transcription
factors (18). More recent contributions focused on analytic
descriptions (19,20), the switching time between macro-
scopic regimes for different regulatory realizations
(16,21,22) or parameter regimes (17), boundaries for the
switching time (23), or delay effects (24). Notably, all of
these approaches are based on a one-stage model of gene
expression, where DNA is directly processed into functional
proteins. However, it has been shown that the characteristics
of protein noise strongly depend on the underlying expres-
sion model (25,26).

In this contribution, we abstract the regulatory details of
the prominent myeloid Pu.1-Gata-1 mutual inhibition.
Contrary to common belief, which advocates the lumping
of the two stages of expression, we show that the inclusion
of both mRNA and protein leads to an interesting change in
system dynamics. The probabilistic two-stage description
exhibits complex multiattractor dynamics without autoacti-
vation and cooperativity. Remarkably, a 2006 study reported
low numbers of mRNAs in single murine blood cells:
Warren et al. (27) found ~10 transcripts per cell of the
murine PU.1 gene in common myeloid progenitors. Based
on these findings we study a probabilistic description of
a toggle switch with low mRNA numbers, high protein
abundance, and (in accordance with the known role of
Pu.1) monomeric transcription factor binding. We deliber-
ately choose the simplest toggle switch model and neglect
autoactivation due to our ignorance of the logic of activation
and inhibition at the promoter. However, our results can
easily be extended and are discussed for the case of dimeric
regulation and exclusive autoactivation.
RESULTS

A toggle switch based on a two-stage model
of gene expression

We describe the mutual inhibition of two genes, further
on called A and B, using a two-stage model of gene expres-
sion (25,26) with mutual inhibition being realized as
DNA-protein binding (see Fig. 1). This kind of switch
has been implemented in vivo by Gardner et al. (28).
The model can be represented as a set of biochemical reac-
tions for A and B, respectively, and a set of reaction rates
a, b, etc.:

DNAA/
aA

DNAA þmRNAA;

DNAB/
aB

DNAB þmRNAB;
(1)
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gA

mRNAA/[;

mRNAB/
gB

[;
(2)

mRNA /
bA

mRNA þ Protein ;
A A A

mRNAB/
bB

mRNAB þ ProteinB;
(3)

Protein /
dA

[;
A

ProteinB/
dB

[;
(4)

tþ
A

ProteinA þ DNAB/DNAbound
B ;

ProteinB þ DNAA/
tþ
B
DNAbound

A ;

(5)

bound
t�
A

DNAB / ProteinA þ DNAB;

DNAbound
A /

t�
B
ProteinB þ DNAA:

(6)

Reactions 1 and 2 correspond to mRNA transcription from
an unbound promoter and mRNA degradation, respectively.
Reactions 3 and 4 resemble protein translation and degrada-
tion. Reactions 5 and 6 describe the binding and unbinding
of a protein to the antagonistic gene and thereby the transi-
tion from an active to an inactive promoter and vice versa.
Bound DNA lacks the ability to be transcribed. We empha-
size that here tþ and t� are rates rather than times. Note that
we assume monomeric transcription factor binding as the
simplest of regulatory interaction (which has recently been
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shown to be able to induce bimodal gene expression (18)).
Our system’s topology is symmetric with regard to the
two genes, and so are Reactions 1–6, upon the exchange
of gene labels A and B.

This model of gene expression is a highly simplified
abstraction of the complex processes in the cell. Condensing
transcription into a single biochemical reaction does not
account for the various steps required to transcribe a gene,
e.g., the assembly of the transcription initiation complex,
unwinding of DNA or transition of the polymerase to elon-
gation phase. Postprocessing and transport mechanisms are
also neglected. However, simplified models of gene expres-
sion have successfully been applied to experimental data,
supporting the validity of these simplifications (9,30,31).

Most commonly onewill study the properties of the system
in a deterministic framework using ordinary differential
equations (ODEs) that describe the time-evolution of species
concentrations (7–10). The ODEs can directly be inferred
from Reactions 1–6 assuming mass action kinetics,

d

dt
dA ¼ t�B ð1� dAÞ � tþBdAnB;

d

dt
dB ¼ t�Að1� dBÞ � tþAdBnA;

(7)

d
m ¼ a d � g m ;
dt
A A A A A

d

dt
mB ¼ aBdB � gBmB;

(8)

d
nA ¼ bAmA � dAnA þ t�ð1� dBÞ � tþdBnA;
dt A A

d

dt
nB ¼ bBmB � dBnB þ t�B ð1� dAÞ � tþBdAnB;

(9)

where d* is the abundance of unbound DNA*, m* is the
abundance of mRNA* and n* is the abundance of Protein*
for *˛{A,B}.

Bound DNA is expressed in terms of unbound DNA due
to mass conservation. Solving Eqs. 7–9 at steady state by
setting all time derivatives to zero yields two solutions,
one being biologically irrelevant due to its negative species
abundances. Given nonnegative initial conditions, the
system will always converge toward the positive steady-
state solution (32), given by (see the Supporting Material
for details)

m
ðssÞ
A ¼ m

ðssÞ
B ¼ � dt�

2btþ
ð1� hÞ; (10)

n
ðssÞ
A ¼ n

ðssÞ
B ¼ � t� ð1� hÞ; (11)
2tþ

d
ðssÞ ¼ d

ðssÞ ¼ 2
; (12)
A B 1þ h
with

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4abtþ

gdt�
þ 1

s
:

All parameters are positive and for simplicity assumed to be
symmetric for players A and B (a ¼ a ¼ a ,.).
A B

We now assess the stability of the positive solution Eqs.
10–12 using standard linear stability analysis. To reduce
the complexity of our system for the stability analysis,
we apply a quasi-steady-state approximation to the DNA
binding/dissociation process ( _dA ¼ _dB ¼ 0), reducing the
dimensionality of our system to four equations. We
evaluate the corresponding Jacobian at the single positive
solution and use the Hurwitz criterion to verify that all
its eigenvalues have negative real part. We conclude
that the system has one stable positive fixed point but we
cannot analytically exclude the existence of limit cycles.
However, inspection of the systems phase portrait (see
Fig. S4 in the Supporting Material) indicates that no limit
cycles exist. Summarizing, we showed that the determin-
istic model has only one steady-state solution and is thus
monostable.

However, because the deterministic approach is only
valid in the limit of large numbers, small molecule numbers
of DNA, mRNA, and possibly proteins advocate a discrete
probabilistic description of the toggle switch. We define
the state of the system at time t as a vector x(t), where
xi(t) ˛N0 is the abundance of species i at time t. Note
that the state space is discrete as opposed to the determin-
istic model. To emphasize this difference we use the
uppercase notation DA, DB, MA, MB, NA, and NB for the
number of molecules of the respective species. We can
describe how the probabilityP(x,t) of being in a certain state
x changes over time by using the master equation of the
system (33)

_Pðx; tÞ ¼
X
x
0

�
wxx

0 P�x0
; t
�� wx

0
xPðx; tÞ

�
:

The first term considers transitions from states x0 with rate
wxx0 to state x, whereas the second term accounts for transi-

tions from x to all other possible states x0 with transition
rates wx0x. The transition rates, also called propensities
(34), are determined by the reaction rates and the number
of reagents of the corresponding reactions (see Section S2
in the Supporting Material for an explicit form of the master
equation of the system).

Even though the master equation describes the dynamics
of the system more accurately than ODEs (most obviously
for low particle numbers), it is still an approximation of
cellular dynamics as it assumes spatial homogeneity inside
a cell and does not account for time delays. Still, the protein
distribution predicted by the master equation of a two-stage
expression model was indeed observed experimentally (35),
supporting the stochastic two-stage model.
Biophysical Journal 102(1) 19–29
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Because the master equation for the switch is analytically
solvable only for a number of approximations (see, e.g.,
Walczak et al. (36)) and not integrable for large molecule
abundances, we simulate the system trajectories using
Gillespie’s algorithm (37). Each trajectory follows the
master equation, and the set of infinite trajectories consti-
tutes the distribution that solves the master equation. To
obtain appropriate parameter values for stochastic simula-
tions, we delineate upper bounds for synthesis parameters
from biophysical arguments and adapt degradation parame-
ters to fit desired molecular levels. Table S1 in the Support-
ing Material lists all used parameter values. Additionally,
the analysis below has been conducted for a second, differ-
ently motivated set of parameters (see Fig. S3), and yields
qualitatively identical results.
FIGURE 2 Dynamics and quasipotential of the switch showing the

different attractors of the system. (A) The timecourse ofNA(t) –NB(t) clearly

shows the dominating attractors, which can be separated in state space via

the thresholds cA and cB. Either A dominates (attractor SA), or B dominates

(attractor SB), or the system is temporarily locked by two bound promoters

with only marginal protein expression of A or B (attractors S*A and S*B).

A histogram of NA(t) – NB(t) is shown on the right. (B) The quasipotential,

defined as U(x) ¼ �logP(ss) (x), includes the mRNA dimension of the

system. It shows the four possible attractors as basins in a probability land-

scape. SA and SB are visible as basins at the lower-left and upper-right

corners, whereas S*A and S*B are located around the origin (NA – NB ¼
MA – MB ¼ 0) of the landscape. The outflux F(x) acting on the system at

the state x is depicted as a line with a solid circle representing the origin

of the vector F(x). Note that the outflux is different from the concept of

deterministic field lines. These vectors show that there are different paths

for entering and leaving the dominating attractors. Parameters for the

simulation are given in Table S1 in the Supporting Material.
Dynamics and quasipotential

In this section we discuss the main features of the switch
dynamics. Contrary to the deterministic model, time courses
of the stochastic toggle switch model show multistable
behavior (Fig. 2 A). Given the parameters in Table S1, our
toggle switch can adopt different attractors: The two attrac-
tors where one player dominates the other (called SA and SB
depending on which player dominates) are clearly visible in
Fig. 2 A. A careful inspection of the timecourse and the
probability distribution in Fig. 2 A shows that there also
exist two intermediate attractors where protein numbers
are similar (NA – NB z 0). These attractors are called S*A
and S*B from now on. In the timecourses of the system
(Fig. 2 A) one observes that the system frequently switches
between the dominating and the intermediate attractors.

To get a deeper understanding of the complex dynamics
of the system, the notion of a quasipotential can be used.
The quasipotential U of the system is calculated through
the relation U(x) ¼ �log P(ss)(x), where P(ss)(x) is the
steady-state distribution of the system. The number of
dimensions of the state space where the quasipotential is
defined equals the number of species in the system. Here
the probability P(ss)(x) of a state x in steady state is esti-
mated from 15,000 stochastic simulation runs obtained by
the StochKit software toolkit (38). In Fig. 2 B, the projection
of the quasipotential on the NA–NB, MA�MB plane is
shown. The four attractors SA, SB, S*A, and S*B can be
seen clearly in the quasipotential of the system. The two
attractors SA and SB appear as basins at the lower-left and
upper-right corners of Fig. 2, whereas the intermediate
attractors S*A and S*B are located at the center, and are
not well separated. The dominating attractors can easily
be distinguished from the intermediate attractors via param-
eter-dependent thresholds cA, cB in the protein dimension
(see Section S4 in the Supporting Material).

Importantly, one has to keep in mind that the system
considered is out of equilibrium and that the dynamics of
a nonequilibrium system are not entirely determined by
Biophysical Journal 102(1) 19–29
the gradient of the quasipotential but by an additional curl
flux stemming from the nonintegrability of the system
(39). As a consequence, barrier heights in the quasipotential
do not necessarily correlate with the probability of crossing
the barrier.

To understand the dynamics of the switch in more detail,
we therefore consider, for each state x in the state space, the
outflux F(x) acting on the system at this point (16). We
calculate the outflux as

FðxÞ ¼ PðssÞðxÞ
X
y

PðyjxÞðy� xÞ;

where the probability P(yjx) of state y succeeding state x
and the probability P(ss)(x) are calculated from stochastic

simulations. Note that the outflux is different from the
concept of field lines used in phase portraits of ordinary
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differential equations. The outflux F(x) is plotted as small
arrows in Fig. 2 (vectors are normalized and circles corre-
spond to the origin of the vectors) for all states x with
P(ss)(x) > 2.5 $ 10�7. This indicates where the system
will move from the current state on average. Due to this out-
flux, the system enters and leaves the attractors SA and SB
through different paths. This phenomenon has been
described in Wang et al. (40) and linked to the emergence
of time directionality in nonequilibrium systems. To move
from high (SA or SB) to low protein numbers, the corre-
sponding mRNA number first has to drop. Moving from
low to high protein numbers requires the rise of mRNA
numbers first.

A different view on the system’s dynamics is provided
by the quasipotential landscape and outflux in the NA

total,
NB

total plane (Fig. 3), where NA
total ¼ (1 – DB) þ NA is the

total number of ProteinA in the system, bound to DNA (first
term) or free (second term). Choosing NA

total and NB
total as

projected dimensions shows four distinct basins in the qua-
sipotential landscape. Two basins correspond to the attrac-
tors SA and SB. These are characterized by high amounts
of the dominating protein and zero proteins of the repressed
species. The attractors S*A and S*B are now clearly sepa-
rated. In these two basins a single protein of one species
FIGURE 3 Quasipotential of the system projected onto the NA
total and

NB
total dimensions. Note that both axes are on logarithmic scale and are

shifted by 1 to include NA
total ¼ 0 and NB

total ¼ 0. Therefore, the lowest

row in the plot corresponds to the case NB
total ¼ 0. The quasipotential

U(x) ¼ �log P(ss)(x) is color-coded (color online: red areas reflect minima

of the landscape). Visible are four minima corresponding to SA (lower

right), SB (upper left), S*A (lower middle), and S*B (middle left). The out-

flux F(x) acting on the system at the state x is depicted as a line with a solid

circle representing the origin of the vector F(x). Note that the outflux is

different from the concept of deterministic field lines. In contrast to

Fig. 2 the vectors are normalized and therefore show only the direction,

not the magnitude of the outflux (Bold arrows) Typical trajectories (I–VI)

of the system. For a discussion, see the main text.
is present and only a moderate protein number of the other
species. In the following, we show why these basins emerge
and how the system moves between the attractors.

We explain the dynamics of the system with a typical
trajectory of the system: Let us start with the trajectory in
the attractor SA (lower right) where ProteinA dominates
ProteinB. Due to stochastic fluctuations in the promoter
status, eventually a burst of proteins of B will occur and
inhibit the promoter of A, whose protein numbers will
drop (Fig. 3, trajectory I). While the formerly dominating
ProteinAs are degraded, the newly created ProteinB also
quickly decreases in numbers and only one bound ProteinB
is saved from degradation. This drives the system toward the
origin in the quasipotential of Fig. 3. However, a single
ProteinB cannot completely suppress the promoter of
DNAA, leading to a small but constant synthesis of ProteinA.
The system settles into an intermediate state (S*A) defined
by the presence of one ProteinB and an intermediate amount
of ProteinA originating from the leaky inhibition of DNAA

and bursting.
To leave this basin, the system has one of two options.

Either the single ProteinB is degraded when it momentarily
is not bound to the promoter. Consequently, the levels of
ProteinA rise again and the system reaches SA. The system
is moved to the lower border of the quasipotential where
a strong outflux pushes it toward SA (Fig. 3, trajectory
II). Alternatively, a burst of ProteinB displaces the system
from S*A into regions where the vector field points strongly
toward the diagonal NA

total ¼ NB
total (Fig. 3, trajectory III).

However this burst is typically not strong enough to
move the system onto the diagonal and it will fall back
into the basin S*A. To enable a change from S*A to S*B,
the system has to reach the diagonal. This is accomplished
if, while the system is moving toward the diagonal after the
burst, additional bursts of ProteinB move it onto the diag-
onal (Fig. 3, trajectory IV). Once the system has hit the
diagonal both protein levels will drop to very low numbers
because none of the players has any significant advantage.
Here by chance the system will move to any side of the
diagonal and either toward S*A or S*B (Fig. 3, trajectories
V and VI).

We find that leaving S*A toward SA (Fig. 3, trajectory II)
is much more probable than hitting the diagonal from S*A
(Fig. 3, trajectory IV), which would provide the chance of
switching. This is obvious from the mechanism described
above: Even though the events triggering the two alterna-
tives (degradation of ProteinB and an initial burst of
ProteinB) have similar probabilities, the diagonal crossing
requires additional events and is therefore much less prob-
able. This cannot be deduced from the quasipotential land-
scape alone: From Fig. 3 it can visually be inferred that
the barrier separating SA and S*A is higher than the barrier
separating S*A and S*B. This wrongly suggests that moving
between S*A and S*B occurs more frequently than moving
between SA and S*A.
Biophysical Journal 102(1) 19–29
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Comparing the system dynamics of our switch with other
descriptions we find that i), deterministic one-stage and two-
stage models show no bistability, whereas ii), a probabilistic
one-stage model exhibits tristability with only one interme-
diate attractor (see Fig. S2 and Lipshtat et al. (18)). We spec-
ulate that translational bursting destabilizes the intermediate
attractor of the one-stage model, where neither of the two
players can overwhelm the other. Bursting provides an
easy mechanism to escape this deadlock situation: It gives
whichever player bursts first, a huge advantage over the
other, giving rise not only to one protein (as in the one-stage
model) but several proteins. As a result, the two-stage
system is always quickly pushed away from the diagonal
and stabilizes in the attractors S*A or S*B. Thus, only the
combination of a probabilistic description with a two-stage
model of gene expression leads to the complex multiattrac-
tor dynamics described above.
Residence times

Genetic toggle switches are thought to be involved in the
differentiation process of cells. A common idea is that
different cell fates correspond to the different attractors of
the system (41). Therefore, it is of interest how long the
system will stay in one of these attractors. In this contribu-
tion, we focus on the time the system will stay in the attrac-
tors SA or SB. We assume that only in these two attractors is
the concentration of either player sufficiently high to carry
out a downstream biological function that resembles the
switch’s decision.

In previous contributions, such quantities have been
calculated or determined by stochastic simulation for
simpler switch models and were called spontaneous switch-
ing time (23), switch lifetime (15), mean first-passage time
(14), or switching time (22). Because the switch may flip
from a dominating to an intermediate attractor, we choose
residence time as the appropriate term for the quantity
calculated below. In the following, we derive an analytical
approximation for the time the switch stays in a dominating
attractor, SA or SB, called the residence time ts. A simulation
study for S*A/S*B suggests qualitatively similar behavior
(see Fig. S5).

Let us assume that the system is in attractor SA. Hence,
the promoter of DNAB is bound by ProteinA whereas the
promoter of DNAA is unbound. We assume that the protein
levels in this attractor can be described with the simple two-
stage model (25), resulting in a mean ProteinA level of
NA ¼ ðaAbAÞ=ðgAdAÞ. Consequently, the level of ProteinB
is NB ¼ 0 as it is inhibited by the high levels of ProteinA.
To leave SA, it is crucial that one ProteinB is synthesized,
which then can bind the promoter of DNAA and shut
down the synthesis of ProteinA, ultimately driving the
system out of SA and into S*A. This trajectory (called trajec-
tory I in Fig. 3) involves the following events: i), unbinding
of ProteinA from DNAB; ii), synthesis of ProteinB during the
Biophysical Journal 102(1) 19–29
unbound phase; and iii), binding of ProteinB to the promoter
of DNAA before ProteinB is degraded.

First, we describe the unbinding of ProteinA from DNAB.
While the system is in SA, ProteinA dissociates various
times, leaving the promoter of DNAB unbound. The average
time the promoter remains unbound, tu, is equal to the
average time until a binding reaction occurs, which is

tu ¼ 1

tþA$NA

:

The time the promoter stays unbound is a random variable

itself, but for simplicity we approximate it with its mean
value. Note that tu depends, somewhat counterintuitively,
on tþ and not on t�, with tþANA being the propensity for
a binding reaction. Again we emphasize that tþ and t�

are rates (rather than times).
To ultimately synthesize a ProteinB, at least one mRNAB

has to be transcribed during tu and translated before degra-
dation. The probability of k transcription reactions to
happen during tu is

PPoissonðK ¼ kÞ ¼ ðaB$tuÞk
k!

$expð�aB$tuÞ;

as the number of transcription reactions K during tu is Pois-
son-distributed with mean aB $ tu. Thus, the probability of at
least one transcription during the unbound phase is

qs ¼ 1� PðK ¼ 0Þ ¼ 1� exp

�
� aB

tþA$NA

�
:

The probability of translation during an average mRNA life-

time 1/gB is accordingly qt ¼ 1 – exp (�bB/gB). Finally the
probability for a binding reaction during average protein
lifetime 1/dB is qb ¼ 1 – exp(�tþB/dB).

However, not only one but several unbound phases
may occur before ProteinB is successfully synthesized.
The number L of unbound phases until and including
successful synthesis follows a geometric distribution,
P(L ¼ l) ¼ (l – q)l�1 q with parameter q ¼ qs $ qt $ qb.
The average number of unbound phases during a time
interval Dt is t�A $ Dt. Thus, we can convert the random
variable L into T ¼ L/t�A via a linear transformation of
a random variable, giving the actual time until successful
synthesis of ProteinB. Using the properties of the geometric
distribution for the random variable T, we end up with the
mean and the variance of the residence time:

ts ¼ 1

t�A$qsqtqb
and

s2
ts
¼ 1

ðt�AÞ2
$
1� qsqtqb

ðqsqtqbÞ2
:

(13)
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An important approximation for the residence time can
be derived under the assumption of rapid translation and
slow mRNA degradation, b >> g, leading to qt z 1. This
implies that it is quite certain that an mRNA will be
translated at least once before degradation. In the regime
of rapid transcription factor binding (tþ >> d,a), the prob-
ability for a binding reaction is close to 1, qb z 1, whereas
the probability for at least one transcription can be approx-
imated with qszaB=ðtþANAÞ. Taken together, this leads to
a linear dependence of the residence time on the protein
number,

tsz

�
tþA
t�A

�
$

�
NA

aB

�
: (14)

We want to compare our analytical approximation with
the residence time derived from simulations. To that end,
we have to infer the dominating attractors from the simu-
lated time courses. Recall that we can identify the domi-
nating attractors via thresholds cA, cB at protein levels.
The residence time of attractor SA (SB) is estimated as
the consecutive time in a trajectory where NA > cA
(NB > cB). We compare the analytically derived geometric
distribution for the residence times (see Eq. 13) with
numerical results by simulating the switch with a given
parameter set and estimating the residence times from
10,000 stochastic simulations. Fig. 4 A shows excellent
agreement between the geometric distributed residence
time and the simulations for a protein degradation rate
of d ¼ 8 $ 10 s�1. This legitimates the approximations
and assumptions made above for the parameter regime of
rapid transcription factor binding. From the analysis of
the mean residence time for different protein half-lives,
we find again a good agreement between the simulation
and the approximation (see Fig. 4 B). Moreover, the slope
of the log-log curve of the simulation is 1—confirming
a linear dependence of the residence time from the mean
protein level.

With the result from Eq. 13 we can compare the mean
residence time of different switch models. To begin, we
A B
consider a gene expression model where transcription and
translation are condensed into a single protein synthesis
reaction. In analogy to the two-stage model of gene expres-
sion (26), this can be called a one-stage model of gene
expression. To achieve the same amount of proteins at
similar degradation rates, the synthesis rate in the one-stage
model needs to be larger compared to the transcription and
translation rates in the two-stage model. The probability qt
that accounts for translation during mRNA lifetime can be
set to 1, because there is no mRNA stage and proteins are
produced immediately. The binding probability qb remains
unchanged. However, because of the increased synthesis
rate, the probability qs of synthesis during the unbound
phase will be larger than in the two-stage model. Therefore,
the mean residence time will be decreased in the one-stage
model as compared to the two-stage model, leading to more
frequent attractor changes. This finding is in accordance
with the previously reported stabilizing effect of bursts in
an exclusive switch (16).

A second modification of the switch includes autoactiva-
tion of both genes. If the promoter of the gene is unbound
it will be transcribed with a small basal rate k. If the
promoter is bound by its own protein product, the gene
will be transcribed with full rate a >> k. Repressor-bound
promoters are inactive. For simplicity, we assume that
either activators or repressors are bound but not both at
the same time. Note that, in this case, the deterministic
ODE model is also bistable (42). Considering the mean
residence time in a two-stage switch with autoactivation,
we find that the probability qs of mRNA synthesis during
the unbound phase is smaller than in the ordinary two-stage
model. Because no activator is present in this attractor,
mRNA has to be transcribed with the small basal rate k,
making the transcription more improbable. The probability
qt for translation remains unchanged. However, the
probability qb of protein binding to the antagonistic
promoter is also decreased because this promoter is occu-
pied by the abundant activator most of the time. Therefore,
repressor binding to this promoter requires an additional
dissociation reaction of the activator during repressor
FIGURE 4 Residence time ts in the two-stage

toggle switch. (A) The distribution for ts obtained

by stochastic simulation is in good agreement

with the geometric distribution derived from our

mean-field approximation. (Dashed line) Mean of

the distribution. The protein decay rate was set to

d¼ 8 $ 10�4 s�1. (B) Mean residence time ts versus

mean protein level N derived from stochastic simu-

lation (symbols) and our analytical approximation

(lines) for four different parameter settings. Note

that the analytical approximations as well as the

simulation results of the first and fourth parameter

sets coincide. The exponent in the relation

tsfðNAÞn is n ¼ 1, in accordance with Eq. 4.
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lifetime. As both qs and qb are decreased the mean residence
time in switch models with autoactivation will be strongly
increased compared to the ordinary two-stage model.

Summarizing, we find that the residence time is i),
geometrically distributed; ii), the mean of the distribution
grows linearly with the number of proteins for slow
mRNA degradation; and iii), both the intermediate step of
mRNA production and the autoactivation of transcription
factors increase the residence time.
DISCUSSION

Lineage priming

We now discuss the implications of our findings in the
context of cell differentiation driven by the toggle switch.
In previous studies (8,9,40), attractors where either one or
the other player is dominating, thereby repressing the antag-
onist (SA, SB), corresponded to committed cells. We also
find analogs for the intermediate states S*A and S*B. In these
attractors, the system has a strong preference toward one
specific dominating attractor, but is not fully committed
yet. A similar behavior is known as lineage priming in
stem cell biology (43). Two different studies (44,45) showed
that a population of stem and progenitor cells, respectively,
can be divided into subpopulations that mainly give rise to
only one of two possible cell types. In our simple model
this would correspond to stem cells that reside either in
S*A or S*B. These stem cells can still give rise to both cell
fates but have a strong tendency toward one of them.

Remarkably, only a two-stage probabilistic model of the
toggle switch showsdynamics reminiscent of lineagepriming.
Although a progenitor state exists in one-stage models of the
toggle switch, cells in this state will move to either the one
or the other committed state with equal probability.
Residence time

We find that the residence time in SA and SB, a key property
of the system, is geometrically distributed. Previous contri-
butions (22,23,46) focused only on the mean residence time
and did not consider its underlying distribution. What does
a geometric distribution for the residence time imply for the
differentiation process dependent on the state of a genetic
switch?

To discuss this question, let us first reason on how a differ-
entiation decision could be established with the toggle
switch lined out in the previous sections. We discriminate
two scenarios for the differentiation of a cell:

In the first scenario, the state of the switch completely
determines the cell fate. Starting in the progenitor attractors
S*A or S*B, after a certain amount of time the switch will
move to a committed attractor. We assume that the high
numbers of proteins of the dominating player will trigger
the differentiation program of the associated lineage and
Biophysical Journal 102(1) 19–29
establish the mature cell type. However, due to stochasticity,
the switch will drop out of the committed attractors and the
cell will not only lose the current lineage decision, but
possibly even switch to the opposing cell fate. To establish
stable lineages in this scenario, the cell has to assure that the
residence time of the switch is much longer than all relevant
biological processes of the cell, especially cell lifetime. This
guarantees that the cell will keep a lineage decision once it
has obtained one. Yet the geometric distribution of the resi-
dence time imposes difficulties in this scenario: Even if the
mean residence time is high, short residence times will
always be more probable than longer residence times. The
toggle switch could either be stabilized with the aforemen-
tioned autoactivation of the players, or with very high protein
numbers so that the geometric distribution flattens and
transforms to an almost uniform distribution. Both means
would assure that only a very small percentage of a popula-
tion of cells forgets its lineage decision during lifetime.

In the second scenario, we assume that the cell gets locked
into one fate by changing the shape of the underlying poten-
tial so that further transitions between attractors become less
possible. Such a change of the potential could, for example,
be facilitated by chromatin changes, as proposed by Akashi
et al. (47). In the following, we assume that only if one state
dominates the other for a long enough fixation time td, down-
stream genes necessary for the decision process are activated
(e.g., leading to chromatin remodeling), and the cell differ-
entiates. Such a time-dependent property could be imple-
mented with low-pass filters (see Narula et al. (48) for an
example in hematopoietic stem cells) and would allow for
an integration of external signals (see Rieger et al. (49) for
the instructive power of hematopoietic cytokines). In this
scenario, the residence time determines when differentiation
will occur: The switch will constantly move into and out of
the dominating attractors, until the residence time is finally
long enough so that the dominating player can activate the
downstream differentiation machinery. Ignoring the time
the system spends in the intermediate attractors and just
summing up the residence times in SA and SB until a long
enough residence time for differentiation occurs, we find
that this time follows a geometric-like distribution (see
Section S5 in the Supporting Material). Under this differen-
tiation mechanism, most cells will differentiate very fast and
only a few cells will need longer. Experiments that measure
the time for single cells needed to go from the primed to the
committed state (as an extension to the two-day threshold
reported by Heyworth et al. (50) for GM-CTC cells) to
support or reject these hypotheses remain to be done.
Comparison to previous models

Finally, we discuss how our findings relate to previous
studies on the toggle switch. We found that the mean of
the residence time distribution scales linearly with the
number of proteins in the system. The more proteins
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present, the longer the average residence time in SA or SB.
However, shorter residence times are still most probable
due to the geometric distribution. This holds for the one-
stage, the two-stage, and the autoactivating scenario.

This linear scaling differs from the exponential (23) or
near-exponential (46) scaling described previously in the
one-stage scenario. In contrast to our model, the model of
Warren and ten Wolde (46) considers dimerization of the
transcription factors, motivated by the fact that cooperative
binding is necessary to achieve bistability in a deterministic
framework (10). We showed that, as soon as stochastic fluc-
tuations are introduced, a system with multiple attractors is
achieved that can act as a proper switch with additional states
of low coexpression. Including dimerization as a prerequisite
for inhibition in a one-stage model will strongly increase the
stability of the attractors SA/B (46). This is consistent with
our findings: Instead of requiring translation of one protein
of the suppressed species, we now require this rare event to
happen twice during a short time-frame, which is much
less probable. However, the inclusion of dimerization will
have less effect on the two-stage switch: because proteins
are typically synthesized in bursts (in our model, the average
burst size is b/g¼ 10) and dimerization is a fast process (46),
as soon as one burst occurs almost certainly a dimer is
formed and can inhibit the currently dominating player.
Therefore, the probability of leaving the attractors SA/B is
similar to a nondimeric inhibition.

Contrary to our results, Warren and ten Wolde (46) report
that introduction of mRNAs reduces the stability of the
switch. This discrepancy can be understood in the light of
dimerization. In their one-stage model, dimerization is
a key ingredient of stability, which is lost when introducing
translational bursts (i.e., shot noise). As we considered
monomeric transcription factor binding, stability does not
rely on dimerization. Therefore, mRNAs increase the
stability of the system, because they introduce additional
conditions required for switching.

Due to these differences in the model, it is hard to resolve
the discrepancy between our linear and the exponential
scaling of residence time found by Bialek (23) and Warren
and ten Wolde (46). However, we want to emphasize that the
theoretical results shown in Warren and ten Wolde (46) only
consider protein numbers up to 30. In this region our simu-
lation results show slight deviations from the analytical
linear dependence (Fig. 4). At such low protein numbers
the system does not only leave the dominating attractor ac-
cording to the mechanism described in our results. It is also
likely that just due to fluctuations in the gene expression (not
fluctuations in the promoter) the dominating attractor is left.
This mechanism operates only at very small protein
numbers and its probability rapidly decreases with rising
protein numbers. Therefore, our results do not contradict
the findings of Warren and ten Wolde (46), but actually
consider a different parameter regime with higher protein
numbers. Interestingly, the noise-driven attractor changes
are also described by Kashiwagi et al. (51), where the
authors link this mechanism to the selection of a favorable,
less noisy attractor in Escherichia coli populations.

In another contribution, Morelli et al. (52) use the forward
flux-sampling algorithm to assess the stability of a one-stage
genetic toggle switch with dimeric transcription factor
binding. They find a similar mechanism of attractor flipping
that is based on the synthesis of the suppressed species due
to promoter fluctuations. Using the forward flux sampling,
they obtain estimates of the switching rate (the inverse of
the mean residence time) for different amounts of fluctua-
tions in DNA-protein interaction and dimerization. Morelli
et al. (52) modulate the size of fluctuations at the promoter
by varying the ratio of binding rate and synthesis rate, the
adiabaticity parameter u ¼ tþ/a (t� is adjusted to keep
tþ/t� constant). Small u leads to strong fluctuations,
whereas large u reduces fluctuations. They find that
increasing u decreases the average switching rate and there-
fore stabilizes the switch. This dependency vanishes for
u > 5, where the average switching rate remains constant.
The latter is in accordance with our results in Eq. 14, where
the mean residence time depends only on the ratio of tþ and
t�, not on the absolute values and is therefore independent
of u. The dependency of the average switching rate for
u < 5 is not predicted by Eqs. 3 and 4. It is also not visible
in the stochastic simulations, where mean residence times of
systems with u ¼ 1 and u ¼ 20 coincide (Fig. 4). The
results of Morelli et al. (52) were simulated for an average
number of proteins NA ¼ NB ¼ 27.

As mentioned above, in regions of very small protein
numbers the system might leave the dominating attractor
by a mechanism not captured by Eqs. 3 and 4, probably
causing the difference of the results of Morelli et al. (52)
and our results for small u.
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